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Environmental Brownian noise suppresses explosions in
population dynamics
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Abstract

Population systems are often subject to environmental noise, and our aim is to show that
(surprisingly) the presence of even a tiny amount can suppress a potential population explosion.
To prove this intrinsically interesting result, we stochastically perturb the multivariate determin-
istic system ẋ(t)=f(x(t)) into the Itô form dx(t)=f(x(t)) dt + g(x(t)) dw(t), and show that
although the solution to the original ordinary di9erential equation may explode to in;nity in a
;nite time, with probability one that of the associated stochastic di9erential equation does not.
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1. Introduction

Single-species deterministic population dynamics can often be described by the or-
dinary di9erential equation ẋ=f(x), and to avoid an explosion (i.e. in;nite population
size at a ;nite time) f(x) has to satisfy certain conditions (cf. Butler et al., 1986;
Hutson and Schmitt, 1992; Jansen, 1987; Kirlinger, 1988). Consider, for example, the
one-dimensional logistic (i.e. quadratic) equation

ẋ(t)= x(t)[b+ ax(t)] (1)

on t¿ 0 with initial value x(0)= x0¿ 0. Since here the variable x(t) denotes population
size, only positive solutions are of interest. For parameters a¡ 0 and b¿ 0, Eq. (1)
has the global solution

x(t)=
b

−a+ e−bt(b+ ax0)=x0
(t¿ 0);

which is not only positive and bounded but also has the asymptotic property that
limt→∞ x(t)= b=|a|. In contrast, if we now let a¿ 0, whilst retaining b¿ 0, then
Eq. (1) has only the local solution

x(t)=
b

−a+ e−bt(b+ ax0)=x0
(06 t ¡T );
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which explodes to in;nity at the ;nite time

T =− 1
b
log
(

ax0
b+ ax0

)
:

However, given that population systems are often subject to environmental noise
(cf. Kifer, 1990; Ramanan and Zeitouni, 1999), it is important to discover whether the
presence of such noise a9ects this result. Suppose that the parameter a is stochastically
perturbed, with

a → a+ �ẇ(t);

where ẇ(t) is white noise and �¿ 0 represents the intensity of the noise. Then this
environmentally perturbed system may be described by the Itô equation

dx(t)= x(t)[(b+ ax(t)) dt + � x(t) dw(t)]: (2)

In this paper, we shall show that with probability one the solution of Eq. (2) can no
longer explode in a ;nite time if a¿ 0. In summary, when a¿ 0 and �=0 the solution
explodes at the ;nite time t=T ; whilst conversely, no matter how small �¿ 0, the
solution will not explode in a ;nite time. In other words, stochastic environmental
noise suppresses deterministic explosion.
Given the nature of this potentially counter-intuitive result, it is worthwhile presenting

a simple illustration before we proceed to the general proof. For 0¡h�1 consider
the discrete-time system

x(t + h)= x(t) + hx(t)(1 + x(t)) +
√
hx2(t)z(t); (3)

where, for some constant d¿ 0; {z(t)} denotes the Bernoulli noise process
Pr(z(t)=d)=Pr(z(t)=− d)= 0:5:

This system is an appropriate simpli;cation as, in the limit h → 0, it tends towards an
Itô equation of the form (2). Note that the noise intensity is represented by d, in other
words

√
hz(t)→ � d!(t). On denoting the ‘reaction’ component �(t) ≡ hx(t)(1+ x(t))

and ‘noise’ component �(t) ≡ √
hx2(t)z(t), we see that for x(t)¿x̂ ≡ √

h=(d−√
h) �√

h=d we have �(t)¿�(t), whence negative z(t) result in downwards increments. This
suggests that for x(t) near x̂ the process might exhibit local stability. Moreover, for

x(t)¿x̃=
1 + h√
hd− h

� 1√
hd

a negative z(t)-value results in x(t + h)¡ 0. So the existence of our environmental
noise {z(t)} places an e9ective upper bound on {x(t)}, since for x(t)¿x̃ the process
becomes negative after a further geometric (0.5) distributed number of steps. This is
highly suggestive of our main result since, once the population grows suRciently large,
the noise will eventually cause a catastrophic population crash.
For h=10−4 we found that for one simulation d had to be as high as 5 to ensure that

x(t) remained positive over 06 t6 100 (Fig. 1a), which suggests that nonnegativity is
associated with early domination of the deterministic logistic term by the environmental
noise. This ties in with known results in population dynamics, for which persistence
is associated with the avoidance of ‘boom-and-bust’ dynamics. Note that x(t) exhibits
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Fig. 1. Graph (a) shows a realization of the discrete-time system (3) for d=5 and h=10−4. Graphs (b)
and (c) show the same system for h=10−6 and 10−8, respectively.

‘epidemic’-like behaviour, spending most of the time hovering around a relatively low
‘endemic’ level with occasional upward surges. Moreover, over the time range shown,
x(t) substantially exceeds x̂=0:002, so x̂ does not relate to local equilibrium levels;
whilst x(t)¡ 3:0 remains considerably less than the critical value x̃=20. The role of h
can be seen by running the simulation over 06 t6 1000, since (for this given run) x(t)
became negative even when d=100, though persistence was achieved by decreasing
h to 10−6. Figs. 1b and c show x(t) for h=10−6 and 10−8, respectively, sampled at
t=0; 0:01; : : : ; 100, and visual comparison between all three shows little evidence that
the structure of sampled x(t)-values depends on h. A question of considerable interest
is whether one can determine the limiting distribution of {x(t) | x(t)¿ 0} as h → 0.
This behavioural stability can be shown (informally) by considering a small ;xed

time interval (s; s+�) over which x(t) � x(s) (i.e. changes little). Then as the variance
of each step increment is � (

√
hx2(s)d)2=2, and there are �=h independent steps, the

displacement variance for time length � is (hx4(s)d2=2) × (�=h)= x4(s)d2�=2 which is
clearly independent of h. It is interesting to note that this stability occurs only because
the environmental noise takes order O(

√
h); for any other order either the reaction or

the environmental components will become totally dominant as h → 0.
More practically, let us now consider bivariate systems. When there are no interspe-

ci;c interactions, a bounded system can be described by the purely logistic scheme

ẋ1(t) = x1(t)[b1 − a11x1(t)];

ẋ2(t) = x2(t)[b2 − a22x2(t)] (4)

for positive parameters b1; b2; a11 and a22. However, if each species enhances the
growth of the other, then the interactive dynamics are governed by the coupled ordinary
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di9erential equations

ẋ1(t) = x1(t)[b1 − a11x1(t) + a12x2(t)];

ẋ2(t) = x2(t)[b2 − a22x2(t) + a21x1(t)]; (5)

where a12; a21¿ 0. This type of ecological interaction is known as facultative mutu-
alism; that is, each species enhances the growth of the other although each species
can persist in the absence of the other. There exists an extensive literature concerned
with the dynamics of mutualism (cf. Boucher, 1985; He and Gopalsamy, 1997; Wolin
and Lawlor, 1984). In general, a12; a21 are assumed to be smaller than a11; a22, e.g.
a12a21¡a11a22, otherwise the solution of Eq. (5) may explode at a ;nite time. For
example, consider the symmetric system

ẋ1(t) = x1(t)[1− x1(t) + 2x2(t)];

ẋ2(t) = x2(t)[1− x2(t) + 2x1(t)]: (6)

If we let the initial values be the same, e.g. x1(0)= x2(0)= 1, then by symmetry
x1(t)= x2(t). Thus

ẋ1(t)= x1(t)[1 + x1(t)];

which has the solution

x1(t)=
1

−1 + 2e−t (06 t ¡ log(2))

with explosion at t= log(2). However, this situation will change signi;cantly if there is
environmental noise. To be precise, let such a system be governed by the Itô equation

dx1(t) = x1(t)[(b1 − a11x1(t) + a12x2(t)) dt + (�11x1(t) + �12x2(t)) dw(t)];

dx2(t) = x2(t)[(b2 − a22x2(t) + a21x1(t)) dt + (�21x1(t) + �22x2(t)) dw(t)]: (7)

We shall see that for arbitrary parameters bi; aij, system (7) will not explode in a ;nite
time with probability 1 provided the noise intensities �11; �22¿ 0 and �12; �21¿ 0.

2. Noise suppresses explosion

Throughout this paper, unless otherwise speci;ed, we let (�;F; {Ft}t¿0; P) be a
complete probability space with a ;ltration {Ft}t¿0 satisfying the usual conditions (i.e.
it is right continuous and F0 contains all P-null sets). Let w(t) denote one-dimensional
Brownian motion de;ned on this probability space. If A is a vector or matrix, its trans-
pose is denoted by AT. If A is a matrix, its trace norm is denoted by |A|=

√
trace(ATA)

whilst its operator norm is denoted by ‖A‖=sup{|Ax|: |x|=1}. We also introduce the
notation Rn+ = {x∈Rn: xi ¿ 0 for all 16 i6 n}.
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Consider the Lotka–Volterra model for a system with n interacting components,
namely

ẋi(t)= xi(t)


bi + n∑

j=1

aijxj


 (16 i6 n):

De;ne diag(x1(t); : : : ; xn(t)) as the n × n matrix with all elements zero except those
on the diagonal which are x1(t); : : : ; xn(t). Then the Lotka–Volterra model takes the
matrix form

ẋ(t)= diag(x1(t); : : : ; xn(t))[b+ Ax(t)]; (8)

where

x=(x1; : : : ; xn)T; b=(b1; : : : ; bn)T; A=(aij)n×n

and aij denotes the element in the ith row and jth column of an n×n matrix. Suppose
that every parameter aij is stochastically perturbed, with

aij → aij + �ijẇ(t):

Then Eq. (8) takes the stochastic form

dx(t)= diag(x1(t); : : : ; xn(t))[(b+ Ax(t)) dt + �x(t) dw(t)]; (9)

where �=(�ij)n×n. Since the purpose of this paper is to discover the e9ect of
environmental noise, we naturally impose the following simple hypothesis on the noise
intensities,
(H1) �ii ¿ 0 if 16 i6 n whilst �ij¿ 0 if i �= j.
As the ith state xi(t) of Eq. (9) is the size of the ith component in the system,

it should be nonnegative. Moreover, in order for a stochastic di9erential equation to
have a unique global (i.e. no explosion in a ;nite time) solution for any given ini-
tial value, the coeRcients of the equation are generally required to satisfy the linear
growth condition and local Lipschitz condition (cf. Ladde and Lakshmikantham, 1980;
Liptser and Shiryayev, 1989; Mao, 1997). However, the coeRcients of Eq. (9) do not
satisfy the linear growth condition, though they are locally Lipschitz continuous, so the
solution of Eq. (9) may explode at a ;nite time (cf. Khasminskii, 1981; Mao, 1991;
Mao, 1994). In this section, we shall show that under the simple hypothesis (H1) the
solution of Eq. (9) is positive and global. This result reveals the important property
that the environmental noise suppresses the explosion, as suggested by the stochastic
simulation shown in Section 1.

Theorem 2.1. Under hypothesis (H1); for any system parameters b∈Rn; A∈Rn×n;
and any given initial value x0 ∈Rn+; there is a unique solution x(t) to Eq. (9) on
t¿ 0 and the solution will remain in Rn+ with probability 1; namely x(t)∈Rn+ for all
t¿ 0 almost surely.

Proof. Since the coeRcients of the equation are locally Lipschitz continuous, for any
given initial value x0 ∈Rn+ there is a unique local solution x(t) on t ∈ [0; �e), where
�e is the explosion time (cf. Arnold, 1972 or Friedman, 1976). To show this solution
is global, we need to show that �e =∞ a.s. Let k0¿ 0 be suRciently large for every
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component of x0 lying within the interval [1=k0; k0]. For each integer k¿ k0, de;ne
the stopping time

�k = inf{t ∈ [0; �e) : xi(t) �∈ (1=k; k) for some i=1; : : : ; n};
where throughout this paper we set inf ∅=∞ (as usual ∅ denotes the empty set).
Clearly, �k is increasing as k → ∞. Set �∞= limk→∞ �k , whence �∞6 �e a.s. If we
can show that �∞=∞ a.s., then �e =∞ a.s. and x(t)∈Rn+ a.s. for all t¿ 0. In other
words, to complete the proof all we need to show is that �∞=∞ a.s. For if this
statement is false, then there is a pair of constants T ¿ 0 and �∈ (0; 1) such that

P{�∞6T}¿�:

Hence there is an integer k1¿ k0 such that

P{�k6T}¿ � for all k¿ k1: (10)

De;ne a C2-function V :Rn+ → R+ by

V (x)=
n∑
i=1

[
√
xi − 1− 0:5 log(xi)]:

The nonnegativity of this function can be seen from
√
u− 1− 0:5 log(u)¿ 0 on u¿ 0:

If x(t)∈Rn+, the Itô formula shows that

dV (x(t))=
n∑
i=1


0:5(x−0:5i − x−1i )xi




bi + n∑

j=1

aijxj


 dt +

n∑
j=1

�ijxj dw(t)




+0:5(−0:25x−1:5i + 0:5x−2i )x2i


 n∑
j=1

�ijxj



2

dt




=
n∑
i=1


0:5(x0:5i −1)


bi + n∑

j=1

aijxj


 +(0:25−0:125x0:5i )


 n∑
j=1

�ijxj



2

 dt

+
n∑
i=1

n∑
j=1

0:5(x0:5i − 1)�ijxj dw(t);

where we write x(t)= x. Compute

n∑
i=1

(x0:5i − 1)


bi + n∑

j=1

aijxj




6
n∑
i=1

|bi|(x0:5i + 1) +
n∑
i=1

n∑
j=1

|aij|xj +
n∑
i=1

n∑
j=1

|aij|x0:5i xj
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6
n∑
i=1

|bi|(x0:5i + 1) +
n∑
j=1

n∑
i=1

|aij|xj +
n∑
i=1

n∑
j=1

0:5|aij|(xi + x2j )

=
n∑
i=1


|bi|(1 + x0:5i ) +

n∑
j=1

(|aji|+ 0:5|aij|)xi + 0:5
n∑
j=1

|aji|x2i




and

n∑
i=1


 n∑
j=1

�ijxj



2

6
n∑
i=1


 n∑
j=1

�2ij

n∑
j=1

x2j


= |�|2

n∑
i=1

x2i :

Moreover, by hypothesis (H1),

n∑
i=1

x0:5i


 n∑
j=1

�ijxj



2

¿
n∑
i=1

�2iix
2:5
i :

So

n∑
i=1


0:5(x0:5i − 1)


bi + n∑

j=1

aijxj


+ (0:25− 0:125x0:5i )


 n∑
j=1

�ijxj



2



6
n∑
i=1


0:5|bi|(1 + x0:5i ) +

n∑
j=1

(0:5|aji|+ 0:25|aij|)xi

+0:25


 n∑

j=1

|aji|+ |�|2

 x2i − 0:125�2iix

2:5
i


 ;

which is bounded, say by K , in Rn+. We therefore obtain∫ �k∧T

0
dV (x(t))6

∫ �k∧T

0
K dt +

∫ �k∧T

0

n∑
i=1

n∑
j=1

0:5(x0:5i − 1)�ijxj dw(t)

since x(t ∧ �k)∈Rn+. Whence taking expectations, yields
EV (x(�k ∧ T ))6V (x0) + KE(�k ∧ T )6V (x0) + KT: (11)

Set �k = {�k6T} for k¿ k1 and, by (10), P(�k)¿ �. Note that for every !∈�k ,
there is some i such that xi(�k ; !) equals either k or 1=k, and hence V (x(�k ; !)) is no
less than either

√
k − 1− 0:5 log(k)

or √
1=k − 1− 0:5 log(1=k)=

√
1=k − 1 + 0:5 log(k):

Consequently,

V (x(�k ; !))¿ [
√
k − 1− 0:5 log(k)] ∧ [0:5 log(k)− 1]:
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It then follows from (11) that

V (x0) + KT ¿ E[1�k (!)V (x(�k ; !))]

¿ �([
√
k − 1− 0:5 log(k)] ∧ [0:5 log(k)− 1]);

where 1�k is the indicator function of �k . Letting k → ∞ leads to the contradiction

∞¿V (x0) + KT =∞
so we must therefore have �∞=∞ a.s.

It is easy to see from this theorem that, with probability 1, neither Eq. (2) nor (7)
will explode in a ;nite time, as stated earlier in Section 1.

3. Boundedness

Theorem 2.1 shows that under the simple hypothesis (H1) the positive cone Rn+ is
the invariant set of the solutions of Eq. (9). In the sequel we therefore only need to
consider how the solutions vary in Rn+. Let us denote by x(t; x0) the unique global
solution of Eq. (9) given initial value x(0)= x0. For convenience, let us de;ne the
di9usion operator L acting on C2-functions V ∈C2(Rn+;R) by

LV (x) = Vx(x)diag(x1; : : : ; xn)(b+ Ax)

+1
2x

T�Tdiag(x1; : : : ; xn)Vxx(x)diag(x1; : : : ; xn)�x;

where

Vx =(Vx1 ; : : : ; Vxn) and Vxx =(Vxixj)n×n:

Theorem 3.1. Let hypothesis (H1) hold. Let �1; : : : ; �n be positive numbers such that

�1 + · · ·+ �n ¡ 1
2 : (12)

Then; for any initial value x0 = (x01; : : : ; x0n)T ∈Rn+; the solution x(t; x0)= x(t) of
Eq. (9) has the property that

log

(
E

[
n∏
i=1

x�ii (t)

])
6 e−c1t

n∑
i=1

�i log x0i +
c2
c1
(1− e−c1t) for all t¿ 0; (13)

where

c1 =
1
4

(
1−

n∑
i=1

�i

)
min
16i6n

�i�2ii and c2 = |�||b|+ |�|2‖A‖2
4c1

:

In particular; letting t → ∞ in (13) yields the asymptotic estimate

lim sup
t→∞

E

(
n∏
i=1

x�ii (t)

)
6 ec2=c1 : (14)

To prove this theorem consider the following lemma.
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Lemma 3.2. Let hypothesis (H1) hold; and � T = (�1; : : : ; �n) be positive numbers such
that

�1 + · · ·+ �n ¡ 1: (15)

Then; for any initial value x0 ∈Rn+; the solution x(t; x0)= x(t) of Eq. (9) has the
property that

E

(
n∏
i=1

x�ii (t)

)
¡∞ for all t¿ 0: (16)

Proof. De;ne a C2-function V :Rn+ → R+ by

V (x)=
n∏
i=1

x�ii :

It is not diRcult to show that

LV (x)=V (x)� T(b+ Ax)− 1
2V (x)x

T�T[diag(�1; : : : ; �n)− ��T]�x: (17)

Note that for any y=(y1; : : : ; yn)T ∈Rn;

yT[diag(�1; : : : ; �n)− ��T]y =
n∑
i=1

�iy2i −
(

n∑
i=1

�iyi

)2

¿
n∑
i=1

�iy2i −
n∑
i=1

�i
n∑
i=1

�iy2i =

(
1−

n∑
i=1

�i

)
n∑
i=1

�iy2i :

Thus, for x∈Rn+,

xT�T[diag(�1; : : : ; �n)− ��T]�x¿

(
1−

n∑
i=1

�i

)
n∑
i=1

�i


 n∑

j=1

�ijxj



2

¿

(
1−

n∑
i=1

�i

)
n∑
i=1

�i�2iix
2
i

¿

(
1−

n∑
i=1

�i

)(
min
16i6n

�i�2ii

)
|x|2 = 4c1|x|2;

where c1 is de;ned in the statement of Theorem 3.1. It then follows from (17) that

LV (x)6V (x)[|�|(|b|+ ‖A‖|x|)− 2c1|x|2]:
Since

|�|‖A‖|x|6 |�|2‖A‖2
4c1

+ c1|x|2;

we therefore obtain

LV (x)6V (x)[c2 − c1|x|2]; (18)
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where c2 is de;ned in the statement of Theorem 3.1. For every integer k¿ 1, de;ne
the stopping time

�k = inf{t¿ 0:|x(t)|¿ k};
which by Theorem 2.1 has the properties that, �k ¡∞ and �k → ∞ almost surely as
k → ∞. Now for any t¿ 0, the Itô formula shows that

V (x(t ∧ �k))=V (x0) +
∫ t∧�k

0
LV (x(s)) ds+

∫ t∧�k

0
V (x(s))� T�x(s) dw(s):

Taking expectations of both sides and making use of (18) yields

EV (x(t ∧ �k))6V (x0) + c2E
∫ t∧�k

0
V (x(s)) ds6V (x0) + c2

∫ t

0
EV (x(s ∧ �k)) ds;

whence applying the well-known Gronwall inequality gives

EV (x(t ∧ �k))6V (x0)ec2t :

Letting k → ∞ shows that

EV (x(t))6V (x0)ec2t (t¿ 0)

and the required assertion follows.

Proof of Theorem 3.1. We use the same notation as in the proof of Lemma 3.2, which
shows that EV (x(t)) is ;nite for all t¿ 0. Moreover, by Theorem 2.1, V (x(t))¿ 0 with
probability 1, so we must have EV (x(t))¿ 0 for all t¿ 0. In addition, the continuity
of EV (x(t)) in t can be seen by the continuity of the solution x(t) and the dominated
convergence theorem. For convenience, let us set

v(t)=EV (x(t)) for t¿ 0:

Then v(t) is a continuous positive function of t¿ 0. De;ne the right upper derivative
of v(t) by

D+v(t)= lim sup
*↓0

v(t + *)− v(t)
*

(t¿ 0):

We claim that

D+v(t)6 v(t)(c1 + c2 − c1v(t)) (t¿ 0): (19)

To show this, note that

V (x)6
n∏
i=1

|x|�i = |x|�1+···+�n 6 1 + |x|2:

Then it follows from (18) that

LV (x)6V (x)[c1 + c2 − c1(1 + |x|2)]6V (x)[c1 + c2 − c1V (x)]: (20)

On recalling condition (12), namely that �1 + · · · + �n ¡ 1, we observe from Lemma
3.2 that

EV 2(x(t))¡∞ for all t¿ 0:
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Whence it follows from the Itô formula and (20) that for any t¿ 0 and *¿ 0;

EV (x(t + *))− EV (x(t))6
∫ t+*

t
[(c1 + c2)EV (x(s))− c1EV 2(x(s))] ds:

Using the HUolder inequality which implies that EV (x(s))6 [EV 2(x(s))]1=2, we then
have

EV (x(t + *))− EV (x(t))6
∫ t+*

t
[(c1 + c2)EV (x(s))− c1[EV (x(s))]2] ds

that is

v(t + *)− v(t)6
∫ t+*

t
[(c1 + c2)v(s)− c1[v(s)]2] ds:

Dividing both sides by * and letting * ↓ 0 yields the claimed inequality (19). We now
compute the derivative

D+[ec1t log v(t)] = c1ec1t log v(t) + ec1t
D+v(t)
v(t)

6 c1ec1t log v(t) + ec1t[c1 + c2 − c1v(t)]:

Noting that log v(t)6 v(t)− 1 we obtain

D+[ec1t log v(t)]6 c2ec1t ;

whence integration yields

ec1t log v(t)6 log v(0) +
c2
c1

[
ec1t − 1

]
:

Consequently,

log v(t)6 e−c1t log v(0) +
c2
c1

[
1− e−c1t

]
;

which is the required assertion (13), while the other assertion (14) follows by letting
t → ∞.

4. Generalizations

Eq. (9) arises from Eq. (8) by assuming that the system matrix A is stochastically
perturbed, with A → A + �ẇ(t). We may assume that both the system vector b and
the matrix A are stochastically perturbed, with

b → b+ +ẇ1(t) and A → A+ �ẇ2(t);

where w1(t) and w2(t) are two independent Brownian motions and +=(+1; : : : ; +n)T,
whilst � is the same as before. Then Eq. (8) takes the stochastic form

ẋ(t)= diag(x1(t); : : : ; xn(t))[(b+ Ax(t)) dt + + dw1(t) + �x(t) dw2(t)]: (21)

More generally, consider a system taking the form

ẋ(t)= diag(x1(t); : : : ; xn(t))[f(x) dt + g(x) dw(t)]; (22)
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where w(t)= (w1(t); : : : ; w2(t))T is now an m-dimensional Brownian motion while
f :Rn+ → Rn and g :Rn+ → Rn×m. Clearly, Eq. (21) is a special case of Eq. (22),
with f(x)= b + Ax; g(x)= (+; �x) and w(t)= (w1(t); w2(t))T. Let fi be the ith com-
ponent of f and gi the ith row of g. Then we impose the following hypothesis on the
coeRcients:

(H2) Both f and g are locally Lipschitz continuous. Moreover, there are constants
h1; h2; -1¿ 0 and -2¿ 0 such that

|f(x)|6 h1(1 + |x|) and -1x2i − -26 |gi(x)|26 h2(1 + |x|2)
for all x∈Rn+ and 16 i6 n.

Theorem 4.1. Under hypothesis (H2); for any given initial value x0 ∈Rn+; there is a
unique solution x(t) to Eq. (22) on t¿ 0 and the solution will remain in Rn+ with
probability 1; namely x(t)∈Rn+ for all t¿ 0 almost surely.

Proof. The theorem can be proved in the same way as for the proof of Theorem 2.1.
Retaining the same notations, we can show by the Itô formula that

dV (x(t)) =
n∑
i=1

[0:5(x0:5i − 1)fi(x) + (0:25− 0:125x0:5i )|gi(x)|2] dt

+
n∑
i=1

0:5(x0:5i − 1)gi(x) dw(t)

whenever x(t)= x∈Rn+. Applying hypothesis (H2) then yields

dV (x(t))6K dt +
n∑
i=1

0:5(x0:5i − 1)gi(x) dw(t)

for some K ¿ 0. The remainder of the proof is the same as before.

We can also extend Theorem 3.1 to Eq. (22) as described below.

Theorem 4.2. Let hypothesis (H2) hold. Let �1; : : : ; �n be positive numbers such that

�1 + · · ·+ �n ¡ 1
2 : (23)

Then; for any initial value x0 = (x01; : : : ; x0n)T ∈Rn+; the solution x(t; x0)= x(t) of
Eq. (22) has the property that

log

(
E

[
n∏
i=1

x�ii (t)

])
6 e−�̂-1t=4

n∑
i=1

�i log x0i

+
4K

�̂-1

(
1− e−�̂-1t=4

)
for all t¿ 0; (24)

where

�̂=

(
1−

n∑
i=1

�i

)
min
16i6n

�i and K = �̂
(
h1 +

h1
2-1

+
n-2
2

)
:
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In particular; letting t → ∞ in (24) yields the asymptotic result

lim sup
t→∞

E

(
n∏
i=1

x�ii (t)

)
6 e4K=�̂-1 : (25)

Proof. The di9usion operator L associated with Eq. (22) has the form

LV (x) = Vx(x)diag(x1; : : : ; xn)f(x)

+1
2 trace[g

T(x)diag(x1; : : : ; xn)Vxx(x)diag(x1; : : : ; xn)g(x)]:

Applying this to the C2-function V :Rn+ → R+ de;ned by

V (x)=
n∏
i=1

x�ii

gives

LV (x)=V (x)� Tf(x)− 1
2V (x)trace(g

T(x)[diag(�1; : : : ; �n)− ��T]g(x));

where �=(�1; : : : ; �n)T as before. It is not diRcult to see from the proof of Lemma 3.2
that

trace(gT(x)[diag(�1; : : : ; �n)− ��T]g(x))¿ �̂|g(x)|2 = �̂
n∑
i=1

|gi(x)|2:

This, together with hypothesis (H2), yields

trace(gT(x)[diag(�1; : : : ; �n)− ��T]g(x))¿ �̂-1|x|2 − n�̂-2:

So on using (H2) once again,

LV (x)6V (x)
[
h1�̂(1 + |x|)− 1

2
(�̂-1|x|2 − n�̂-2)

]
6V (x)

[
K − �̂-1

4
|x|2
]
:

This takes the same form as Eq. (18), and the remainder of the proof parallels that of
Theorem 3.1.

5. Examples and computer simulations

In this section, we explore system behaviour using numerical solutions of the stochas-
tic di9erential system (22). In particular, for t=Vt; 2Vt; : : : ; we employ the Euler
scheme

xVt(t +Vt)= diag((xVt)1(t); : : : ; (xVt)n(t))[f(xVt(t)) dt + g(xVt(t))Vw(t)] (26)

with initial condition x(0)∈Rn+ and time increment Vt. For each time step the vector
Vw(t)= (Vw(t)1; : : : ;Vw(t)m)T represents m independent draws from a Normal distri-
bution with zero mean and variance Vt. Recent results by Marion et al. (2001) show
that, for any ;nite time and a suRciently small time step, this numerical scheme will
converge to the true solution of (22) provided that a C2 function V :Rn+ → R+ exists
and satis;es the following conditions:
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Fig. 2. In graph (a) the solid curve shows a stochastic trajectory generated by the Euler scheme for time step
Vt=10−7 and �=0:25 for a one-dimensional system (9) with A= b=1. The corresponding deterministic
trajectory is shown by the dot-dashed curve. In Graph (b) �=1:0.

(i) the set D(r)= {x∈Rn+: V (x)6 r} is compact for any r ¿ 0;
(ii) LV (x)6K(1 + V (x));
(iii) there exists a positive constant K2(D(r)) such that for all x; y∈D(r)

|V (x)− V (y)| ∨ |Vx(x)− Vx(y)| ∨ |Vxx(x)− Vxx(y)|6K3(D(r))|x − y|:
The function V (x) de;ned in the proof of Theorem 2.1 satis;es each of these con-
ditions, and so the Euler scheme may be applied with con;dence to the generalized
system (22), and hence also to (9).
Fig. 2 shows the results from simulation runs based on the Euler scheme for a

one-dimensional example of system (9) with A= b=1, the initial condition x0 = 0:5
and Vt=10−7. Fig. 2a shows a realization of the dynamics of this system for �=0:25,
whilst Fig. 2b corresponds to �=1:0. In each case the corresponding prediction of the
deterministic model, which explodes at t ≈ 1:0986, is also shown. These simulations
illustrate the main result of this paper, namely that environmental noise suppresses
population explosion in such systems. Moreover, comparison of Figs. 2a and b suggests
that Wuctuations reduce as the noise level increases.
Finally, consider the bivariate system

dx1(t) = x1(1− x1 + 2x2) dt + �x21 d!1(t);

dx2(t) = x2(1− 2x2 + 2x1) dt + 2�x22 d!2(t); (27)

which is of the generalized form (22). Fig. 3 shows a realization of the numerical
solution of this system based on the Euler scheme, with time step Vt=10−4 and
noise level �=1:0. Comparison with the deterministic solution (also shown) supports
the conclusion of Theorem 4.1, namely that noise suppresses the population explosion.
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Fig. 3. In both graphs the solid curve represents a stochastic trajectory for system (27) generated by the
Euler scheme with time step Vt=10−4 and �=1:0, whilst the corresponding deterministic solution is shown
by the dot-dashed curve. Graph (a) shows the ;rst component x1 and graph (b) the second, x2.
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