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Extinction risk depends strongly on factors
contributing to stochasticity
Brett A. Melbourne1 & Alan Hastings2

Extinction risk in natural populations depends on stochastic fac-
tors that affect individuals, and is estimated by incorporating such
factors into stochastic models1–9. Stochasticity can be divided into
four categories, which include the probabilistic nature of birth and
death at the level of individuals (demographic stochasticity2), vari-
ation in population-level birth and death rates among times or
locations (environmental stochasticity1,3), the sex of individuals6,8

and variation in vital rates among individuals within a population
(demographic heterogeneity7,9). Mechanistic stochastic models
that include all of these factors have not previously been developed
to examine their combined effects on extinction risk. Here we
derive a family of stochastic Ricker models using different combi-
nations of all these stochastic factors, and show that extinction risk
depends strongly on the combination of factors that contribute to
stochasticity. Furthermore, we show that only with the full stoch-
astic model can the relative importance of environmental and
demographic variability, and therefore extinction risk, be cor-
rectly determined. Using the full model, we find that demographic
sources of stochasticity are the prominent cause of variability in a
laboratory population of Tribolium castaneum (red flour beetle),
whereas using only the standard simpler models would lead to the
erroneous conclusion that environmental variability dominates.
Our results demonstrate that current estimates of extinction risk
for natural populations could be greatly underestimated because
variability has been mistakenly attributed to the environment
rather than the demographic factors described here that entail
much higher extinction risk for the same variability level.

An essential question in ecology and conservation biology is the
determination of the likelihood of extinction within a biological
system10. This clearly depends on understanding the relative import-
ance of different processes that affect the stochastic dynamics of
biological populations, and how these interact with both density-
dependent and density-independent processes5,6. Ecologists have
long sought simple approaches to predicting the likelihood of extinc-
tion11,12. In conservation biology, the simple idea of a population level
that determines which kind of forces might lead to extinction has
been appealing4,13–15. However, a more detailed and more mech-
anistic approach is clearly needed to answer these questions more
carefully in a way that uses available data.

There is a long history of models that incorporate stochasticity to
examine its effect on population growth and extinction1–6,13,16–21. The
first stochastic models showed that populations could become
extinct even if deterministic models concluded they would persist
indefinitely16. Early results also showed that the variance of popu-
lation fluctuations and the probability of extinction depend on which
biological processes are subject to stochasticity, and that the long-
term growth rate of a stochastic population differs from an equival-
ent population with deterministic dynamics16,17. These general results

have proved to be robust, and later studies have concentrated on how
different sources of stochasticity in the life history of organisms affect
population growth and extinction.

There are many sources of stochasticity that contribute to variance
in population growth and thus contribute to the risk of stochastic
extinction. Two broad classes are most commonly recognized6.
Demographic stochasticity occurs because the birth or death of an
individual is a random event, such that individuals identical in their
probability distributions for reproduction or longevity nevertheless
differ by chance in how many offspring they produce or when they
will die2,20. Environmental stochasticity occurs because fluctuations
in exogenous environmental factors such as temperature and rainfall
drive population-level fluctuations in birth and death rates3,20. In
small populations, demographic stochasticity increases extinction
risk due to unfortunate coincidences in the fate of individuals, which
are cancelled out in larger populations. In contrast, environmental
stochasticity increases extinction risk over a larger range of popu-
lation sizes because the whole population is affected simultaneously.

Two further sources of stochasticity have long been recognized17

but only recently analysed, namely stochastic sex determination6,8,22,23

and demographic heterogeneity7,9, with the former strictly an extreme
form of the latter. These can both be viewed as components of demo-
graphic stochasticity6,7, although we separate them here because they
are fundamentally different to randomness in births and deaths. In
sexually reproducing species, the sex of an offspring is often randomly
determined, giving rise to a stochastically fluctuating sex ratio in the
population. Most current models of extinction risk only include
females; however, a stochastic sex ratio can increase the variance in
population growth and extinction risk over and above the effects of
demographic stochasticity on females alone. This is because males
contribute to density-dependent regulation or because the lack of
males reduces female mating success8,23,24.

Demographic heterogeneity refers to variation in birth or death
rates among individuals within a population, such as might occur
among individuals of different size7,9. This contrasts with demo-
graphic stochasticity, which in its original definition and subsequent
application concerns chance events assuming a fixed value of the
birth or death rate of an individual2,20. Demographic stochasticity,
sex ratio stochasticity and demographic heterogeneity all contribute
to the total demographic variance. Demographic heterogeneity can
either increase or decrease the demographic variance, depending on
the details of the stochastic process, and so can either increase or
decrease the extinction risk7.

A problem that remains to be addressed is how to combine the
various sources of stochasticity into an analytically tractable model.
Many current approaches begin by assuming a deterministic skeleton
to which noise terms are added, where the statistical distribution of
the noise is chosen to reflect a broad class of stochasticity6,25. Among

1Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA. 2Department of Environmental Science and Policy, University of California,
Davis, California 95616, USA.

Vol 454 | 3 July 2008 | doi:10.1038/nature06922

100

 ©2008 Macmillan Publishers Limited. All rights reserved

www.nature.com/nature
www.nature.com/nature
www.nature.com/doifinder/10.1038/nature06922


other models, the Ricker model26 has often been used as a deter-
ministic skeleton25,27. Here we incorporate stochasticity directly into
the birth and death processes, allowing the mean and variance of
population growth to arise mechanistically from the underlying pro-
cess assumptions. Our models are for discrete individuals. We derive
our stochastic models from Ricker’s assumptions but extend these by
specifying the stochastic mechanisms at different stages in the life
history of an individual and scaling up to the population level
(Supplementary Methods). Ricker’s assumptions26 lead to the
Poisson–Ricker model, which contains demographic stochasticity
arising from the number of eggs laid by individuals and the survival
of individual eggs from predation by adults. To this basic model we
add environmental stochasticity and demographic heterogeneity in
the number of offspring and stochasticity in the sex of offspring. We
focus on births because variability in births has greater or equal
effects than mortality, but our models extend generally to mortality
variation (Supplementary Discussion). We use different combina-
tions of the various stochastic sources to derive a family of nested
stochastic Ricker models (Fig. 1).

The stochastic models are true Ricker models because they all have
conditional mean Nt 1 1 equal to the deterministic Ricker model26,
that is, E[Nt 1 1] 5 RNtexp(2aNt), where Nt is the population size in
generation t, R is the density-independent mean per capita growth
rate (finite rate of growth), and a is a measure of density-dependent
effects (Supplementary Methods). However, the various stochastic
models have different distributions of numbers next year as a func-
tion of numbers this year (Supplementary Table 1) and so differ
substantially in their variance characteristics for the number of indi-
viduals in a subsequent generation (Fig. 2 and Supplementary Fig. 1).
As expected, the variance in the number of individuals in the next
generation increases as more sources of stochasticity are included in
the models. The Poisson–Ricker model, a model of pure demo-
graphic stochasticity, has the smallest variance (Fig. 2).

When the total variance is held at the same value (Supplementary
Methods), there is an important difference between models of
environmental stochasticity and demographic heterogeneity in the
variance for the number of individuals the following generation
(Fig. 2). For environmental stochasticity, the variance in numbers
peaks at the stationary point of the deterministic Ricker function,
whereas for demographic heterogeneity, the variance is concentrated
at low abundance to the left of the stationary point. This is because

environmental stochasticity results in a density-independent vari-
ance parameter, whereas demographic heterogeneity generates one
that is density dependent (Supplementary Methods). Consequently,
demographic heterogeneity entails a greater risk of extinction than
environmental stochasticity for the same total variance (Fig. 3). As we
highlight below, the similarities in the two variance functions allow
these processes to be easily confused, yet their differences have large
effects on extinction risk.

The stochastic sex ratio increases the variance at low to intermedi-
ate initial abundance, and substantially so at abundances less than the
stationary point of the Ricker model (Fig. 2). The effect of the sex
ratio is greatest in the demographic models (Fig. 2; compare Poisson
(P) with Poisson binomial (PB) models, and negative binomial
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Figure 1 | A family of stochastic Ricker models based on Ricker’s26

assumptions about the life cycle of a fish species that cannibalises its eggs.
The stochastic models incorporate stochasticity in various parts of the life
cycle, including gamma variation in environmentally determined birth rates,

gamma variation in birth rates between individuals, Poisson variation in
birth rates within individuals, Bernoulli variation in mortality within
individuals, and Bernoulli variation in the sex of an individual at birth.
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Figure 2 | Variance in the number of individuals in the next generation
(Nt 1 1) as a function of the number of individuals in the current generation
(Nt) for the stochastic Ricker models. The model parameters were: R 5 5,
a 5 0.05, kD 5 0.5, kE 5 10. The stochastic parameters (kD, kE) were set so
that the total variance due to demographic heterogeneity was equal to the
total variance due to environmental stochasticity. The vertical bar indicates
the position of the stationary point in the Ricker production function.
Abbreviations identify the models listed in Fig. 1.
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demographic (NBd) with negative binomial-binomial demographic
(NBBd) models). The combined variance of demographic stochasti-
city, environmental stochasticity, demographic heterogeneity and
stochastic sex ratio is higher than in models of their individual effects
and is additive (Fig. 2).

Extinction risk for the stochastic Ricker models differs substan-
tially depending on the combination of factors in the life cycle that
contribute to stochasticity (Fig. 3). The lowest extinction risk is for
the Poisson–Ricker model, which includes only demographic sto-
chasticity, whereas the highest extinction risk is for the model that
includes all sources of stochasticity. Notably, for the same total vari-
ance, extinction risk is enhanced more by demographic heterogeneity
or a stochastic sex ratio than by environmental stochasticity, often by
orders of magnitude. Extinction risk is also dependent on the finite
rate of growth, R (Fig. 3). Increasing R from 1 initially promotes
higher persistence times but it also enhances the contribution of
nonlinear dynamics to the variance in population fluctuations, caus-
ing persistence times to eventually fall. For populations with growth
rates R larger than the value producing the first bifurcation in the
Ricker model (7.4), fluctuations due to nonlinear dynamics increase
and persistence times rapidly drop below those of populations with R
equal to 1 (the minimum R required for persistence in the absence of
fluctuations).

The characteristic probability mass functions (Supplementary
Table 1) of the different stochastic Ricker models provide an oppor-
tunity to distinguish between models by fitting them to data. Using

likelihood approaches and information criteria28, we fitted the
models to data from a laboratory experiment on Tribolium casta-
neum growing in discrete time cultures in temperature-controlled
incubators. As in Ricker’s models of a fish species (Fig. 1), canni-
balism of eggs by adults is the main density-regulating process in
laboratory populations of T. castaneum in discrete time cultures29.
The best-fitting model was the negative binomial-binomial gamma
model, which is the only model to include all four sources of stochas-
ticity (Table 1; the fitted model is shown in Supplementary Fig. 2). No
other model fitted as well (Table 1) and the experimental design
provided a robust distinction between the models (Supplementary
Discussion). In addition, the second-best model (also by a substantial
amount) was the negative binomial gamma model, which left out
only the stochastic sex ratio that is then partly absorbed by the demo-
graphic heterogeneity parameter (Table 1).

The likelihood analysis revealed several important features of
the stochastic system. The Poisson model was the worst model by a
large margin (Table 1, DAIC 5 336), suggesting that the most
basic assumptions of demographic stochasticity in births, density-
dependent survival and density-independent survival are completely
unable to describe the variance in abundance even when environ-
mental variability is tightly controlled within the laboratory. In addi-
tion, the estimated vital rates of the population were not very
different among the models but the estimates of the stochastic para-
meters were very sensitive to which stochastic factors were included
in the fitted model (Table 1). This highlights the importance of a full
model specification for correctly identifying the important stochastic
factors and therefore correctly estimating extinction risk. Notably,
the full model revealed that demographic heterogeneity was much
more important than environmental stochasticity, whereas simpler
models without demographic heterogeneity erroneously suggest that
environmental variability dominates because any demographic
heterogeneity is absorbed by the environmental variance parameter
(Table 1).

These results show that many species currently viewed as at risk of
extinction from environmental stochasticity could instead be at
much higher risk from undetected demographic variance. This
demographic variance is driven by sex ratio variation and demo-
graphic heterogeneity that has been mistakenly attributed to environ-
mental stochasticity. The increased extinction risk is a consequence
of the fact that, for the same overall level of variance in abundance
for one generational step, sex ratio stochasticity and demographic
heterogeneity give rise to greater variance than environmental sto-
chasticity when population sizes are small and vulnerable. Thus,
identifying the relative contribution of different stochastic processes
is vital to understanding fluctuations and estimating extinction risk
because variability differs at different population levels for different
processes. As natural populations are likely to have greater demo-
graphic heterogeneity than our laboratory stock of T. castaneum, the
effect we have uncovered here will be larger in natural populations.
Suitable data could include time series of population abundance
using the methods we have developed here, or individual level
data, with special effort needed to encompass a range of population
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Table 1 | Fit of stochastic Ricker models to T. castaneum data

Model R a kD kE L DAIC

Poisson 2.526 0.003636 - - 2406.5 336

Negative binomial demographic 2.638 0.003744 0.1463 - 2246.3 18

Negative binomial environmental 2.706 0.003800 - 1.9913 2265.3 56

Negative binomial gamma 2.598 0.003727 0.2610 29.2262 2238.9 5

Poisson binomial 2.697 0.003753 - - 2282.0 87

Negative binomial-binomial demographic 2.621 0.003731 0.3876 - 2245.8 17

Negative binomial-binomial environmental 2.770 0.003831 - 13.1014 2242.6 10

Negative binomial-binomial gamma 2.613 0.003731 1.1475* 26.6221* 2236.4 0

The models were fitted to the data by maximizing the log likelihood (L), calculated from the probability mass function of each stochastic Ricker model (Supplementary Table 1). The estimated
parameters were: R, the density-independent mean per capita growth rate; a, the density-dependent parameter; kD and kE, the variance parameters for demographic heterogeneity and environmental
stochasticity, respectively, where small values indicate large variance. The difference in the Akaike information criterion (DAIC) was used to compare models28.
*Bias-corrected estimates for kD and kE were 1.07 and 17.62, respectively (see Supplementary Discussion).
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densities to capture the density-dependent nature of the variance in
abundance. With field data, care will also be needed to factor in
measurement error as this will further hide the importance of
demographic heterogeneity relative to environmental stochasticity
(Supplementary Discussion). We suggest that extinction risk for
many populations of conservation concern needs to be urgently
re-evaluated with full consideration of all factors contributing to
stochasticity.

METHODS SUMMARY
We placed adult T. castaneum into 4 cm 3 4 cm 3 6 cm acrylic containers with

20 g of standard medium (95% flour, 5% brewer’s yeast) to lay eggs for 24 h,

after which time the adults were removed. We set up 60 separate containers with

adult numbers ranging from 2 to 1,000. Containers were kept in a constant-

temperature incubator at 31 uC for the full beetle life cycle and their positions

within the incubator were randomized weekly. The 24-h egg-laying period was

followed by a further 34 days during which individuals passed through the egg,

larval and pupal stages. The number of adults emerging at the end of the 35-day

life cycle was recorded for each container. The stochastic Ricker models were

fitted to the emergence data by maximum likelihood28.
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