against HIV is one notable example. At the
same time, however, there is as yet no agreed
explanation for why there is so long, and so
variable, an interval between infection with
HIV and onset of AIDS. Indeed, I guess that
many researchers in this field do not even think
about this question. But I suspect the answer
may necessarily involve understanding how
whole populations of different strains of HIV
interact with whole populations of different
kinds of immune system cells, within infected
individuals. And understanding the nonlinear
dynamics of such a system will require mathe-
matical models with similarities to and differ-
ences from those that have helped us under-
stand population-level problems in ecology and
infectious diseases (8). It may even be that the
design of effective vaccines against protean
agents like HIV or malaria will require such
population-level understanding. As yet, this
mathematically theoretical aspect of immunol-
ogy is even less to be found in textbooks than
were mathematical models in ecology texts a
generation ago. | venture to predict that the
corresponding immunology texts will indeed
look different in 20, or even 10, years’ time.
In short, mathematical models have proved
to have many uses and to take many forms in
the life sciences. We all, by this time, acknowl-

edge the usefulness of statistical recipes to help
design and analyze experiments. More familiar
in some areas than others are the benefits of
mathematical studies that underpin pattern-
seeking and other software that is indispensable
in elucidating genomes, and ultimately in un-
derstanding how living things assemble them-
selves. Very generally useful are still-unfolding
advances that illuminate the frequently counter-
intuitive behavior of nonlinear dynamical sys-
tems of many kinds.

Mathematics, however, does not have the
long-standing relation to the life sciences that it
does to the physical sciences and engineering. It
is therefore not surprising to find occasional
abuses. Some have been sketched above. Par-
ticularly tricky are instances in which con-
ventional statistical packages (often based on
assumptions of an underlying Gaussian distri-
bution—the central limit theorem) are applied
to situations involving highly nonlinear dynam-
ical processes (which can often lead to situa-
tions in which “rare events” are significantly
more common than Gaussian distributions sug-
gest) (9). Perhaps most common among abuses,
and not always easy to recognize, are situations
where mathematical models are constructed
with an excruciating abundance of detail in
some aspects, whilst other important facets of
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the problem are misty or a vital parameter is
uncertain to within, at best, an order of magni-
tude. It makes no sense to convey a beguiling
sense of “reality” with irrelevant detail, when
other equally important factors can only be
guessed at. Above all, remember Einstein’s dic-
tum: “models should be as simple as possible,
but not more so.”
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Evolutionary Dynamics of Biological Games

Martin A. Nowak™* and Karl Sigmund?3

Darwinian dynamics based on mutation and selection form the core of mathe-
matical models for adaptation and coevolution of biological populations. The
evolutionary outcome is often not a fitness-maximizing equilibrium but can
include oscillations and chaos. For studying frequency-dependent selection,
game-theoretic arguments are more appropriate than optimization algorithms.
Replicator and adaptive dynamics describe short- and long-term evolution in
phenotype space and have found applications ranging from animal behavior and
ecology to speciation, macroevolution, and human language. Evolutionary game
theory is an essential component of a mathematical and computational approach

to biology.

Evolution through natural selection is often
understood to imply improvement and
progress. A heritable trait that confers to its
bearer a higher fitness will spread within
the population. The average fitness of the
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population would therefore be expected to
increase over time. This is often pictured as
a steady ascent on a so-called fitness land-
scape. The landscape metaphor suggests
some solid ground over which the popula-
tion moves. This paradigm (/), which is
also widespread in the theory of genetic
algorithms (2), neglects one-half of the
evolutionary mechanism: Although the en-
vironment selects the adaptations, these ad-
aptations can shape the environment. By
moving across a fitness landscape, popula-
tions change that landscape (Fig. 1).

This is particularly clear if several pop-
ulations interact, because each population

can be part of the fitness landscape of the
other. A host’s successful immune response
to a pathogen, for instance, will exert se-
lection pressure leading to adapted strains
of pathogens, and vice versa (3-5). But
even within a single population, the fitness
of a trait often depends on the prevalence of
that trait: The selective advantage of a giv-
en tree height, for example, depends on the
heights of neighboring trees. Similarly, the
success of a given sex ratio depends on the
overall sex ratio in the population.
Therefore, the fitness landscape is
shaped by the phenotypic distributions of
the involved populations. As the population
moves through the fitness landscape, new
peaks and valleys form, channeling its fur-
ther motion. This viewpoint affects not
only the intuition of evolutionary biologists
but also their theoretical tools. The proper
technique for describing uphill motion on
solid ground is optimization theory, a set of
mathematical techniques developed in the
past 300 years, mostly to solve physical or
technical problems. If the adaptive steps,
however, imply changes in the environ-
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ment, eventually necessitating new adapta-
tions, then game theory is the appropriate
framework. This technique originated more
than 50 years ago to tackle economic and
social problems involving interdependen-
cies among several agents. Evolutionary
biologists soon understood its potential and
started applying it to evolutionary problems
(6-8). The success of a strategy in a game
depends on the co-player’s strategy, much
as the fitness of a phenotype depends on the
composition of the population. Roughly
speaking, game theory is the mathematical
toolbox for methodological individualism,
the systematic attempt to found social the-
ory on the actions and needs of individual
agents (9, 10). For outcomes shaped by
“selfish genes” or by the selfish “homo
economicus,” this is the proper instrument.

Biological Games

The number of papers applying game theory
to biological problems is in the thousands
(11). The first use of game-theoretic argu-
ments can be found in the field of sex-ratio
theory (12, 13). Evolutionarily stable strate-
gies (ESSs) were introduced to discuss the
prevalence of ritual fighting in interspecific
animal conflicts, which also led to asymmet-
ric and multistep games (7, /4). Evolutions of

sequence space

root structure or tree height are problems of
resource allocation (/5). Conflicts concern-
ing mate choice (/6), sibling rivalry (/7), and
parent-offspring antagonism (/8) are a rich
mine of game-theoretic models; so are social
foraging, dispersal, and habitat selection (/9).
The arms races between predators and prey,
or between parasites and their hosts, offer
many examples of games between distinct
populations (20). Communication in its
widest sense, including alarm calls, threat
displays, or sexual advertisement, lead to
game-theoretic problems concerning bluff
and honest signaling (27). Acquisition and
performance of human language in a heter-
ogeneous population can be studied as an
evolutionary game (22). Increasingly, evo-
lutionary game theory is used in economic
and social sciences and applied to experi-
mental games with human subjects (23—
27). Even genes, bacteria, organelles, and
viruses can be engaged in games of coop-
eration and conflict (28-31).

The evolution of virulence of infectious
agents is another vast field that makes use of
game-theoretic arguments. The classical under-
standing, based on constant selection, is that
parasites evolve to maximize their basic repro-
ductive ratio (32). Frequency-dependent selec-
tion arises when several parasite strains super-

sequence space

The population adapts on a constant fithess landscape.

sequence space

sequence space

The population changes the fitness landscape as it moves across.

Fig. 1. A traditional perspective of evolution is adaptation on a constant fitness landscape.
Genomes are arranged in sequence space in such a way that nearest neighbors differ in one base
substitution. Considering all genomes of length L leads to an L-dimensional discrete lattice. In each
dimension, there are four choices representing the four bases. Fitness landscape is a high-
dimensional mountain range that assigns each genome a fitness value (reproductive rate). (A) A
population of genomes (a quasi-species) moves, because of mutation and selection, through
sequence space, adapting to a constant fitness landscape. (B) In evolutionary game dynamics, the
population changes the fitness landscape as it moves through sequence space. In certain games,
some strategies do well as long as they are rare but lose out when common. This can lead to stable

coexistence or unpredictable oscillations.

infect the same host or when rapid evolution
generates many different parasite mutants in
any one infected individual (33). Lack of coop-
eration among parasites can lead to short-
sighted, maladapted levels of excessive viru-
lence harming both host and parasite.

The growth in the range of applications
demanded an extension of classical game the-
ory, away from the prevalent static doctrine
dominated by the equilibrium notion of Nash
and by the quest for a “unique solution” to
rational play. The concepts of “unbeatable
strategy” (6) and “evolutionary stability” (7)
implicitly assumed some underlying popula-
tion dynamics describing the potential suc-
cess of invading mutants and, more generally,
the interplay of mutation with frequency-
dependent selection. An exact formulation of
these population dynamics depends on the
structure of the population (for instance,
well-mixed or sessile), on the mechanisms
for the transmission of the relevant traits (by
genetic inheritance or cultural learning), and
on the time scales underlying the evolution-
ary and ecological processes. Remarkably,
for each of the plethora of conceivable ad-
justment dynamics (34), there exist simple
games (variants of ‘“rock-scissors-paper”)
where the long-term outcome is not a Nash
equilibrium but endless regular or irregular
oscillations: Hence, the static approach is in
principle unable to provide a full analysis.
Only a dynamical theory can describe the
“Red Queen” phenomena (35) that are prev-
alent in evolution, for example, in host-
parasite interactions, in the arms races be-
tween predators and prey, or in fluctuating
degrees of cooperation (36).

Before reviewing the recent developments
in evolutionary game theory, we sketch a few
basic types of interactions that help to famil-
iarize readers with terminology. A “game” is
an interaction between a set of individuals.
These “players” act according to their behav-
ioral phenotypes, which are called “strate-
gies.” The players’ payoffs, which translate
into fitness, depend, in general, on their own
strategy and on that of their co-players. A
tree’s height, a parent’s sex ratio, a parasite’s
virulence, a female’s choosiness, or a male’s
ornament are instances of strategies. This
terminology is by now well established, but
occasionally still induces reactions like “ani-
mals don’t play games.”

Strategic Interactions and Population
Structures

The conceptually simplest games offer only
two strategies and four outcomes. We illus-
trate this with the example of some coopera-
tive interaction between two players. Each
has the possibility to cooperate, C, or to
defect, D. If both play C, both obtain a higher
payoff than if both play D, but if the coplayer
cooperates, it is better to defect and to exploit
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the other’s efforts. Two alternatives can hold
if the coplayer defects: (i) it could be best
also to defect, in order not to get exploited;
this case represents the well-known prison-
er’s dilemma game (37); or (ii) it could be
best to cooperate nevertheless, which leads to
the snowdrift game (38). If two drivers are
caught with their cars in a snowdrift and one
of them refuses to cooperate in shoveling a
way out, the other driver is better off to
cooperate unilaterally, rather than spend the
night freezing. In the prisoner’s dilemma
game, D is a best reply no matter whether the
co-player uses C or D. In the snowdrift game,
each strategy is a best reply to the other.

The snowdrift game is also known as
hawk-dove or chicken game. The first name
comes from a situation where animals fight
for a territory: “Hawks” escalate the fight,
risking serious injury, whereas “doves” flee
when the opponent escalates. In the chicken
game, two cars are heading for a collision.
The loser chickens out, while the winner
stays on track. Big-time loss occurs when
both stay on track.

A major challenge in experimental or ob-
servational studies is to determine the ranking
of payoff values. For example, the interaction
of female lions defending a territory against
invaders has been interpreted as a prisoner’s
dilemma (39). But, the observation that co-
operating and defecting lionesses happily co-
exist in a group makes it more likely that
these lions play chicken.

The payoff values of a prisoner’s dilemma
have been measured for selection between two
mutants of the bacteriophage ®6. The cooper-
ator builds large amounts of products required
for reproduction, whereas the defector special-
izes in the use of these products when both
mutants are in the same cell (40, 41).

A biochemical example for the prisoner’s
dilemma is provided by the evolution of
adenosine triphosphate (ATP)—producing
pathways. Cooperators have a low rate but
high yield of ATP production, whereas de-
fectors have a high rate but low yield. The
resulting game could have played a major
role in the emergence of multicellularity (29).

In general, evolutionary dynamics of two
strategies, A and B, have four outcomes (Fig.
2A). (i) Dominance: A vanishes, if B is the best
reply to both A and B. (ii) Bistability: Either A
or B vanishes, depending on the initial mixture,
if each strategy is the best reply to itself. (iii)
Coexistence: A and B coexist in stable propor-
tions, if each strategy is the best reply to the
other. (iv) Neutrality: The frequencies of A and
B are only subject to random drift, if each
strategy fares as well as the other for any com-
position of the population. The former three
cases correspond to the familiar ecological sce-
narios of two-species competition (42).

Examples for all four cases can be found
in the repeated prisoner’s dilemma, where an

MATHEMATICS IN BIOLOGY

C Tit-for-tat

t

Always defect

mm)p- Generous Tit-for-tat

}

Always cooperate

A A sm=p B B c
A G==p B /\
AqB
A ==p G= B

A e—— B

Fig. 2. (A) Evolutionary game dynamics of two strategies admit four cases.
B dominates A, A and B are bistable, A and B coexist, and A and B are
neutral. (B) For three strategies, the possibility arises that A dominates C

dominates B dominates A. Depending on the parameters of the game, the evolutionary trajectories
can spiral inwards, leading to stable coexistence of all three strategies, or spiral outwards, leading
to a random extinction of two strategies. (C) In the repeated prisoner’s dilemma, there is a
fundamental oscillation between cooperation and defection. AlID can be replaced by TFT, which
loses to the forgiving and error-prone generous TFT, which is undermined via neutral drift by AllC,
which invites invasion by AlID, resembling cycles of war and peace.

interaction between two players consists of
many rounds. Tit-for-tat (TFT) is a strategy
which cooperates in the first round and then
repeats whatever the other player did in the
previous round. “Always defect” (AlID) is
bistable with TFT if the average number of
rounds is sufficiently high. “Always cooper-
ate” (AlIC) and TFT are neutral if there is no
noise and can coexist in the presence of noise.
AlIC is dominated by AlID.

With three strategies, the outcome can be
considerably more complicated, mainly be-
cause of the possibility of “rock-scissors-
paper” cycles: It may happen that B domi-
nates A, C dominates B, and A, in turn,
dominates C (Fig. 2B). In this case, the dy-
namics can lead, depending on the relative
strengths of the interactions, to either long-
term coexistence of all three strategies or to
ever-increasing oscillations ending, eventual-
ly, with the elimination of two strategies.
Examples of such situations, originally
viewed as theoretical issues only, have re-
cently been found in nature. (i) There exist
three morphs of the male lizard Uta stans-
buriana who differ in their throat color and in
their mate-guarding behavior. Type A is mo-
nogamous and succeeds in preventing other
males from approaching their mate. Type B is
polygamous and less efficient, having to split
its efforts on several females. Type C does
not engage in female-guarding behavior at all
but roams around in search of sneaky matings
(43). (ii) There exist three strains of Esche-
richia coli bacteria. Type A releases toxic
colicin and produces, for its own protection,
an immunity protein. Type B produces the
immunity protein only. Type C produces nei-
ther toxin nor immunity (44).

We have implicitly assumed so far that
interactions within a population are on the
basis of random encounters. In many impor-
tant situations, however, such well-mixing
cannot be assumed, and the population struc-
ture affects the outcome substantially. If co-
operators, for example, preferentially assort
with other cooperators, they need not be out-
competed by defectors. Such preferential as-
sortment can be achieved, for instance, if

players mostly interact with close relatives
(45). This raises the issue of kin selection
and, more generally, group selection: In
groups with many cooperators, average fit-
ness will be higher (46). If the degree of
positive assortment in the formation of
groups is sufficiently high, then cooperators
will not be eliminated, although within each
group they do worse than defectors. The basic
theoretical tool for investigating such “vis-
cous” populations is the Price equation,
which describes the growth rate of a strategy
as the sum of two terms denoting selection
within and between groups.

In a similar way, the outcome of strate-
gic interactions can be affected by prefer-
ential assortment with close neighbors. If
games are played between neighbors and
offspring move only to adjacent sites, then
dominated strategies need not be eliminat-
ed. The best-known example occurs for the
prisoner’s dilemma, where unconditional
cooperators can subsist, often in frequen-
cies and patterns wildly oscillating in space
and time (47, 48) (Fig. 3). A lab experiment
has recently highlighted the effect of spatial
structure on the population dynamics of the
three aforementioned E. coli strains en-
gaged in rock-scissors-paper competition.
If they live in a well-mixed flask and the
resulting population is used to seed, after a
few bacterial generations, another flask,
then such serial transfers will eventually
lead to the survival of a single strain only.
If, however, the bacteria grow on the sur-
face of an agar plate and a two-dimensional
sample of this surface is used to seed the
next agar plate, without altering the neigh-
borhood structure, then the resulting se-
quence of serial transfers will preserve all
three strains (44). Often, spatial structure
tends to allow more diversity than prevails
in well-mixed populations.

Replicator Dynamics and Short-Term
Evolution

What are the dynamical systems used to an-
alyze frequency-dependent selection for bio-
logical games? A standard tool is the replica-
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tor equation (49-51) (Fig. 4). It assumes a
well-mixed population with a finite number
of strategies and posits that the per capita
growth rate of each strategy is proportional to
its fitness. If the fitness values are indepen-
dent of the frequencies, then the average fit-
ness of the population will grow: This yields
the usual hill-climbing dynamics and results
in the survival of the fittest only. But if the
fitness values are frequency-dependent, as is
usual with evolutionary games, the average
fitness need not grow (/). Several strategies
can coexist in steady or fluctuating frequen-
cies. Chaotic dynamics are possible.

Many examples of replicator dynamics
use linear fitness functions, which is the
case if payoff results from pairwise en-
counters. Games can also be played among
larger groups, for instance, public goods
games (52), or even within the entire pop-
ulation, as in the sex-ratio game. In this
case, fitness is usually a nonlinear function
of the frequencies.

Replicator dynamics have their basis in
the assumption of clonal, genetic reproduc-
tion, but these dynamics and variants of it
can also describe the spread of strategies by
nongenetic mechanisms such as learning,
imitation, or other forms of cultural evolu-
tion (50, 53, 54).

This array of dynamical systems has to be
modified if spatial structure is included in the
model. If the population is distributed in a
one- or two-dimensional continuum, for in-
stance, then reaction-diffusion equations can
describe the spread of strategies via traveling
waves or the formation of stable spatial pat-
terns (55). If players are territorial, some
models typically assume that they are located
on a grid-like structure and interact with their
nearest neighbors only (47). Players adopt

the strategy of whichever neighbor obtained
the highest total payoff. Again, many variants
are possible in terms of lattice geometry,
neighborhood structures, and whether updat-
ing is synchronous or not. Cellular automata
of this type have a rich dynamic behavior,
possibly as complex as universal Turing ma-
chines. The relationship between spatial models
and “mean-field” or “pair-approximations” of-
fer many challenges of mathematical and com-
putational nature (56, 57).

Replicator dynamics deal with relative
abundances (equal to frequencies). If fitness
values depend in addition on the total popu-
lation size, as is natural in many ecological
contexts, then the dynamics have to be sup-
plemented with an equation for the total pop-
ulation size or replaced by equations for ab-
solute abundances (58).

Adaptive Dynamics and Long-Term
Evolution

The replicator equation describes selection
only, no drift and no mutation. A strategy
missing in the initial population remains ab-
sent. The dynamics can be modified by add-
ing a small steady rate of miscopying. The
resulting outcome will depend on the relative
sizes of the mutation rates. A more wide-
spread approach in evolutionary games is to
investigate the impact of mutations without
explicitly modeling their origin. The new
strategy is introduced with an initial frequen-
cy that is very small (so that it does not affect
the fitness of the residents). Will that frequen-
cy decrease or not? Will the mutant be elim-
inated under the effect of selection, or will it
invade the population? To return to the case
of two types A and B only: Dominance holds
if A can invade B and B cannot invade A (or
vice versa), coexistence holds if A can invade

Fig. 3. John von Neuman invented both game theory and cellular automata. Here, the two fields
merge. Spatial games of evolution can generate kaleidoscopes, dynamic fractals, gliders, and so on.
(A) Spatial prisoner’s dilemma with R = 1, P = 0, T = 1.4, S = —0.1, denoting, respectively, the
payoff for two cooperators, two defectors, a defector from a cooperator, and a cooperator from a
defector. We use synchronous updating and a symmetric initial condition. Each cell is given to the
player with highest payoff in the neighborhood. Color code: red, D; blue, C; green, new C; yellow,
new D. (B) Rock-scissors-paper game with random initial condition and asynchronous lattice

update proportional to fitness (82).

B and B can invade A, and bistability holds if
neither type can invade the other.

More generally, given a resident popula-
tion with its set of strategies, one can study
the fate of an additional strategy by consid-
ering the replicator dynamics in the augment-
ed space (resident and mutant population)
and computing the growth rate of the mutant
for small values. If this growth rate, the “Dar-
winian fitness” of the mutant, is positive, then
the mutant will invade. In more complex
situations, if the resident population is not at
equilibrium, the population is age-structured,

A Quasi-species equation

)-(": Z/X/quj,—¢x,

B Replicator equation

Xj=x[f; (x) = ¢]

Cc Replicator-mutator equation

X;=Zx; £ (x)qj;— 0X;

D Adaptive dynamics

Jf(q, p)

P=—a

qg=p

E

E(p) = Cov(f, p) + E(p)

Fig. 4. (A) The quasi-species equation describes
deterministic mutation-selection dynamics on
a constant fitness landscapes. Genomes are
enumerated by i = 0, ., n. The frequency of
genome j is denoted by x;, its reproductive rate
(fitness) by f.. The mutation probability from j
to i is given by g;. The average fitness of the
population is & = 2, x; f. (B) The replicator
equation describes deterministic but frequen-
cy-dependent selection dynamics. The fitness,
f. of type i is a function of the frequencies of all
strategies (phenotypes), X = (xy, ..., x,). For
pairwise interactions, it is natural to consider
linear fitness functions, f; = ij-a,j, where the
a; values denote the payoff matrix of the game.
(C) The replicator-mutator equation combines
a mutation matrix with frequency-dependent
selection. It can also be used for models of
language evolution. Language acquisition is de-
scribed by the [g;] matrix. (D) Adaptive dynam-
ics describe the evolution of a trait value, p. The
function f(g,p) denotes the payoff for a g
individual in a homogenous population with
trait p. The partial derivative of this function at
q = p determines the rate of change of p. (E)
The Price equation is a general description of
evolutionary change of a trait value, p. The
population average of the trait value is given by
E(p) = X, x; p; and the covariance between trait
and fitness by Cov(f p) = 2, x; p; f; — E(P)E(f).
The Price equation provides a link between the
replicator framework and adaptive dynamics,
thereby unifying evolutionary dynamics (83).
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or the environment is stochastic, the fitness
definition must be adapted (59). A successful
invasion by itself tells us nothing about the
subsequent fate of the mutant. It is possible
that (i) it gets added to the resident cast, so
that the new population contains one more
strategy, (ii) eliminates one or several of the
resident strategies, or (iii) eventually gets
eliminated itself in a “resident strikes back”
reaction (60).

The invasibility issue forms the core of
evolutionary game theory. A strategy is said
to be evolutionarily stable if a resident pop-
ulation cannot be invaded by a mutant strat-
egy under the influence of natural selection,
as long as its initial frequency is sufficiently
small (7). Checking for this condition re-
quires the specification of the range of pos-
sible mutants. In the special case that the
resident actually dominates all mutants, the
strategy is said to be “unbeatable” (6). The
demands on an ESS are weaker: The mutant
must either be dominated or else form a
bistable pair with the resident strategy. In this
latter case, if the initial frequency of the
mutant exceeds a so-called “invasion barri-
er,” it can spread and eventually eliminate the
resident. Both stability concepts are variants
of the game-theoretic notion of a Nash equi-
librium, meaning in this context a strategy
with the property that, if all players adopt it,
none has an incentive to deviate unilaterally.
Whereas Nash equilibria exist for every
game, this is not the case for unbeatable or
ESSs. It should also be stressed that such
strategies are not necessarily optimum: It
can be that all players would be better off if
they jointly deviated, in a correlated way,
with the use of another strategy (for exam-
ple, cooperation in the prisoner’s dilemma).

Such a concerted action is beyond the
means of natural selection, but an evolu-
tionarily stable population can conceivably
be invaded simultaneously by two or more
mutant strategies (67).

The theoretical approach through adaptive
dynamics considers the opposite, “mutation-
limited” scenario: Only one mutant enters at a
time, and it is either driven to extinction or
fixed in the population before the next mutant
occurs (Fig. 5). Thus, mutational steps are
supposed to occur only rarely, compared with
the time needed to substitute the resident with
the mutant, and the population is essentially
always monomorphic. The successful inva-
sion attempts lead to a substitution sequence
in trait space, that is, the space of all possible
strategies, not only those actually present
within the population. This phenotypic space
is in general a continuum (of possible tree
heights, sex ratios, or ages of maturation) and
can be multi- and even infinite-dimensional.

If the mutant phenotype is always very close
to the resident’s, then the discrete-step substi-
tution sequence can be approximated by a
smooth orbit of the so-called adaptive dynamics
in trait space (62—64), pointing into the direc-
tion of the most favorable among all possible
closeby traits. Whereas the space of replicator
dynamics consists of the frequencies of finitely
many phenotypes, adaptive dynamics along the
local fitness gradient describes evolution in the
continuous space of all possible phenotypes.
The price for the richer strategy space consists
in assuming that the residents are all using the
same strategy.

With adaptive dynamics, the motivation
tends to shift from behavioral aspects to
more ecological issues. Both evolutionary
and adaptive dynamics can be used to mod-

Fig. 5. Adaptive dynamics de-
scribe evolution in a continu-
ous space of strategies (pheno-
types). (A to C) The resident
strategy (blue) is challenged by
invasion attempts of randomly
chosen nearby mutants (gray
and red). If the mutant domi-
nates the resident strategy, it
will take over the population
and new invasion attempts
start. The evolutionary trajec-

tory (yellow) is most likely pointing in the direction of the mutant (red) that receives maximum
payoff from the resident population. (D) An ESS (black) can be unattainable for adaptive dynamics.
No mutant can invade the ESS, but all nearby mutants are dominated only by strategies that are
further away from the ESS. (E) Adaptive dynamics can cycle in strategy space.
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el the interaction of several populations.
The growth rates of the different strategies
will depend, in general, on their frequen-
cies within these populations and on the
densities of the populations. The usual,
ecological models, for instance, for preda-
tor-prey interactions, are limiting cases ob-
tained by assuming that the evolution with-
in each population occurs at a much slower
rate than the population regulation. This
assumption has recently been challenged in
several case studies of rapid evolution
showing that population cycles can be driv-
en by evolutionary factors (65).

Adaptive dynamics need not lead to an
evolutionarily stable state. Cycling can con-
tinue forever (66). Moreover, if adaptive dy-
namics converge to an equilibrium, this need
not be an ESS. An attractor of adaptive dy-
namics is said to be a convergent stable strat-
egy (67, 68). Conversely, an evolutionarily
stable equilibrium can be unattainable (67,
69, 70). In that case, if the resident population
is at the equilibrium, fitness is maximum and
no mutant can invade, but if the resident
population is close to the equilibrium, then
only mutants can invade that are less close
by. Figure 6 shows as an example adaptive
dynamics of reactive strategies in the repeat-
ed prisoner’s dilemma.

So-called pairwise invasibility plots offer a
geometric tool for analyzing mutation-limited
evolution (77). In particular, they show that
adaptive dynamics can lead to a fitness mini-
mum, where the monomorphic population be-
comes unstable and has to split up (72, 19, 73).

AllIC

Generous
TFT

AlID P TFT

Fig. 6. Adaptive dynamics of reactive strategies in
the infinitely repeated prisoner's dilemma. Reactive
strategies are characterized by two parameters, p
and g, denoting the probability to cooperate after
the opponent has cooperated or defected. This
set of strategies includes AlD (p = O and g =
0), AIC(p = Tandg = 1),and TFT (p = 1 and
g = 0). Adaptive dynamics flow along concen-
tric circles orbiting TFT in the center (62). The
red curve contains the equilibrium points of
adaptive dynamics. They are also Nash equilib-
ria of the game. In the “cooperative region”
below the red curve, adaptive dynamics lead to
increasing values of p and g. Generous TFT [p =
1and g = 1—(T — R)/(R — S)] is the most
cooperative Nash equilibrium.
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Such evolutionary branching points offer a
tempting analogy to sympatric speciation.

A much-studied example involves compe-
tition for a common resource, for instance,
birds feeding on a type of seed whose size is
normally distributed. Without frequency de-
pendence, the birds would be selected to spe-
cialize on the most common size of the seed.
This specialization, however, might alter the
distribution of seed size. Hence, frequency-
dependent “disruptive” selection can lead to
character divergence, one type specializing
on smaller, the other on larger, seeds (68, 71).

Evolutionary Games and Population
Genetics

Whereas the combination of game-theoretic
and ecological models offers no conceptual
problems, game theory and population ge-
netics mix less readily. This seems para-
doxical: The selection equation in popula-
tion genetics is a replicator equation, and
the alleles are perfect examples of replica-
tors, obeying clonal inheritance. Evolution-
ary game theory, however, describes evo-
lution in phenotype space. In spite of recent
progress in genomics and proteomics, little
is known about the genotype-phenotype
mapping from a discrete allele space to a
continuous trait space.

Under appropriate restrictions (if, for
instance, trait space is one-dimensional or
if only one locus and at most three strate-
gies are involved), a phenotypic ESS can be
viewed as stable end point of a mutation-
limited genetic evolution. With recombina-
tion between several loci, however, fre-
quency-dependent genetics cannot be fully
covered by an invasion analysis at equilib-
rium points (74—76). Genetic constraints as
well as linkage and epistasis introduce for-
midable analytical challenges. Furthermore,
the assumption of a monomorphic resident
population is obviously a critical issue.

Nevertheless, adaptive dynamics often al-
low a good understanding of the coevolution
of traits under frequency-dependent selec-
tion. In particular, branching points of adap-
tive dynamics may be at the origin of sym-
patric speciation. In the case of adaptations to
different seed sizes, for instance, an inter-
breeding population can converge to the
branching point, and then a mutation for as-
sortative mating based on the trait can invade,
eventually splitting the population into two
species diverging apart. Speciation through
ecological character displacement has long
intrigued geneticists (77). Numerical simu-
lations show that genes for assortative mat-
ing can even spread if they are based on
“markers” having nothing to do with the
trait value (78); on the other hand, assorta-
tive mating could fail to exceed an inter-
mediate level if the corresponding genes
have small effects only (79).

Such examples show that adaptive dy-
namics can address macroevolutionary is-
sues by analyzing frequency-dependent
selection in ecology-driven models. This
allows us to study a wide range of nonstatic
scenarios, including Red Queen types of
cycling and ecological suicide (80), which
are far removed from the static outcomes
suggested by the Panglossian paradigm of
hill-climbing in fitness landscapes. Mathe-
matical and computational approaches are
increasingly using game theory, rather than
optimization, to model the strategic intrica-
cies of coevolution.

Looking Ahead

Evolutionary biology is well grounded in
mathematical theory. The way populations
change under the influence of mutation and
selection can be described by a rich array of
mathematical equations. Ideas of evolution-
ary mechanisms must be formulated in terms
of mathematical equations for consistent
analysis and meaningful investigation. Most
often, Darwinian fitness depends on the rel-
ative abundance of individual phenotypes
within populations, and therefore game theo-
ry is the appropriate mathematical tool.

Many challenges lie ahead. Evolutionary
game theory is formulated in terms of phe-
notypes, thereby ignoring the complexity of
the genotype-phenotype mapping. More
work is needed on the interaction of strategies
encoded in genomic sequences. Most evolu-
tionary game dynamics have been studied in
the context of infinitely large populations.
We expect that finite population size effects
will lead to surprising outcomes and might
question the importance of traditional evolu-
tionary stability. Cultural interpretations of
replicator dynamics often assume that suc-
cessful strategies spread by imitation or
learning, but the learning of complicated
strategies from behavioral observations is a
nontrivial task that needs specific investiga-
tion. Similarly, studying human language re-
quires a connection between the mathematics
of game theory, learning theory, and compu-
tational linguistics.

Emerging fields as diverse as metabolic
control networks within cells and evolutionary
psychology, for example, should benefit from
game theory. Metabolic networks respond to
incoming signals from other cells and in turn
generate outgoing messages, thereby represent-
ing a grammar of cellular communication. The
performance (fitness) of a particular network
depends on networks in other cells, and hence
frequency-dependent selection is operating.
The main themes of evolutionary psychology
include cooperation and communication among
individuals and are therefore intrinsically game
theoretic. Having a theory of mind, for exam-
ple, is itself a useful strategy that must help
winning certain games.

The applications of evolutionary game
theory pervade by now all areas of biology.
Interactions among genes, viruses, cells, and
humans are often instances of evolutionary
games that are amenable to empirical and
theoretical investigation. Game theory is the
appropriate tool whenever the success of an
individual depends on others.
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REVIEW

Inferring Cellular Networks
Using Probabilistic Graphical Models

Nir Friedman

High-throughput genome-wide molecular assays, which probe cellular networks from
different perspectives, have become central to molecular biology. Probabilistic graph-
ical models are useful for extracting meaningful biological insights from the resulting
data sets. These models provide a concise representation of complex cellular net-
works by composing simpler submodels. Procedures based on well-understood
principles for inferring such models from data facilitate a model-based methodology
for analysis and discovery. This methodology and its capabilities are illustrated by
several recent applications to gene expression data.

Research in molecular biology is undergo-
ing a revolution. The availability of com-
plete genome sequences facilitates the de-
velopment of high-throughput assays that
can probe cells at a genome-wide scale.
Such assays measure molecular networks
and their components at multiple levels.
These include mRNA transcript quantities,
protein-protein and protein-DNA interac-
tions, chromatin structure, and protein
quantities, localization, and modifications.
These rich data illuminate the working of
cellular processes from different perspec-
tives and offer much promise for novel
insights about these processes (/).

The challenge for computational biology
is to provide methodologies for transforming
high-throughput heterogeneous data sets into
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biological insights about the underlying
mechanisms. Although high-throughput as-
says provide a global picture, the details are
often noisy, hence conclusions should be sup-
ported by several types of observations. Inte-
gration of data from assays that examine
cellular systems from different viewpoints
(for instance, gene expression and protein-
protein interactions) can lead to a more co-
herent reconstruction and reduce the effects
of noise. To perform such an integration,
however, we must understand the biological
principles that couple the different measure-
ments. In addition, the conclusions of the
analysis should go beyond a mere description
of the data and should provide new knowl-
edge about the relevant biological entities and
processes, ideally in the form of concrete,
testable hypotheses.

To answer this challenge, we need to
build models of the biological system. A
model is a simplifying abstraction. It gen-

erates predictions of system behavior under
different conditions (as reflected by obser-
vations) and illuminates the roles of various
system components in these behaviors. We
focus on probabilistic models, which use
stochasticity to account for measurement
noise, variability in the biological system,
and aspects of the system that are not cap-
tured by the model.

In a model-based approach to data anal-
ysis, we start by defining the space of
possible models that we are willing to con-
sider. This modeling decision depends on
the phenomena we wish to describe and
how they are reflected by the observations.
We then use a learning procedure to select
the model that best fits the actual observa-
tions. (Such procedures are referred to by
different names in different disciplines, in-
cluding inference, estimation, reverse engi-
neering, and system identification.) Finally,
we use the learned model to reason about
the data, make predictions, and glean in-
sights and hypotheses.

An important aspect of model-based ap-
proaches is the shift from a procedural
methodology to a declarative one. In a pro-
cedural method, we focus on the sequence
of steps from the data to the conclusions.
For example, when relating transcription
factor binding sites in the promoter regions
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