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ABSTRACT 

We examine a model for the interaction of HIV with CD4+ T cells that considers 
four populations: uninfected T cells, latently infected T cells, actively infected T 
cells, and free virus. Using this model we show that many of the puzzling quantitative 
features of HIV infection can be explained simply. We also consider effects of AZT 
on viral growth and T-cell population dynamics. 

The model exhibits two steady states, an uninfected state in which no virus is 
present and an endemically infected state, in which virus and infected T cells are 
present. We show that if N, the number of infectious virions produced per actively 
infected T cell, is less a critical value, Ncrit, then the uninfected state is the only 
steady state in the nonnegative orthant, and this state is stable. For N > Ncrit, the 
uninfected state is unstable, and the endemically infected state can be either stable, 
or unstable and surrounded by a stable limit cycle. Using numerical bifurcation 
techniques we map out the parameter regimes of these various behaviors. Oscillatory 
behavior seems to lie outside the region of biologically realistic parameter values. 
When the endemically infected state is stable, it is characterized by a reduced 
number of T cells compared with the uninfected state. Thus T-cell depletion occurs 
through the establishment of a new steady state. The dynamics of the establishment 
of this new steady state are examined both numerically and via the quasi-steady-state 
approximation. We develop approximations for the dynamics at early times in which 
the free virus rapidly binds to T cells, during an intermediate time scale in which the 
virus grows exponentially, and a third time scale on which viral growth slows and the 
endemically infected steady state is approached. Using the quasi-steady-state approx- 
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imation the model can be simplified to two ordinary differential equations the 
summarize much of the dynamical behavior. We compute the level of T cells in the 
endemically infected state and show how that level varies with the parameters in the 
model. The model predicts that different viral strains, characterized by generating 
differing numbers of infective virions within infected T cells, can cause different 
amounts of T-cell depletion and generate depletion at different rates. 

Two versions of the model are studied. In one the source of T cells from 
precursors is constant, whereas in the other the source of T cells decreases with viral 
load, mimicking the infection and killing of T-cell precursors. The latter gives more 
realistic predictions than the model with a constant source. 

1. INTRODUCTION 

One of the consequences of infection by the human immunodefi- 
ciency virus (HIV) is the selective depletion of CD4+ T cells, the cells 
commonly known as helper T cells or T4 cells. Because of the central 
role of CD4’ T cells in immune regulation, their depletion can have 
widespread deleterious effects on the functioning of the immune system 
as a whole. In fact, the decline in the number of CD4+ T cells in 
peripheral blood and the peripheral blood ratio of CD4+/CD8+ T cells 
are both used in a clinical setting as indicators of the disease stage [20, 
50, 53, 581. In this paper we present and analyze a simple model for the 
population dynamics of CD4+ T cells in the presence and absence of 
HIV. We feel it is important that any model that purports to quantita- 
tively characterize the effects of HIV infection be able to make realistic 
predictions about the status of the immune system in the absence of 
HIV infection. To focus the model on the effects of HIV on T-cell 
population dynamics, we do not deal with the dynamics of the immune 
response to HIV. Such a response is generally present, and one could 
assume that there is a constant level of immune defense that influences 
parameters in the model. Here we are interested in the question of 
whether HIV infection by itself can account for T-cell depletion in 
seropositive patients, and hence we not pursue the potential effects of 
immune defenses. 

Over the past decade, a number of models have been developed to 
describe the immune system and its interaction with HIV. Both stochas- 
tic and deterministic models have been developed. Stochastic models, 
such as the ones presented by Merrill [42, 431, can be used to account 
for the early events in the disease when there are few infected cells and 
a small number of viruses, or in situations where the variability among 
individuals is of interest. The model of Nowak and coworkers [47, 481 
looks at the effects of variability among viral strains. Deterministic 
models, such as the ones developed by Cooper [71, Intrator et al. [30], 
McLean [38], McLean and Kirkwood [391, Reibnegger et al. [541, DoleZal 
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and Hraba [lo, 281, Hraba et al. [29], Fletcher et al. [16l, Anderson and 
May [4], and Perelson [49], examine the changes in mean cell numbers 
and are more applicable to later stages of the process in which popula- 
tion sizes are large. These models typically consider the dynamics of the 
CD4+ helper and virus populations. In some of these models, other 
immune system populations such as B cells or CD8+ cells have been 
included. 

The model explored here is aimed at explaining a number of quanti- 
tative features of HIV infection that are unusual and, in the absence of 
a model, perplexing. As we shall show, our basic model can account for 
the long latency between infection and the onset of clinical AIDS as 
well as the low concentration of free virus observed in the blood. The 
model exhibits substantial CD4’ T-cell depletion but in its current 
form is unable to obtain the very low CD4+ cell counts seen during the 
late stages of the disease, particularly if the frequency of latently 
infected CD4+ T cells is kept at realistically low levels and the long 
latency period is maintained. The depletion of CD4’ cells has been 
particularly puzzling, since only 1 in 104-lo5 cells in the peripheral 
blood of infected HIV individuals expresses viral proteins or mRNA 114, 
241 and only 1 in 10’ -lo3 T cells harbors viral DNA [55, 561. In view of 
the natural turnover of CD4+ T cells in the body, it would seem that 
the T-cell pool should be able to compensate for such a low rate of 
T-cell infection [14]. Our work partially supports this observation, in 
that extreme reduction of CD4’ cells occurs only in the version, of our 
model with a constant source of T cells if the population of latently 
infected cells is larger than that observed. Realistic population levels of 
latently and actively infected cells, as well as long latency and low blood 
viremia, are obtained in a second version of the model in which T-cell 
precursors can be infected, thus reducing the supply of new T cells to 
the periphery. Thus the natural turnover and replenishment of T cells 
may be important processes in determining the CD4+ T cell count in 
AIDS patients. 

The model developed here is not meant to be a comprehensive 
model of HIV’s interaction with the immune system. It is aimed at 
examining the kinetics and degree of T-cell depletion that can be 
caused by viral cytopathicity and thus does not deal with the immune 
response to HIV. However, there have been a number of observations 
of viral strains that appear not to induce an effective immune response; 
these strains have been called escape mutants. Such strains are ob- 
served to be of the slow/low type [2]; that is, they replicate slowly and 
have low expression in CD4+ T cells. Genrally, virus isolated during the 
latent period is of the slow/low type, while rapid/high strains are 
characteristically isolated during the period of active AIDS. Rapid/high 
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strains have also been isolated during a period of initial HIV viremia, 
which often follows infection [60]. It has been suggested that the 
anti-HIV immune response that seems to occur during or following the 
initial viremia is able to suppress rapid/high strains, whereas the 
slow/low strains are able to avoid the immune response. 

Nelson and Perelson [46] presented a model that shows how some 
viral variants may be able to escape generating an effective immune 
response. In that model, consistent with observations, the escape mu- 
tants are of the slow/low type. The model presented in this paper deals 
with viral strains that, though not identical in their activity to the escape 
mutants considered in [46], still have the property of slow replication in 
CD4+ T cells. Thus, our model, which ignores an immune response, 
may in fact be relevant to the population dynamics of slow/low escape 
mutants. We also use our model to show that if slow/low strains are 
replaced by rapid/high strains in end-stage disease, then significant 
T-cell depletion, approaching that seen in patients, can be obtained in 
the model. 

2. MODEL 

To generate a realistic model of T-cell infection by HIV, we first 
need to consider the population dynamics of T cells in the absence of 
HIV. T cells, like other lymphocytes, are produced in the bone marrow. 
Immature cells migrate to the thymus, where they undergo further 
differentiation and maturation into immunocompetent T cells. The 
thymus is subject to involution, a decrease in weight and volume 
associated with microscopic evidence of degeneration. In humans, the 
thymus reaches its greatest weight at about the time of puberty and 
then begins to gradually involute [61]. Removal of the thymus from an 
adult usually has minimal effects, although the adult thymus is func- 
tional and some of its lymphocytes serve as T-cell precursors and 
immunocompetent T cells [12]. Within healthy individuals the number 
of T cells in the blood is maintained relatively constant, with CD4+ T 
cells comprising about 1000 cells/mm3 [341. The model discussed here 
focuses on CD4+ T cells. Thus we shall use the term T cell to mean 
CD4+ T cell throughout the remainder of this paper. 

2.1. T-CELL GROWTH IN AN UNINFECTED INDIVIDUAL 

As a model of T-cell dynamics we propose 

(1) 
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where T is the number of CD4+ T cells, as measured in the blood, say. 
The three terms in the equation represent the rates of production and 
destruction of T cells, s being the rate of supply of immunocompetent T 
cells from precursors in the thymus. T cells, like all cells in the body, 
have a finite lifetime. The lifetime may vary among T cells, with 
memory T cells thought to have a longer life span than virgin T cells. 
Here we do not distinguish between these classes of T cells, and thus /_+ 
in Equation (1) represents the average per capita death rate of T cells. 
T cells, when stimulated by antigen or mitogen, can divide and increase 
in population. We assume that the growth of T cells is governed by a 
logistic equation, where r is the average specific T-cell growth rate 
obtained in the absence of population limitation. As will be discussed in 
more detail in the next section, r depends on the average degree of 
antigen or idiotypic network stimulation of T-cell proliferation. How- 
ever, even when highly stimulated, the total number of T cells in the 
body remains bounded. The term in parentheses shuts off T-cell growth 
as the population level T,,, is approached from below. 

Let To denote the normal steady-state T-cell population size found 
by solving 

-/_+T=O, 

that is, 

4sr “* 
(r-p7)*+F . max I) 

(2) 

(3) 

The other root of Equation (2) is negative, and thus Equation (3) 
represents the only physically possible steady state of the system. 

There are certain parameter restrictions that we shall impose to 
ensure that this model gives realistic population dynamics. Even after 
thymic involution, the thymus remains functional [12]. Thus we shall 
assume s > 0. The steady-state population size To should be less than 
T max, so that the T-cell population will 
occurs, say, during infection. Further, if 
T max it should decrease. Thus, we choose 

PTTmax > s, 

expand when stimulated, as 
the population ever reaches 

(4) 
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so that the death rate at T,,, is greater than the supply rate. If this 
were not the case, then the population could increase past T,,,. 
Further, Equations (31 and (4) and the condition s > 0 imply that 
T,, < Tmax as we desire. To see this, note that f(O) = s > 0 and f(T,,,) = 

s - PUTTmax < 0. Thus, all solutions to Equation (1) that begin with an 
initial number of T cells, T(O), in the interval Z = [0, T,,,] will remain 
bounded and stay in the open interval 0 < T(t) < T,,, for all t. Because 
To is the only fixed point in Z,T, is stable and globally attracting in I. 

Besides controlling the T-cell population level, Equation (1) has the 
nice property that the death of T cells can be balanced by the supply of 
new T cells, the division of T cells in the periphery, or both. Conse- 
quently, the net T-cell proliferation rate p = r - Z_+ need not be posi- 
tive. In the absence of environmental antigen and with little idiotypic 
network stimulation, one might imagine that r is small or even zero and 
p < 0 but that the total T-cell population is maintained at a positive 
value through the creation of new T cells. One might also expect that 
before thymic involution the source s is more important than division in 
the periphery, so that small or negative values of p could still give 
positive steady states. After thymic involution, which causes s to de- 
crease, or following adult thymectomy, which causes s to equal zero, 
one might assume that humoral or growth-factor-regulated control 
mechanisms ensure that p > 0 so as to give a positive steady-state T-cell 
population size. Thus, the parameter s and possibly the parameter r 
may vary with age and antigenic experience. These parameter variations 
could be important in explaining the observed differences in the dynam- 
ics of T-cell depletion due to HIV infection in people of different ages 
[491. 

2.2. HIV INFECTION 

To model the influence of HIV on T-cell growth, we need to take 
into consideration a number of features of the life history of the virus 
[13]. HIV is an RNA virus. However, when it infects a cell, the enzyme 
reverse transcriptase, which it carries, makes a DNA copy of its RNA 
genome. This DNA copy is then integrated into the DNA of the 
infected cell. The viral DNA, called the provirus, is then duplicated with 
the cell’s DNA every time the cell divides. Thus, once infected, a cell 
remains infected for life. Within a T cell the provirus can remain latent, 
giving no sign of its presence for months or years [26]. Stimulation of 
the T cell by antigen or a mitogen can lead to the production of new 
virus particles that bud from the surface of the infected cell. The 
budding can take place slowly, sparing the host cell, or it can take place 
very rapidly, possibly leading to lysis of the T cell [37]. 
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To model these events, we consider T cells that are uninfected, T 
cells that are latently infected (i.e., that contain the provirus but are not 
producing it), and T cells that are actively infected (i.e., that are 
producing virus). We also consider the population of free infectious 
viral particles. To describe the dynamics of these populations we formu- 
late an ordinary differential equation model. Thus spatial dependence is 
ignored, and the various interactions are imagined to occur in a well- 
mixed compartment such as the bloodstream. To correctly account for 
interactions in the tissues, more complex models involving multiple 
compartments and/or partial differential equations may be needed. 
Also, because the model is deterministic, it does not correctly account 
for the very early stages of the infection nor can it totally account for 
the variability seen among infected individuals. Some variability can be 
ascribed to different parameter values being characteristic of different 
viral strains or different patients. 

Let T denote the concentration of uninfected CD4+ T cells, and let 
T* and T** denote the concentrations of latently infected and actively 
infected CD4+ T cells. The concentration of free infectious virus 
particles is I/. We will not be concerned with noninfectious viral 
particles. Definitions of the parameters can be found in Table 1. We 
assume that the dynamics of the various populations are given by 

dT 
dt=s-pTT+rT 

dT* 
- = k,VT - /_+T* - k,T*, 

dt (5b) 

dT** = 

(54 

Equation (5a) is a modified form of (1). Again s is a source term and 
represents the rate of generation of new (presumably uninfected) CD4+ 
T cells from precursors in the bone marrow and thymus. HIV can infect 
precursor cells and may have the effect of decreasing the supply of new 
cells [ll]. Thus, in more refined models one may need to consider s as a 
decreasing function of u. This case is considered in Section 7, in 
Perelson 1491, and in a version of the model of Nowak et al. [48]. 
Uninfected T cells have a finite life span and are assumed to die at the 
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TABLE 1 

Variables and Parameters 

Initial or default values 

Dependent variables 

T Uninfected CD4+ cell population size 
T* Latently infected CD4+ helper cell population size 
T** Actively infected CD4+ helper cell population size 
V HIV population size 

Parameters and constants 

S Rate of supply of CD4+ T cells from precursors 
r Rate of growth for the CD4+ cell population 
T max Maximum CD4+ cell population level 
pr Death rate of uninfected and latently infected 

CD4+ cells 
pcLb Death rate of actively infected CD4+ 

cell population 
pcLI/ Death rate of free virus 

k, Rate constant for CD4+ cells becoming 
infected by free virus 

k, Rate latently infected cells convert to actively 
infected 

N Number of free virus produced by lysing a CD4+ cell 
0 Viral concentration needed to decrease s to s/2 

Derived quantities 

Ta Steady-state level of CD4+ cells in uninfected 
individuals 

Ncrit Critical number of viral progeny needed for 
endemic infection 

k, =kz+/+ 
k., = k,Ta + CLI/ 

k =k,?;+/..+ 

Y = r/T,,, 
P =r-pLT 

1000 mmm3 
0 
0 
10m3 mmm3 

10 day- ’ mme3 
0.03 day- ’ 
1500 mmm3 

0.02 day- ’ 

0.24 day- ’ 
2.4 day-’ 

2.4 x 1O-5 mm3 day- ’ 

3 x 10e3 day-’ 
Varies 
1 mmm3 

1000 mmm3 

774 
0.023 day-’ 
2.424 day- ’ 

2~ 10m5 day-’ 
0.01 day- ’ 

same rate per cell, pr, as in uninfected individuals. In Equation Gb), 
latently infected T cells are also assumed to have precisely the same 
natural life span ( N l/ pr), although other factors can augment the 
natural death rate. 

If a T cell encounters the antigen for which it is specific, it may be 
stimulated to grow. T-cell stimulation is a complex matter. Here we are 
dealing with T cells of all specificities, and thus we simply assume that a 
constant fraction of T cells are stimulated to grow. In the mouse, 
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Freitas et al. [18] find that about 10% of peripheral T cells are activated 
large cells. In humans the situation may be different. Analyzing periph- 
eral blood lymphocytes (PBLs) of a healthy individual, one typically 
finds that on the order of 1% of the cells are activated, using the 
criterion of IL-2 receptor expression (K. Smith, personal communica- 
tion). Since many of the PBLs with IL-2 receptors may be natural killer 
cells, fewer than 1% of CD4+ T cells may be activated. In a more 
complex model one can make the fraction of cells stimulated, f,, a 
variable in the model and let it be a function of the antigen concentra- 
tion and possibly other factors such as lymphokines and antigen presen- 
tation by macrophages. As the HIV infection progresses, the fraction of 
cells stimulated may change, so this enhancement may be quite interest- 
ing. Here we assume that f, is a constant and that the parameter I in 
Equations (1) and (5a) is given by r = ysf,, where i is the average 
antigen- or idiotypic network-induced per capita T-cell growth rate in 
the absence of population density limitation. 

The other terms in Equations (5a) and (5b) deal with the effects of 
HIV. The term k,l/T models the rate at which free virus infects a 
CD4+ T cell. A simple mass-action type of term has been used with 
rate constant k 1. Once a T cell has been infected, it becomes a latently 
infected or T* cell; thus k,VT is subtracted from (5a) and added to (5b). 

Equation (5~) models the population dynamics of actively infected T 
cells. Actively infected cells are presumed to be generated from latently 
infected cells with rate constant k,. This activation event probably 
involves the latently infected cell being stimulated to divide. In vitro, a 
variety of stimuli including antigens and mitogens have been shown to 
induce HIV expression [17, 411. Thus k,, like r, should be a function of 
antigen concentration and the fraction of cells stimulated by antigen. 
However, it also includes the probability that stimulation leads to viral 
production. Active viral replication and budding from these cells is 
assumed to lead to lysis at rate p.6 [371. Although actively infected cells 
may divide once or twice and generate a few daughter cells [37], we feel 
that this expansion is sufficiently minor that it can be ignored. The 
major factor that needs to be modeled correctly is the total number of 
infectious virus particles produced by one infected cell during its life- 
time, including any of its daughter cells. We call this quantity N. In this 
model we treat both E_L,, and N as parameters characteristic of a 
particular viral species. Both parameters, however, may be related to 
the viral replication rate. One would expect that viral strains with high 
replication rates would have high values of N. However, the lytic rate 
pb may also depend on the replication rate-viruses with low replica- 
tion rate may kill poorly, if at all, while those with high replication rates 
may kill rapidly, say by membrane disruption during viral budding. A 
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detailed model of these relationships will be presented elsewhere. Here 
we treat N, F~, and other parameters as constants. If slow/low strains 
are replaced by rapid/high variants, then various parameters, such as 
N, could be slowly varying (see Section 10). 

Equation (5d) models the free infectious virus population. As stated 
above, we assume that an actively infected CD4+ T cell produces N 
virus particles. For simplicity, we take the rate of virus production equal 
to N times the death rate of the cell. For example, this would be the 
case if the viruses were released upon cell death. Free virus is lost by 
binding to uninfected CD4+ T cells at rate k,VT. Binding might also 
occur to latently infected cells and cause superinfection. Here we 
neglect this possibility in order to keep the model as simple as possible. 
Recent measurements using the polymerase chain reaction [55] indicate 
that in patients with AIDS approximately 1 in 100 cells are latently 
infected, while in HIV-seropositive patients who are asymptomatic, 
< l/10,000-1/ 1000 CD4+ T cells are infected [56]. Thus, neglecting 
binding to latently infected cells should not introduce much error. 
Actively infected cells tend to lose their CD4 [27], and hence viral 
binding to actively infected cells can also be justifiably neglected. The 
last term in (5d), - pr,l/, accounts for loss of viral infectivity, viral 
death, and/or clearance from the body. 

In the absence of virus, the T-cell population has the steady-state 
value T,,. Thus reasonable initial conditions for this system of equations 
are T(0) = T,,, T*(O) = 0, T**(O) = 0, and V(O) = V, for infection by free 
virus, or T(O) = 7’,,, T*(O) = T,*, T**(O) = To**, I/(O) = V, for infection by 
both infected cells and virus. 

3. ANALYSIS 

We first remark that the model is reasonable in the sense that no 
population goes negative and no population grows unbounded. The 
nonnegative orthant Rt = ix E R41 x a 0) is called a positively invariant 
region if a trajectory that starts in the nonnegative orthant remains 
there forever. What is needed for this is to show that on each hyper- 
plane bounding the nonnegative orthant the vector field points into Rt. 
From Equations (5) we find precisely this; that is, 

dT dT* 
dt T=O 

=s>o, - 
dt T*=O 

= k,VT 2 0, 

dT** 
dt TAa=O=k2T*>0, ~y~O=NFbT**~O. I 

One of the properties of the logistic equation for T-cell growth, 
Equation cl), is that if T(O) < T,,,, then T(t) < T,,,,, for all t. Since the 
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presence of HIV only decreases the T-cell population, this property 
should remain true for T,,, = T + T* + T**. To prove this we show that 

(dT,,, /dt)l&= T,,, < 0. From Equations (5a)-(5c) we see that 

Death by viral cytopathicity occurs faster than death by natural means; 
that is, pb > pr. Therefore, 

Hence at T,,, = T,,,, 

dT 
dt T,,, = T,,, < ’ - hTmax < 0. 

The last inequality follows from Equation (4). Thus, in the case of HIV 
infection, the total T-cell population, T,,,, and hence the various sub- 
populations, T(t), T*(t), and T**, are all bounded by T,,,. 

We now show that within the nonnegative orthant there are two 
possible steady states, one with no virus present, an uninfected steady 
state, and another with a constant level of virus, an endemically infected 
steady state. Setting the left-hand sides of Equations (5b) and (5~) to 
zero yields 

klm 
T*= k2+pT’ 

Tz?-* _ k2T* k,k,m _-= 
PI, Pb(‘h + PT) ’ 

Substituting Equations (6) and (7) into (5d), one finds 

(7) 

(8) 

The equation dV/dt = 0 has two possible solutions, V = 0 and T = 
pLy / CY, where 

a=k 
’ 

If T/ = 0, then from (6) and (7), T* = T** = 0. Substituting into (5a), 
we find quite obviously that there exists one steady state in which the 
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virus is totally absent. We call this the uninfected state. It is given by 

T=T,, T*=T**=V/=0 
7 (10) 

where an overbar denotes a steady-state value and T,, is given by 
Equation (3). Introducing the parameters 

P=‘-PT and y=r/T mm ) 

we can rewrite (3) in a form that will be useful later: 

(Wb) 

To = 
P+\lP2 +4v 

2Y . (12) 

If I/ # 0, then substituting T = pv / (Y and Equations (6) and (7) into 
Equation (5a) leads to a second steady state, which we call the endemi- 
cally infected state. In this state, 

7;=p&Y= l-6 
kdNk2 -&I ’ 

where 

k3=h+k, 

( 13a) 

( 13b) 

( 13c) 

(14) 

3.1. STABILITY OF THE UNINFECTED STATE 

For the uninfected steady state to be asymptotically stable we require 
that after the introduction of a small amount of virus, dV/dt < 0. 
Setting T = T,, and examining (81, we find dV/dt < 0 if and only if 
N < Ncrit, where 

N = k3( Pv + k,Tcl) 
cr,t 

k,k,To . 
(15) 

Thus, a reasonable conjecture is that the uninfected steady state is 
stable if and only if N < Ncrit. This is formally proved below. 
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The Jacobian matrix A for system (5) evaluated at the uninfected 
steady state is given by 

1-a -YT, -YT, - klT0 \ 
0 

A = o kk3 0 &To 
- pb 0 ’ 

0 0’ % -k, / 

(16) 

where 

k, = k,T,_, + TV, a= -p+2T,,y. (17) 

Substitutin the value of To from Equation (121, one sees that a 

P-----g = p +4sy>o.. 
The uninfected steady state is asymptotically stable if and only if all 

of the eigenvalues of the Jacobian matrix A have negative real parts. 
The eigenvalues can be determined by solving the characteristic equa- 
tion det(A - AI) = 0. For A given by Equation (16), this becomes 

(h+a)[(A+~~~)(h+k~)(h+k~)-k~k~T~N~~~] =O, (18) 

and hence one eigenvalue is A = - a < 0. Dividing Equation (18) by 
A + a, we obtain the reduced equation 

A3+AA2+BA+C=0, (19) 

where the coefficients 

A = /_L~ + k, + k, > 0, (2Oa) 
B = k,k, + /+,( k, + k4) > 0, (2Ob) 
C = /.bb( k,k, - k,k,T,N). (2Oc) 

Using the definition of Ncrit, we can rewrite Equation (20~) as 

C = PbkrkzTo( Ncrit - N). (204 

By the Routh-Hurwitz criteria [63], the three roots of the characteris- 
tic equation (19) will have negative real parts if and only if 

A,C>O and AB-C>O. 

The coefficient A is the sum of positive terms and is positive. Under 
the condition N < Ncrit, we have C > 0 and 

AB -C = /&k, + k4) + pb(kf + k4” +2k,k, + k,k,T,,N) 

+ k,k,( k, + k4) > 0. 
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Thus, if N < Ncrit, the uninfected state is asymptotically stable. 
If N = Ncrit, C = 0, and (19) then implies that one eigenvalue must be 

zero. Applying the Routh-Horowitz condition to the reduced character- 
istic polynomial A2 + A A + B, it is easy to see that the remaining two 
eigenvalues have negative real part. Thus, if N = Ncrit, the uninfected 
state is neutrally stable. 

If N > Ncrit, then by (20d) C < 0, and thus at least one eigenvalue 
will have positive real part. When C < 0 there is one sign change in (19). 
Hence by Descartes’ rule of signs [44] we can conclude that there is 
exactly one positive eigenvalue when N > Ncrit. Thus, the uninfected 
state is unstable if N > Ncrit. 

These results imply that for the uninfected steady state, N is a 
bifurcation parameter and that the stability of the state is lost as N 
increases past Ncrit (Figure 1). 

So far, we have dealt with only the local stability of the uninfected 
steady state. For N < Ncrit there is only one steady state in the nonnega- 
tive orthant, and we conjecture that it is globally stable. For 0 < N < (k, 
+ pr)/kZ < Ncrit, it is easy to show that this conjecture is true. Con- 
sider the function L(t) = k* + NT** + V, which as we shall see is a 

2000 

T 1000 

0 

0 500 1000 1500 2000 

N 

FIG. 1. Transcritical bifurcation. The steady-state values of T are plotted versus 
N. Stable steady states are indicated by dark heavy lines, unstable steady states by 
light lines. Parameter values are given in Table 1. For N < Ncrit = 774, the unin- 
fected steady state with T = 1000 is stable. At N = N,, this state loses its stability, 
and the endemically infected state with T a decreasing function of N becomes 
stable. 
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Lyapunov function. In the nonnegative orthant, L(t) > 0. From Equa- 
tions (51, 

dL 
z=[(N-l)k,-pr]T*-/_+V. 

For N < (k, + pr.)/k2, the term in brackets is negative, and hence 
dL/dt < 0. Thus, as t -00, L(t)-+ 0. Hence T*, T**, and I/ all ap- 
proach 0, and T -+ To. 

3.2. ENDEMICALLY INFECTED STEADY STATE 

At N = Ncrit, CY = pV / To and v = 0. This can be seen by substituting 
(15) into (9) and then substituting pV/ To for (Y in (13d). Thus, at 
N = Ncrit, the endemically infected state and the uninfected state coin- 
cide. At N = Ncrit, there is a transcritical bifurcation, and the endemi- 
cally infected state emerges for N > Ncrit as a new steady state in Rt. 
For N < Ncrit, the infected steady state does not lie in Rt , because -- 
V,T*,T** < 0, and hence it is unphysical. Further, since Rt is posi- 
tively invariant, this unphysical steady state is not reachable from initial 
conditions in Rt. Thus, we need only study the stability of the endemi- 
cally infected state for N > Ncrit. 

Linearizing Equations (5) around the endemically infected state, we 
obtain the Jacobian matrix A, 

A= 
k,l/ -k, 0 k,T 

0 k2 -pb o ’ 

\-k,V 0 
A 

N/G -k, 

(21) 

where 

k3=kz+/-+, (22a) ,. 
k, = k,7; + pv, (22b) 

a=-p+y(2F+T*+T**)+k,l/, (22c) 
-- 

and T, T*, F**, and v are given by Equations (13). Using the steady 
state form of Gal, 

-- 
O=s+pT-yT(T+T*+?;**)-k,m, 

one easily sees aT = s + y T2, and hence 

a=yT+s/T>O. (23) 
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Examining the characteristic polynomial, det(A- AI), we find it has 
the form A4 + bh3 + CA* + dh + e, where the coefficients are 

b = a + k, + R, + pb > 0, (24a) 

c = a(k, + R, + pb) + pb(k3 + k4) + kg%, + kin/( y - k,), (24b) 

d = a[ k3i4 + pb(k3 + a4)] + k,m[y( I+ + k2 + &- k,(k3 + I+,>] y 

(24c) 

e = k,~[kl d& - k3) + wv(k2 + ~~11. (244 

In calculating the coefficients of the characteristic polynomial we 
have eliminated a term proportional to k,k,_ k,k,NT from both d 
and e, because substituting the definitions of k, and T shows that this 
term is zero. 

Analyzing the characteristic polynomial, it is obvious that b is posi- 
tive. For N > Ncrit, Nk, > k,. Thus e is positive as well. 

To establish the stability of this steady state, it is also necessary to 
show that both c and d are positive and that (bc - d)/d/b2 > e. For 
the parameters given in Table 1, all three conditions are met; however, 
for some parameter regimes, this steady state is unstable (Table 2). 

4. T-CELL DEPLETION 

In the endemically infected state, normal T cell population regula- 
tion is disturbed by the presence of HIV. In this new steady state the 

TABLE 2 

Parameters for Oscillations 

Parameters and constants 
Initial or 
default value 

s 

r 
T max 

PT 

PI, 

PV 

k, 

k, 

N Number of free virus produced by lysing a CD4+ cell 

Rate of supply of CD4+ T cells from precursors 
Rate of growth for the CD4+ cell population 
Maximum CD4+ cell population level 
Death rate of uninfected and latently infected 

CD4+ cells 
Death rate of actively infected CD4+ cell population 
Death rate of free virus 
Rate constant for CD4+ cells becoming infected 

by free virus 
Rate latently infected cells convert to actively 

infected 

10 day-’ mmm3 
12 day-’ 
1500 mm- 3 

0.06 day-’ 
0.24 day-’ 
5 day- ’ 

2.4 mm3 day- ’ 

1.2~ 1O-4 day-’ 
1200 
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T-cell level can be considerably lower than in the uninfected steady 
state. Thus, one of the main conclusions of this model is that HIV 
infection itself may be sufficient to account for a substantial amount of 
the T-cell depletion seen in AIDS. To establish under what conditions 
this is the case, we examine Equation (11) in some detail. 

As a simplifying approximation let us assume that with appropriate 
parameter choices the model can mimic the population distribution in 
vivo in which, say, 1 in 100 cells are latently infected and 1 in 10,000 to 1 
in 100,000 are actively infected. In this case, T-cell depletion must occur 
predominantly in the uninfected pool. According to (13a), at steady 
state the uninfected T-cell population size is 

T= 
k,( Nkll;yk, - 1) ’ 

where k, = k, + pT. Since N > Ncrit, let N = Ncrit + n. Then, substitut- 
ing the value of Ncrit from Equations (15), one can write 

T 1 -=- 
T0 1+s 

where 

(25) 

Since 6 > 0, T < To, and there is depletion of uninfected cells at the 
endemically infected steady state. As a useful measure of the degree of 
depletion of uninfected cells, we introduce 

D=l-(T/T,) = 6/(1+ 8). (27) 

Thus, D = 0 implies no depletion and D = 1 means total depletion. The 
larger 6, the larger the depletion. Consequently, there is increased 
depletion of uninfected T cells 

(1) If the virus lives longer (i.e., if ku, is decreased). 
(2) If there is a higher rate of viral infection (i.e., if k, is increased). 
(3) If a larger number of viruses are produced per T cell (i.e., if n is 

increased). 

Further, if pLT /k, a 1, then there is also increased depletion 

(1) If there is more rapid conversion from the latent to the actively 
infected state (i.e., if k, is increased), or 

(2) If T cells live longer (i.e., if pr is decreased). 
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We also note that the depletion of uninfected cells is independent of 
pu,, the death rate of actively infected cells, and s, the rate of supply of 
uninfected cells. However, increasing pb will have a small effect on the 
total T-cell population because it will decrease T**. Also, increasing s 
will increase I/ and thus, from (13b) and (13~1, increase T* and T**. 
Thus, as one would expect, increasing s will decrease the total deple- 
tion. To see this explicitly, we compute the steady-state level of infected 
cells. From Equations (13b-13d) and (14) we find 

(28) 

where (Y, p, and y, given by Equations (91, (101, and (14), are indepen- 
dent of s. 

5. PARAMETER VALUES 

Choosing parameter values characteristic of the in vivo situation is 
difficult; many of the parameters in our model have not been measured, 
or, if measurements have been attempted, they may not be as accurate 
as we need for quantitative predictions. Thus one role of modeling is to 
point out where further quantitative measurements can improve our 
understanding of the AIDS disease process. 

The number of CD4+ T cells in the peripheral blood is approxi- 
mately 1000/mm3, although it fluctuates both diurnally and with the 
total lymphocyte count [33, 34, 401. We shall choose lo3 as the “stan- 
dard” number of CD4+ T cells (per mm31 in a healthy individual and 
use this value as an initial condition, To = T(O) = 103. As is common in 
the clinical literature, we shall report all T-cell numbers per cubic 
milliliter. The T-cell number in the blood fluctuates and can easily 
increase by 50% or so [l]. Thus we choose T,,, = 1.5 X 103, which is 
higher than typically reported T4 counts in healthy individuals but lower 
than the maximum that can be obtained in severe infection. Under 
conditions of infection, different lymphokines are secreted and different 
control mechanisms presumably come into play. Under such conditions 
our model of T-cell population dynamics would have to be modified. 
Our assumption of a noninfectious situation is consistent with the 
modeling approach taken here in which the immune response to HIV 
and other antigens is being neglected. 

We assume that activated T cells divide every 12-18 h. Therefore the 
growth rate of an activated cell is approximately 1 day-‘. This growth 
rate must be multiplied by the fraction of T cells that are dividing. This 
is probably on the order of 1%. To this is added a death rate, so that r 
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represents the net rate of increase in the population when cell death is 
taken into account. In the simulations reported here, we let r = 0.03 
day-‘, pr = 0.02 day-’ (see below), and hence the net proliferation 
rate p = 0.01 day-‘. Smaller growth and death rates would also be 
reasonable. 

The lifetime of unactivated T cell is variable. Memory cells may live a 
long time, whereas precursor cells and non-memory T cells may live a 
short time. Freitas et al. [18] report that 50-60% of peripheral mature T 
lymphocytes of the mouse are replaced every 2-3 days. In this model, 
where we have not distinguished subpopulations of T cells, the death 
rate pr represents an average over all subpopulations. Thus, although 
some human T cells may live for years, it is clear that many T cells have 
much shorter lifetimes. Recent work of Gray [22] and Gray and Lean- 
derson [23] indicates that memory T cells may live 2-6 weeks in the 
absence of antigen-stimulated replication. This we feel is reasonable as 
an average. Thus we take pr = 0.02 day-‘, which corresponds to a 
half-life of 36 days. 

The supply of new T cells from precursors populations must be less 
than the number required to maintain the T-cell population constant. 
Thus s< pTTo. With To =103 mmP3 and pr as above, s < 20 day-’ 
mm -3. If we take s = 10 dayy’ mmm3, with r as given above, half of the 
T-cell replenishment is by proliferation in the periphery and half from 
the supply term. The parameters r, s, and pr have been chosen so that, 
in the absence of virus, the population of CD4+ T cells is maintained at 
its initial value To = lo3 mm -3. Other choices of these parameters, of 
course, can also maintain this steady-state population level. 

Estimating the rate k, at which virus infects T cells is difficult. 
Because k, is a bimolecular rate constant, it has the dimensions of 1 
over cell concentration per unit time. A useful scaling is therefore to 
consider k,T,, which has the units of time-‘. In order for a virus to 
infect a cell, it must encounter the cell, bind CD4 or some other 
receptor, and then enter the cell. Thus infection cannot be any faster 
than the rate of transport to the cell surface. We can thus use Smolu- 
chowski’s formula for the diffusion-limited rate constant to provide an 
upper bound on k,. For interaction between two spherical particles of 
radii rT and rv and diffusion coefficients D, and D,, k, < 4dr, + 
r,XD, + Dv). Using rv = 5~10~~ cm, r,=4x10P4 cm, D,=~x 
lo-’ cm2 sl, and D, = 2.5 x lo-” cm’ s-* as given in Layne et al. 
[36], k, G lo-” cm3 s -’ = C ,6 x lop3 mm3 hh’. Hence klTo < 0.36 
h-‘. For particles the size or HIV, convective transport would not be 
able to increase this rate [52]. Once a virus particle encounters a cell, it 
need not infect it. The CD4 level will vary among T cells. Cells with low 
levels of CD4 may resist infection. Further, the state of activation of the 
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cell may be important. Some work has suggested that only activated T 
cells can be successfully infected [21, 651. Kiernan et al. 1311, using an in 
vitro system, found that although 40% of input virus attached to cells, 
only 2-3% of cells became actively infected. Thus, it seems reasonable 
to suppose that only a fraction of the encounters between HIV and T 
cells will lead to infection. As an initial guess, we assume that ki7’,, = 
10e3 h-’ = 2.4~ lo-’ dayss’. Since different viral strains have differ- 
ent tropisms and different degrees of virulence, one might safely assume 
that k, is a strain-dependent parameter that can vary greatly. 

Latently infected cells behave the same as normal T cells and thus 
should have the same death rate. However, we assume that when they 
interact with antigen, rather than dividing they become actively in- 
fected. The time for death of an actively infected cell is probably a few 
days to a week. Somasundaran and Robinson [57] found that in cells of 
the T-cell line C8166, a 3-4-day lag occurred between expression of 
viral proteins and cell death in actively infected cells. Kiernan et al. [31] 
found that HIV-infected MT-2 cells remain viable up to 62 h postinfec- 
tion, after which viability rapidly decreases. Thus we shall choose 
pb = 0.24 day-‘. 

The number of infectious viruses released, N, is not known precisely. 
Merrill [421 suggests that N is between 50 and 1000. Layne et al. [361 
estimate N > 300 from data on the minimum concentration of soluble 
CD4 needed to block HIV infectivity in an in vitro assay. Somasundaran 
and Robinson [57] find that the standard laboratory strain of HIV, IIIB, 
selected to grow well in culture, can produce between 300,000 and 2.5 
million copies of viral RNA in actively infected cells. The number of 
these viral RNAs that are packaged into viral particles and released was 
not measured, but such high levels of expression indicate that values of 
N well above lo3 are possible. Viral isolates exhibit great variability; 
some replicate fast and are highly cytopathic, while others replicate 
slowly [6, 151. In order to study the differences in disease course with 
different viral strains we will vary N in our studies. However, we keep N 
in the low range of permissible values because this model is applicable 
only to strains of HIV that do not stimulate an immune response. As 
argued elsewhere, we believe that such strains should be low viral 
producers [46]. 

Free virus loses its infectivity over time, probably due to the shedding 
of gp120 [19]. For example, in a viral infectivity assay, HIV-l strains 
IIIB and RF11 lost half of their infectivity in 4-6 h at 37°C [36]. Thus we 
take p” = 2.4 day-‘. 

The rate of conversion of a latently infected cell to an actively 
infected cell is k,. We assume that only those latently infected T cells 
that recognize and respond to the antigen activate HIV replication. 
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Thus, as in the calculation of the average T-cell growth rate r, k, has 
embedded in it a factor proportional to the average fraction of T cells 
stimulated by environmental antigen. Because the process of activating 
HIV replication requires cell division, we expect k, G r. Further, the 
conversion process may not be 100% efficient; that is, some latently 
infected cells that are activated by antigen may not produce virus or 
may produce defective virus. Thus, k, may be considerably smaller than 
r. Here we choose k, = O.lr = 3 x 10e3 day-‘, where the value of r is 
our default value for healthy individuals responding to normal environ- 
mental antigens. If one focuses on times of infection by disease-causing 
agents other than HIV, the parameters r and hence k, could change. 
Models by Cooper 171, Intrator et al. [30], Reibnegger et al. 1541, 
McLean [41], McLean and Kirkwood [39], Anderson [3], and Anderson 
and May [4] all consider the effects of secondary infection. Here we are 
modeling the course of HIV on a long time scale, and the specific 
effects of one infection or another are not explicitly considered. Rather 
the net effect of all such antigen encounters is used to estimate the 
value of r. 

A summary of the parameter values used in this paper is given in 
Table 1. However, other sets of parameters can be used that give similar 
behavior. If we require that T-cell dynamics in the absence of virus give 
a steady-state value of 1000 T cells/mm3, then only certain combina- 
tions of r, s, T,,,, and pr are permissible. Once these parameters are 
established, there is a restricted set of viral parameters that give rise to 
the long incubation period characteristic of HIV infection. In Perelson 
[49] the parameters used were quite different (s = 36 day-’ mmd3, 
r = 0.108 day-‘, pr = 0.072 day-‘, T,,,,, = 1500 mm-3, k, = 2.4~ lo-* 
mm3 day-‘, k, = 1.2 X 10e4 dayy ‘, /1” = 2.4 dayy’, and pu, = 1.2 day-‘), 
yet gave similar dynamical behavior. 

6. NUMERICAL SOLUTIONS 

To study the time course of the infection, we numerically integrated 
Equations (5). In Figure 2 we illustrate typical solutions for three values 
of N all greater than Ncrit, using the parameters given in Table 1. We 
choose initial conditions characteristic of an uninfected individual; 
T(0) = T,,, T*(O) = T**(O) = 0, infected with free virus, I/(O) = V,. Here 
we considered the case of exposure to one infectious virion per milliliter, 
which corresponds to I’, = 10e3 mme3. For the parameters in Table 1, 
Ncrit = 774. For the three values of N displayed, we see from the upper 
right panel that the disease is characterized by a lag phase in which 
there is no discernible T-cell depletion, followed by a phase in which the 
CD4+ T cells decline (Figure 3). In the case N = 1000, the lag is about 
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FIG. 2. Dynamics of HIV infection. Solutions of Equations (5a)-(5d). Parameters 
are given in Table 1. In each graph the three curves correspond to different values of 
N, the number of infectious virus particles produced per actively infected cell. Here 
Ncrit = 774 and N = 1000 (* ), N = 1200 (0 ), and N = 1400 (0). 

6 years, with the T-cell decline occurring between years 6 and 8. For 
larger values of N, the decline in both uninfected and total CD4+ cells 
is more substantial but the lag is shorter. The two lower panels in 
Figure 2 indicate the changes in the latently infected T* and actively 
infected T** populations. The curves are essentially identical, up to a 
scale factor, as might be expected from the establishment of a quasi- 
steady state in which dT**/dt = 0. In a quasi-steady state, Equation 
(5~) predicts that T* * = k,T */ pu,. Figure 2 shows that such a quasi- 
steady state is established, because k, / pb = 1.25 x 1O-2 is the ratio of 
T** to T* seen at long times. The number of actively infected cells 
remains less than 10-l mmm3 for 2-5 years depending on N. At this 
level of expression, less than 1 in lo4 T cells would be actively infected, 
as has been observed. Late in the infection process, however, one can 



HIV INFECTION OF CD4+ T CELLS 103 

1000 

FIG. 3. The total CD4+ T-cell population given by T + T* + T** versus time 
after infection. The three curves correspond to different values of N, the number of 
infectious virus particles produced per actively infected cell, N = 1000 (* 1, N = 1200 
Co), N = 1400 (0). 

obtain ratios closer to 1 in 100. The number of latently infected cells 
remains small but increases over time during the initial phase of 
infection, consistent with measurements of the increasing viral burden 
in asymptomatic HIV-seropositive patients [56]. The number of latently 
infected cells ultimately grows to approximately lo2 mm-3, which is 
about tenfold larger than the 1 in 100 infected T4 cells observed by 
Schnittman et al. [55] in patients with AIDS. 

The upper left panel in Figure 2 shows the changes in the HIV 
population. For all three values of N, after a fast initial decline due to 
cellular binding, the viral population grows exponentially, slowing as its 
steady-state value of a few hundred virions per cubic millimeter is 
approached. Comparing the dynamics of viral growth with that of the 
latently infected and actively infected T-cell populations shows that P’(t) 
follows essentially the same dynamics as the infected T cells. Thus, a 
quasi-steady-state approximation could again be used with benefit. We 
return to this point later. Figure 4 shows the change in the free virus 
population as N is decreased further. If N < Ncrit, then after the initial 
binding v(t) decreases exponentially indicating that the infection will 
not cause disease and that the uninfected state is being approached. 
With N > Ncrit, the virus grows after the initial decline, whereas with 
N = Ncrit the virus rapidly attains a constant level and no T-cell deple- 
tion is seen (not shown). 
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FIG. 4. The change in free virus population for different values of N. Parameters 
are given in Table 1. For N < Nai, = 774, that is, N = 600 (* 1, the virus decays and 
the system returns to the uninfected state. For N > Ncrit, that is, N = 1000 CO), the 
virus grows, whereas at N = Ncrit (0) the virus remains constant. 

Changing the parameters in the model changes the details of the 
dynamics. For example, increasing N gives rise to larger amounts of 
T-cell depletion, which is more characteristic of AIDS, but also speeds 
up the depletion, which is less characteristic (Figure 5). Earlier, we 
predicted that increased depletion would also occur if pV were de- 
creased, that is, if infective virus lived longer. This is what we see in 
Figure 6. Changing the initial conditions affects the time from infection 
to depletion. As shown in Figure 7, depletion is noticeable once V(t) 
reaches a level of about 50 mmm3. Thus, as expected, increasing V, 
decreases the time to depletion. Similar effects are seen if infected cells 
are used as initial conditions rather than free virus. 

6.1. OSCILLATIONS 

When the infected steady state is in the positive orthant, that is, for 
N > Ncrit, it is also stable for most parameter values of biological 
interest. In parameter regimes where the infected state is unstable, the 
system undergoes sustained oscillations around the infected state. We 
studied the behavior of the system in these regimes by numerical 
integration, using GRIND [S], and by numerical bifurcation, using 
AUTO [9]. The parameter regime for oscillations is necessarily different 
from that in Table 1. Table 2 gives the default parameters used in our 
study of oscillations. Figure 8 illustrates the dynamics of the system 
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FIG. 5. The degree of T-cell depletion depends upon N. Parameters are given in 
Table 1. N = 1500 (*), N = 2000 (Cl), and N = 3000 (0) are shown. As N increases, 
the depletion increases but the time until depletion decreases. 

FIG. 6. The influence of the viral death rate CL,, on T-cell depletion. Parameters 
are given in Table 1; N = 1400, EL,, = 2.4 day-’ (*), 1.2 day-’ CO), and 0.24 day-’ 

(0). 
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FIG. 7. The effect of changing the initial viral load. Parameters are given in Table 
1; N= 1400, V, = 10e6 (*), 10e4 (O), and lo-’ (0) mme3. 

using the parameters in Table 2. The effects of changing the parameters 
r, k,, and pT, which are all quite different than in Table 1, were studied 
using AUTO. All parameters were set at the default vaues given in 
Table 2 except N. Examining Figure 9 for the transcritical bifurcation 
[62] obtained with these parameters, one notes that the endemically 
infected state that became stable at N = Nc,it = 502 loses its stability at 
a slightly larger value of N and then regains its stability at N = 1229. 
Oscillations arise via a Hopf bifurcation when the endemically infected 
state becomes unstable (light curve in Figure 9). In order to determine 
the boundary in parameter space for oscillations, we trace one of the 
two Hopf bifurcations (the upper one at N = 1229.34), varying r and pr 
simultaneously in Figure 10a. The region in which oscillations are found 
is indicated. At the boundaries of the region, the endemically infected 
steady state changes stability via a Hopf bifurcation. Thus, for example, 
for pr = 0.1 day-’ at r = 1.04, there is a Hopf bifurcation giving birth to 
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FIG. 8. Dynamics of the system with parameters set in the oscillatory region given 
in Table 2. 

a stable limit cycle. For smaller values of r the infected steady state is 
stable. If one fixes r, say, at r = 10 day- ‘, and varies pr, one finds that 
for small values of E_L~ the infected state is stable; it then loses stability 
by a Hopf bifurcation at or = 6.1 X 10e2 and then goes stable again via 
a second Hopf bifurcation at I_L* = 0.146. Thus, there are two stable 
regions for the infected steady state, and in between lies a region of 
oscillatory behavior. 

Because k, is also important in determining the stability of the 
endemically infected state, we trace the Hopf bifurcations, varying k, 
and E_L~ simultaneously (Figure lob), and k, and r simultaneously 
(Figure 10~). As in Figure lOa, the curves in these diagrams delimit the 
region where we find oscillatory behavior from the region where the 
infected state is stable. We have also studied the size of the region with 
oscillatory behavior as a function of the other parameters. First, if 
parameters that are part of Ncrit are changed such that Ncrit is increased 
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FIG. 9. Transcritical bifurcation. The steady-state values of T are plotted versus 
N. Stable steady states are indicated by dark heavy lines, unstable steady states by 
light lines. Parameter values are given in Table 2. For N < Ncrit = 502, the unin- 
fected steady state with T = 1000 is stable. At N = Ncrit, this state loses its stability 
and the endemically infected state with T a decreasing function of N becomes 
stable. This state quickly loses its stability at a Hopf bifurcation and then regains 
stability at a second Hopf bifurcation at N = 1229.34. 

to the point N < NCrit, the uninfected state will become stable via the 
transcritical bifurcation and oscillations will cease. This is, for instance, 
the case for large values of pv and pr. Second, changing parameters 
may increase or decrease the size of the region with oscillatory behav- 
ior. Since this region may shrink and disappear entirely as a function of 
the other parameters, they are as important as k,, r, and pr in 
determining whether or not oscillatory behavior occurs. In no case have 
we found oscillations in a region of parameter space that we consider 
biologically realistic. The existence of oscillations in a model of this type 
is not novel. Anderson and May [4] also find oscillatory or chaotic 
fluctuations in a dynamical model of the interaction of HIV with the 
immune system. However, they do not discuss the biological implica- 
tions of the parameters needed to obtain oscillations nor do they map 
out the regime in parameter space where oscillations ensue. 

7. VIRAL INFECTION OF T-CELL PRECURSORS 

HIV may be able to infect cells in the thymus and bone marrow and 
thus lead to a reduced production of new immunocompetent T cells. In 
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FIG. 10. Mapping the region of oscillatory behavior in parameter space. The solid 
curve indicates the boundary of stability for the infected steady state. As parameters 
are varied, the state goes unstable and then regains its stability via Hopf bifurcations. 
In the unstable region, the infected steady state is surrounded by a stable limit cycle. 
Region of oscillation in the (a> pTr plane; (b) prkt plane; (c) k,r plane. Parame- 
ters not varied are given in Table 2, except N = 1229.34. 
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FIG. 10 (Continued) 

the mouse, CD4 has been shown to be expressed on the earliest thymic 
T-precursor cells [64]. Whether this is the case in humans has only been 
speculated about. We examine the consequences of precursor T-cell 
infection by assuming that the source, S, in Equation (5a) is a decreas- 
ing function of the viral load. Perelson [49] assumed S(V) = set”“, where 
8 is a constant. Here, to avoid solving transcendental equations to find 
the steady state, we shall assume that 

s(u)=es/(e+u). (29) 

If u = 0, then s is a constant as in Equation (11. However, if the viral 
load increases to the point that u = 0, then s is decreased to half its 
normal value. 

Replacing s by s(u), Equations (5) still have two steady states-an 
uninfected state and an endemically infected state. In the endemically - - 
infected state, T, T*, and F** are still given by Equations (13a)-(13c). 
However, v is now given by the one positive solution of 

To see that there is only one positive solution, note that in the limit of 
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large 8 we can ignore the terms not proportional to 8 in Equation (30). 
Thus, 

(31) 

This is the result that we obtained previously, when s was constant [see 
Eq. (13d)l. Further, as we showed previously, if N > Ncrit, then v in (311 
is positive. Thus, for N > Ncrit, the last term in (30) is negative. The first 
term is positive. Thus, regardless of whether the middle term is positive 
or negative, Equation (30) always has one sign change. Consequently, by 
Descartes’ rule of signs, there will be only one positive root. Thus the 
effect of replacing s by s(u) will be quantitative, not qualitative. 
However, as we show below, our model with infection of T-cell precur- 
sors gives more realistic predictions for the time course of T-cell 
depletion. 

Figure 11 shows a numerical solution of Equations (5) with s re- 
placed by s(u), using the standard parameters (Table 1) with 8 = 1 
mmP3. The depletion of uninfected cells is now more gradual than in 
Figures 2, 3, and 5-7. With N = 1000, depletion takes about 4 years. 
Further, the fraction of latently infected cells now remains on the order 
of 1% or less, as is seen in AIDS patients [51, 551, and the fraction of 
actively infected cells is less than 2 x 10P4, consistent with the observa- 
tions of Harper et al. [24]. Thus this version of the model makes 
predictions that are consistent with a number of quantitative observa- 
tions. The one feature that it does not match is the ultimate degree of 
T-cell depletion, which in AIDS patients commonly decreases below 200 
mmm3. Further modifications of the model that might correct this 
deficiency are presented in Section 10. 

8. EFFECTS OF AZT 

One of the most successful treatments for AIDS involves the admin- 
istration of drugs, such as azidothymidine (AZT), that can block viral 
replication. The effects of such a drug can easily be understood within 
the context of our model. 

The effects of AZT are both dosage-dependent and HIV strain-de- 
pendent [35]. Assume that at some time T AZT is administered and 
causes a block of viral replication. If viral replication is completely 
blocked, then for times t > 7, N = 0. However, because AZT becomes 
cytotoxic at high doses, partial blockage is the more likely outcome of 
AZT treatment. Thus, we assume that for times t > T, N = N’, where 
N’ < N. If, before drug administration, N < Ncrit, then the virus would 
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FIG. 11. Viral infection of T-cell precursors. The same model as in Figure 4 is 
illustrated, except here the source term s decreases with the viral load according to 
Equation (29) with 0 = 1 mmm3. Parameters are as in Table 1; Ncrit = 774 and 
N=lOOO (*), 1200 (O), 1400 (0). 

be declining (dV//dt < 0) and the drug would simply hasten its elimina- 
tion. In such cases the drug may not be needed. However, if N > Ncrit 
before treatment, the virus would have been growing, as would the 
populations of infected T cells. After drug treatment, if N’ < Ncrit, then 
V, T*, and T** would all decline and, assuming that the virus had not 
affected the thymus or T-cell precursors, T would eventually recover to 
its initial value To. This is illustrated in the upper right panel of Figure 
12 (curves marked with circles). If AZT is given in low doses, then even 
after treatment N may be larger than Ncrit, so that only partial recovery 
of the T-cell population occurs (curves with open squares in Figure 12). 
Partial recovery may also occur if thymic or bone marrow infection 
occurred or if AZT affected the stem cells responsible for the genera- 
tion of new T cells. Under such circumstances the source of new cells, S, 
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FIG. 12. Effects of AZT. At time 7 = 3 years, N is reduced from N = 1400 (*) to 
N = 1050 ( IJ), that is, 75% of its original value, or to N = 350 (O), that is, 25% of its 
original value, to mimic the effects of AZT treatment. Here Ncrit = 774, so N = 1050 
is above Ncrit, while N = 350 is well below N,,,. Parameters are as in Table 1. 

could be diminished, so that even after treatment and viral elimination 
the T-cell population would establish a new steady state consistent with 
a decreased value of s, as is typically the case after adult thymectomy. 

9. QUASI-STEADY-STATE APPROXIMATION TO 
THE DYNAMICS 

The total dynamical picture seems to naturally break up into three 
distinct time domains. In the first, virus rapidly binds to T cells. This 
corresponds to the rapid initial decay in the free virus population seen 
in Figure 4. Next, virus and infected T cells increase exponentially, and 
uninfected T cells maintain a population level close to T,,. In the last 
region, uninfected T cells decline in number, the virus and infected 
T-cell population growth slows, and steady state is established. In this 
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section we approximate the dynamics in these regions and estimate the 
time intervals for each type of behavior. We also show how one can use 
a quasi-steady-state approximation to obtain either a one- or two- 
dimensional reduced description of the long-time behavior of the 
system. 

9.1. EARLY TIME BEHAWOR 

Assume that the initial conditions are V(O) = V,, T(0) = To, T*(O) = 0, 
and T**(O) = 0, that is, that infection is by free virus. The earliest event 
is the binding of virus to uninfected T cells. As can be seen in Figure 4, 
this causes a rapid decrease in the concentration of free virus. We 
estimate the depletion of free virus as follows. 

Initially, and at early times, T(t) = To and T**(t)= 0. We use a 
method of successive approximation to refine these estimates. Thus, 
first assume that T = T,, = constant, and T**(t) = 0. Equation (5d) then 
becomes 

dV 
dt = - k,V, 

where 

k, = klTo + pv. (32) 

Hence virus decays exponentially according to 

V(t) = voe-k,‘. (33a) 

During this initial period some infection of T cells occurs. From 

Equation Ga), with T = T,,, 

dT 
- = s - pTT,, + rT,,( 1- T,,) - klToVoepk4’ dt 

= - klToVock~‘, 

with solution 

l-~(l-e-kn’) 1 . 
If k,Vo s k,, T(t) = T,,. For the parameters used to generate Figure 4, 
k,V, /k4 = 10e6, and hence there is no observable depletion of T cells. 

From Equation (5b), 

dT* 
dt= klT,,Voe-k4r - k,T* 7 
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and thus 
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kITJo T*(t) = k, _ k, ( e-k3t - e-“4’). (33c) 

From (5~) these latently infected cells can create actively infected 
cells. Substituting (33~) into (5~) and solving yields 

kzkToVO 
T**(t)= k,-k, 

e-k,l e-k,t (k, - k3)eppbf 
k4-pb + p,,-k3 + (k-/+,)(pb-k3) ’ 

Substituting (33a) into (5d) for V(t), we find 

dV 
dt = NpbT** - kqVoe-k4f, (34) 

where T**(t) is given by (33d). Although this equation can be used to 
generate the next-order approximation to V(t), we shall use it to 
estimate the time at which V stops decreasing, that is, when dV/dt = 0. 
From Equation (34), this occurs at t = tmin, where tmin is the solution of 
the transcendental equation 

nPbk2klTO e-k,t ,-Pbf 
--~ 

p.6 - k, k4 - k3 k4 - p.6 

Further, at tmin, 

e -kd = 0 (35) 

(36) 

Evaluating tmin and I/min for the parameters used to generate Figure 4, 
we find that with N = 1000, tmin = 2.3 days and I/min = 4.2X 10P6. SO~V- 
ing the full system (5) numerically for the same parameters gives 
tmin = 2 days and Vmin = 3 X lo-‘. These approximations are sufficiently 
accurate for our purposes and show that the initial decrease in V due to 
the binding and infection of T cells is quite rapid. 

9.2. MIDTERM AND LONGTERM BEHAVIOR 

In Figure 2, one immediately obvious feature is that the T**(t), 
T*(t), and V(t) curves all look similar. This motivates us to use a 
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quasi-steady-state analysis to simplify the system. Due to rapid absorp- 
tion by CD4+ cells, we expect that after a fast transient, the level of 
free virus will be well approximated by its quasi-steady-state level. 
Similarly, actively infected cells equilibrate rapidly with latently infected 
cells. Assuming that on a long time scale dT* */dt = dV/dt = 0 leads 
to the algebraic equations 

T** = k,T*/,+, (37) 

and 

V = Nk,T*/( k,T + pv) . (38) 

Substituting into Equations (5a) and (5b) leads to 

dT 

( 

Nklk, 
x=s+pT-yT’- k,p+k,T+,+ n*, (39a) 

dT* Wk2 

dt= k,T + I-+ 
TT* - k,T*. 

The solution of this two-differential-equation model is shown in Figure 
13. As initial conditions we used T(O) = To and computed T*(O) from 
Equation (33~) evaluated at c = tmin. Comparing with Figures 2 and 3, 
one notices that the solutions are very similar to the solutions of the full 
system of equations, (5a)-(5d), although there is a detectable difference 
in the time needed to reach steady state. 

The two-equation model can be studied by the usual methods of 
phase-plane analysis. Figure 14 shows the nullclines of Equations (39a) 
and (39b) for N = 600 and N = 1400. When dT*/dt = 0, T* = 0 or 
T = constant = k, pv /(Nk,k2 - k,k,). These nullclines are indicated 
by the straight heavy lines in Figure 14. The lighter curved line is the 
locus of points along which dT/dt = 0. Notice that for N < Ncrit, Figure 
14a the two nullclines only intersect at T = 1000, T* = 0, the uninfected 
state. When N > Ncrit, in addition to this uninfected state, there is a 
second intersection that corresponds to the endemically infected state. 
Thus, this phase plane summarizes the general features of the full 
four-equation model. 

During the initial and middle phases of the infection, a good approxi- 
mation to T is To. Thus, during this period we can substitute T = To 
into (39b) and obtain 

dT* 
x = VT*, (40) 
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FIG. 13. The quasi-steady-state approximation. Illustrated is the solution of 
Equations (39) for T and T*, with T(0) = 1000 and T*(O) given by (3%) with t = t,in. 
The algebraic equations (37) and (38) were used to determine T** and V’. Parame- 
ters are as in Table 1; N = 1000 (*), 1200 (Cl), 1400 (0). 

where 

Nk,k,To 
’ = k,To + /_~y - k3 = 

k,(N- Noit) 
Ncrit * (41) 

From this we predict 

T*(t) = T;evf, (42) 

where T,* is determined by matching with a fast-time solution. The time 
scale l/q depends on the difference between N and Ncrit. Thus, as 
seen in the simulations, the infection is slow when N is near Ncrit and 
becomes fast as N increases. Substituting (42) into (38) with T = To 
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FIG. 14. Nullclines of the reduced two-equation model (39a) and (39b) for (a) 
N = 600 and (b) N = 1400. Other parameters are as in Table 1. The light curved line 
is the dT/dt = 0 nullcline, while the two heavy straight lines are the dT*/dt = 0 
nullclines. Note that for N < Ncrit, (a), the nullclines intersect only at the uninfected 
state T = 1000, T* = 0, while for N > N,,,r, (b), there is a second intersection 
corresponding to the endemically infected state. 

yields 

(43) 

where I/,+ = Nk,T,*/k,. Rather than using a formal matching proce- 
dure to find T,*, we can simply take Vmi,, as an approximation to Vl. 

10. DISCUSSION 

Starting from a description of T-cell population dynamics in a healthy 
individual, we have developed a dynamical model for T-cell depletion 
due to HIV infection. While our model is overly simple in that it does 
not account for the immune response to HIV infection or mechanisms 
of cell death other than direct HIV-mediated killing, it does demon- 
strate that HIV by itself can cause partial CD4+ T-cell depletion in the 
face of normal T-cell replenishment. Further, the model demonstrates 
that the loss of T cells can take place on a time scale of years, as is 
characteristic of the disease process in most HIV-infected individuals. 

We considered two forms of the model. In the first, s, the rate of 
T-cell production from precursors, is constant. In this case we find that 
T-cell depletion begins between 3 and 6 years after infection and occurs 
over a period of l-3 years depending on the value of N, the number of 
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new virions produced by an infected CD4+ T cell (Figures 2 and 3). 
However, the number of latently infected cells grows to unrealistically 
high levels, where over 10% of the T cells are infected. Partially 
because the number of latently infected cells is so large, the depletion 
of total CD4’ T cells is not as dramatic as is seen in patients. The total 
number of T cells decreases from 1000 mme3 to 830 mmp3 when 
N = 1400 (Figure 3). Modifying the model so that s decreases with 
increasing viral burden, mimicking the effects of infection of T-cell 
precursors, we obtain dynamics more reminiscent of clinical data. The 
onset of T-cell depletion is again delayed a few years from initial 
infection, but the depletion is now more gradual, taking between 3 and 
5 years depending on the value of N (Figure 11). Further, the depletion 
drives the T-cell count substantially lower, with N diminishing from 
1400 to approximately 550 mmp3 (Figure 11). More important, this 
depletion is accomplished with between 1 in a 100 and 1 in 1000 T cells 
latently infected and 1 in lo4 cells actively infected, precisely the 
numbers seen in AIDS patients [55]. Thus, with infection of CD4+ T 
cells as well as precursors, using what we consider to be reasonable 
parameter values, we obtain realistic kinetics and realistic levels of 
T-cell infection. However, we find that the T-cell level can be depleted 
only to a count of approximately 500 mm-j, not to the < 200 mmm3 
level seen in many AIDS patients. 

Modifications of the model that include more realistic assumptions 
about the biology of HIV may correct this deficiency. By increasing N 
(Figure 5) or k, (not shown), more depletion can be obtained, but the 
rate of depletion becomes unrealistically rapid. This suggests, for exam- 
ple, that if N increases with time, rather than being constant, one may 
be able to attain more realistic levels of depletion on the correct time 
scale. Preliminary simulations (not shown) confirm this. A switch from 
slowly to rapidly replicating strains of virus, which is observed as 
HIV-infected patients progress from latent to active AIDS, would 
correspond to an increase in N with time. (Also, a decline in the 
potential to generate an immune response to HIV as the disease 
progresses would in some respects correspond to an increase in the 
effective value of N.) An increase in k, with time would correspond to 
the establishment of a more infectious mutant strain. 

One of the interesting predictions of our model is that N, the 
number of infectious viral particles produced per actively infected T 
cell, needs to be above some critical level, Ncrit, for successful HIV 
infection. If N < Ncrit, then the level of free virus will monotonically 
decrease and ultimately be eliminated. This decrease is due to the fact 
that virus binds and infects cells. If infected cells die without producing 
a sufficient number of viral progeny, the infection will not be sustained. 
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In this respect our model is similar to a classical epidemiological model 
in which infected individuals must infect at least a critical number of 
other individuals for an epidemic to occur [25]. As in epidemiological 
models, such as the Lajmanovich and Yorke [32] model for gonorrhea, 
we find that our model has two steady states, an uninfected steady state 
in which there is no virus present and no infected T cells, and an 
endemically infected steady state in which both virus and infected T 
cells are stably maintained. Because there is depletion in both the 
number of uninfected T cells and total number of T cells, we expect that 
immune function would be compromised in the endemically infected 
state and clinical symptoms of AIDS would appear. This is in agreement 
with the Walter Reed classification scheme for determining the stage of 
disease based on the CD4+ T cell cell count in the blood. 

Experimental evidence supports our prediction of a critical value for 
N. Virus isolated from patients has been characterized as being 
“rapid/high” or “slow/low” [15, 451, where rapid/high indicates that 
the virus replicates rapidly in culture and shows a high level of reverse 
transcriptase activity. Slow/low virus exhibit low levels of reverse tran- 
scriptase activity and grows slowly. Fenyij et al. [15] find that some 
slow/low viruses could not be grown in activated peripheral blood 
mononuclear cells of normal donors. This lack of successful transmis- 
sion did not seem to be dependent on the amount of virus introduced 
into the culture, as increasing the amount of infectious virus in the 
initial inoculum 50-fold had no effect. This lack of successful growth 
and the phenomenon’s independence from the initial viral population 
size, V,, is precisely what our model predicts for viral strains with 
N < Ncrit. Further, as one would predict from our model, there is a 
correlation between the replication potential of a virus and the clinical 
condition of the patient from whom the virus originated. Thus, viruses 
isolated from patients with severe immunodeficiency tend to be 
rapid/high, whereas virus isolated from HIV-infected individuals with 
no or mild clinical symptoms tend to be slow/low [5, 6, 151. In general 
agreement with these results, Tersmette et al. [59] found a significant 
correlation between the mean replication rate of viral isolates obtained 
from an individual and the rate of CD4+ cell decrease observed in this 
individual. In individuals with low-replicating strains, no significant 
CD4+ cell loss was observed, whereas recovery of high-replicating 
isolates was associated with rapid decline in CD4+ cell numbers and 
development of ARC or AIDS. Our current model considers only a 
single virus population. Clearly, to do a better job of modeling the 
differences between slow/low and rapid/high strains and the possible 
transitions between phenotype by mutation requires a model with 
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multiple HIV populations. Recent work by Nowak et al. [48] and Nowak 
and May [47] points in this direction. 

From the model presented in this paper we conclude that HIV 
cytopathicity is a major factor in producing many of the quantitative 
features of HIV infection. Our model shows that HIV cytopathicity of 
both peripheral CD4+ T cells and their precursors gives rise to T-cell 
depletion, that it can account for the long latency from infection to 
symptomatic disease, and that it can account for the low levels of 
infected T cells seen in seropositive patients. However, infection and 
direct T-cell killing by a single viral strain, as depicted in our model, is 
probably not the only factor involved in T-cell depletion. Changes in 
cytopathicity (i.e., increases in N or k, or a decrease in F,,) due to the 
rapid mutation of HIV probably also contribute to the observed phe- 
nomenology. Further, the killing of uninfected T cells by other mecha- 
nisms, such as syncytium formation or autoimmune reactions, is not 
ruled out by our model. However, our results show that such mecha- 
nisms need not play a major role to get the observed quantitative 
phenomenology. 
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