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Abstract
During development, spatio-temporal patterns ranging from checkerboard to engulf-
ing occur with precise proportions of the respective cell fates. Key developmental
regulators are intracellular transcriptional interactions and intercellular signaling. We
present an analytically tractable mathematical model based on signaling that reliably
generates different cell type patterns with specified proportions. Employing statisti-
cal mechanics, We derived a cell fate decision model for two cell types. A detailed
steady state analysis on the resulting dynamical system yielded necessary conditions
to generate spatially heterogeneous patterns. This allows the cell type proportions to
be controlled by a single model parameter. Cell–cell communication is realized by
local and global signaling mechanisms. These result in different cell type patterns. A
nearest neighbor signal yields checkerboard patterns. Increasing the signal dispersion,
cell fate clusters and an engulfing pattern can be generated. Altogether, the presented
model allows us to reliably generate heterogeneous cell type patterns of different kinds
as well as desired proportions.
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1 Introduction

Cell fate decisions play an essential role in establishing cellular function during devel-
opment. In this process, previously indeterminate cells specify themselves into one of
several different cell types. In many cases, there is a strong correlation between gene
expression patterns and subsequent cell fate. Therefore, it is necessary to understand
the dynamics of different genes to unravel the secrets of differentiation.

One prime example of this differentiation process is the differentiation towards
neural and epidermal cells in Drosophila. Characteristically, epidermal cell progeni-
tors express high levels of transmembrane protein Notch, whereas neural progenitors
express low levels of the same (Heitzler and Simpson 1991; Sternberg 1993). A similar
example is found in the inner cell mass (ICM) of the preimplantation mouse embryo.
There, the transcription factors (TFs) NANOG and GATA6 have been identified as the
earliest markers for the segregation of the ICM into epiblast and primitive endoderm
cells, respectively (Mitsui et al. 2003; Schrode et al. 2014). Apart from the spatial cell
fate distribution, the correct cell fate ratio is also of particular interest (Saiz et al. 2016,
2020; Schröter et al. 2015).

In mathematical models, cell fate decisions are often described by systems of
ordinary differential equations (ODE) based on a gene regulatory network (GRN)
(reviewed in Torii 2012). At the single cell level, toggle switches as models of inter-
actions of two genes have been investigated in great detail. These represent mutual
inhibition of two proteins (Cherry and Adler 2000), which in some cases are combined
with auto-activation (Huang et al. 2007). As a result, three stable steady states arise
with regard to gene expression that represent the different cell fates. It depends on the
initial conditionswhich state a cell will be attracted to. At the tissue level, experimental
studies hint towards the importance of paracrine signals with regards to differentiation
(Nichols et al. 2009; Yamanaka et al. 2010).

Lateral interaction models have already found their way into the current research
landscape. For the Delta-Notch signaling pathway, patterns of alternating cell types
have been reconstructed (Collier et al. 1996). For the mouse embryo, models includ-
ing cell–cell communication due to fibroblast growth factor signaling have been
employed to create similar salt-and-pepper/checkerboard patterns (Bessonnard et al.
2014; Tosenberger et al. 2017). So far, these studies are concerned with an averaged
nearest neighbor signal, i.e. cells do not communicate beyond their nearest neighbor.
Further studies suggest that in fact cell fate patterning in the mouse embryo is the
result of a complex interplay of cell signaling, cell division, cell sorting and apoptosis
(Morris et al. 2010a, b; Nissen et al. 2017).

Mathematical modeling allows untangling the individual components and inves-
tigating their pattern formation potential. It was previously shown that cell division
alone yields cell fate clusters (Liebisch et al. 2020). Simulations of cells sorting due
to differential adhesion have been shown to generate engulfing patterns (Revell et al.
2019). This resembles the result of the minimization of the total contact energy (Emily
and François 2007). Here, we focus on the potential of intercellular signaling. In addi-
tion to nearest neighbor signaling, we consider signaling that can reach further across
a tissue. This builds upon previous ideas for Drosophila (Chen et al. 2014; Cohen
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Fig. 1 Illustration of the GRN
considered in this study. Inside
the cell, U and V inhibit each
other. In addition to that, they
activate themselves. The signal
S is a factor that is influenced by
the other cells in the tissue. It
inhibits U and activates V

U V

S

Inhibition

Activation

et al. 2010; de Joussineau et al. 2003) as well as the mouse embryo (Raina et al. 2021;
Stanoev et al. 2021).

Based on methods from statistical mechanics (Bintu et al. 2005a, b; Garcia et al.
2011), we derived a model describing the temporal development of the expressions of
two genes. A generalized signal incorporates external influences on cell fate decisions.
Performing a detailed stability analysis of the ODE system, we obtained necessary
conditions in the form of a parameter interval to always generate a mixture of two
different cell types in a tissue. Numerical simulations for an averaged nearest neigh-
bor signal as well as a distance-based signal demonstrate the potential of our model to
establish different spatial cell fate patterns ranging from checkerboard via clustering
to engulfing patterns. To quantify the different resulting patterns, we employed indi-
vidualized pair correlation functions (PCFs). A cell type proportion analysis revealed
which proportions our model can create, but also which restrictions there are. Our
work introduces an easy to control mathematical model for gene expression and our
analysis results provide insight into signaling driven pattern formation and cell type
proportioning.

2 Protein interactionmodel

One of the aims of this study is to numerically simulate cell differentiation influenced
by cell–cell communication. The cells will be fixed on an irregular grid regulating their
concentration of key TFs internally, while also being influenced by surrounding cells.
In this section, we will go through the details of transcriptional regulation based on a
simple and generalized model. This will be followed by the derivation of TF binding
probabilities based on the methods from Bintu et al. (2005a), Bintu et al. (2005b) and
Garcia et al. (2011) which allow us to describe transcriptional regulation on the level
of the DNA. Finally, this will be applied to a simple system of two different TFsU and
V together with an external signal S describing the cell–cell communication. To this
end, we consider a GRN characterized by the mutual inhibition of U and V , as well
as their auto-activation and the signal S activating V and inhibiting U (Fig. 1). We
consider this to be a general GRN for the cell fate decisions between two cell types,
resembling similar GRNs from Huang et al. (2007) or Stanoev et al. (2021).
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2.1 Gene regulation

To describe the dynamical system underlying transcriptional regulation, we consider
two basic assumptions:

1. Transcription determines the production of new protein.
2. Decay describes the lifetime of the protein.

These assumptions are translated into a generic ODE describing the nondimensional-
ized concentration u = u(t) of the protein U over time:

du

dt
= ru pu − γuu. (1)

The second term is the exponential decay with decay rate γu . The first term describes
the rate of transcription of the corresponding gene. Here, pu denotes the probability
that RNA polymerase (RNAP) is bound to the promoter of the gene that is associated
with U . The production rate ru describes how much protein can be produced while
RNAP is bound.

2.2 Binding probability

Following (Bintu et al. 2005a, b; Garcia et al. 2011), we consider the different binding
events of a GRN. However, we assume that the auto-activatory part ofU is dominant,
such that the base activity of the RNA polymerase will be neglected. This means that
the production of U mainly depends on its binding close to its own promoter. Now
the system can be in two different states. EitherU is bound or it is not. First we count
the number of possibilities how these states might arise. We divide our space into �

different lattice sites, thenU and u are related viaU = u�. The binomial coefficients
yield the number of possible states

Number of unbound states:
�!

U !(� −U )! (2)

Number of bound states:
�!

(U − 1)!(� −U + 1)! (3)

Assuming different energies whether a protein is unbound εunboundu or bound εboundu ,
the two states have total energies

εunbound = Uεunboundu , (4)

εbound = (U − 1)εunboundu + εboundu . (5)

Using Boltzmann statistics, the energy of the two states enables us to describe the
probability that the system is in either of these states via e−βεunbound and e−βεbound . The
partition function is given by the sum of all possible Boltzmann weights over every
microstate, i.e.
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Ztotal =
∑

microstates

e−βεmicrostate (6)

= �!
U !(� −U )!e

−βεunbound + �!
(U − 1)!(� −U + 1)!e

−βεbound (7)

= Zunbound + Zbound . (8)

Using the partition function, we are able to calculate the binding probability pu by the
ratio of bound states Zbound and all states combined Zunbound + Zbound as

pu = Zbound

Zunbound + Zbound
. (9)

Assuming � � U , we use the approximation �!
(�−U )! ≈ �U . We divide the

numerator and denominator of (9) by Zunbound and define the energy difference
�εu := β(εboundu − εunboundu ) to obtain

pu = Zbound/Zunbound

1 + Zbound/Zunbound
=

U
�
e−�εu

1 + U
�
e−�εu

. (10)

For simplicity, we introduce the energy coefficient ηu := e−�εu and use u = U/� to
get again the volume fractions. This leads to

pu = ηuu

1 + ηuu
. (11)

With Eq. (11) we have presented a binding probability solely based on the assumption
that there is a difference between bound and unbound states. In general, TF-DNA
interactions are much more complex and involve further effects like TF diffusion
along the genome (Gerland et al. 2002). In our simplified model however, we only
need statistical weights, e.g. ηu , which manipulate the likelihood of binding events.
The terms “binding energy” and “energy difference” we use throughout this study
should therefore be regarded with caution.

2.3 Interactions

The crucial parts in transcriptional regulation are the interactions between constituents.
In the following, we consider that an additional species V interacts with the promoter
associated with U . This results in a system, with the following microstates: The
binding energy differences remain as beforewith an additional factor for the interaction
ηuv = e−�εuv . The binding probabilities for U and V are then given by

pu = ηuu + ηuηvηuvuv

1 + ηuu + ηvv + ηuηvηuvuv
. (12)
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Binding event Number of states

U unbound �!
U !V !(�!−U−V )!

V unbound

U bound �!
(U−1)!V !(�!−U−V+1)!

V unbound

U unbound �!
U !(V−1)!(�!−U−V+1)!

V bound

U bound �!
(U−1)!(V−1)!(�!−U−V+2)!

V bound

The advantage or disadvantage given by the interaction energy difference now deter-
mines the nature of the interaction. For ηuv = 1, (12) can be simplified using
factorization to obtain

pu = ηuu + ηuηvuv

1 + ηuu + ηvv + ηuηvuv
= ηuu(1 + ηvv)

(1 + ηuu)(1 + ηvv)
= ηuu

1 + ηuu
. (13)

The binding probability reduces to the case without interaction. Consequently, the
cases where ηuv �= 1 describe binding probabilities that are either lower or higher
than the case with no interaction, hence

• ηuv = 0 ⇔ �εuv = ∞: complete inhibition/blocking
• ηuv < 1 ⇔ �εuv > 0: inhibition
• ηuv = 1 ⇔ �εuv = 0: no interaction
• ηuv > 1 ⇔ �εuv < 0: activation.

Case ηuv = 0 was listed separately, because it represents a special case of inhibition
in which U and V cannot be bound at the same time. To improve readability, we use
only lowercase letters in the following to denote both the concentrations in terms of
ODEs and the actual proteins in the case of binding.

2.4 Describing the cell fate decision between two fates

We imagine a system, where two antagonistic proteins u and v are the deciding factors
for the decision of a cell’s fate. Both u and v are assumed to be dominantly auto-
activating, such that the base activity of the RNAP can be neglected. Additionally, they
will be influenced by an external signal s. Following the derivations from Sects. 2.2
to 2.3, this leads to a generalized binding probability for u

pu = ηuu + ηuηvηuvuv + ηuηsηusus + ηuηvηsηuvsuvs

1 + ηuu + ηvv + ηuηvηuvuv + ηuηsηusus + ηvηsηvsvs + ηuηvηsηuvsuvs
(14)

Interchanging the letters u and v in (14) yields the binding probability pv . As before,
each summand describes a different binding event, using their individual coefficients
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ηu , ηv , and ηs but also the interaction coefficients ηuv , ηus and ηvs . Since we have
three constituents u, v and s, we incorporate the possibility that all three of them are
bound with interaction coefficient ηuvs .

We simplify Eq. (14) by putting it into biological context. We already mentioned
the antagonistic nature of our proteins, i.e. u and v mutually inhibit each other. We use
a blocking type of inhibition such that the promoter associated with u is not active as
soon as v is bound in the vicinity of u’s promoter and vice-versa. We can also interpret
this as u not being able to bind, if v is already bound, mathematically expressed via
ηuv = 0. Finally, the external signal s influences u and v in different ways. It activates
v by cooperatively binding with v, i.e. ηvs ≥ 1. At the same time, u is inhibited by s
and the cooperative binding of u and s leading to ηus = 0 and ηuvs = 0. We assume
that for both promoters, the respective energy coefficients are equal. Summarizing the
above, we obtain

ηuv = ηus = ηuvs = 0, ηvs ≥ 1 ⇐⇒ −�εvs > 0. (15)

Using (15) in (14), we obtain the binding probability for u

pu = ηuu

1 + ηvv(1 + ηsηvss) + ηuu + ηss
. (16)

Analogously, we can use the same approach for the binding probability of v to find

pv = ηvv(1 + ηsηvss)

1 + ηvv(1 + ηsηvss) + ηuu + ηss
. (17)

With the expressions for (16) and (17), we can finally get back to the base model for
transcriptional regulation (1). So far, we have described the transcriptional regulation
of a single cell. However, by extending the system to N different cells, we can also
describe a tissue of identically functioning cells. Combined, this leads to the following
system of ODEs

dui
dt

= ru
ηuui

1 + ηvvi (1 + ηsηvssi ) + ηuui + ηssi
− γuui

dvi

dt
= rv

ηvvi (1 + ηsηvssi )

1 + ηvvi (1 + ηsηvssi ) + ηuui + ηssi
− γvvi , i = 1, ..., N .

(18)

We note that so far, we have very little assumptions on the signal s. However, it should
be noted that the signal is meant to be provided by the surrounding cells in the tissue.
This means that the absorbed signals of each cell si are provisionally considered as a
generalized function of the expression values of all cells such that

s : RN × R
N → R

N : (u, v) �→ s(u, v). (19)

Thus, Eq. (18) present a coupled system of ODEs.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



54 Page 8 of 29 S. Schardt, S. C. Fischer

3 Steady state analysis

3.1 Existence of steady states

In order to get a better understanding of our ODE system, we want to delve further
into the resulting steady states of the system. This means, we consider

dui
dt

= 0 = dvi

dt
.

Consequently, we get

ηuui
1 + ηuvi (1 + ηsηvssi ) + ηuui + ηssi

= γu

ru
ui , (20)

ηvvi (1 + ηsηvssi )

1 + ηvvi (1 + ηsηvssi ) + ηuui + ηssi
= γv

rv
vi . (21)

When rearranging (20) and (21), we find two possible solutions for ui and vi , respec-
tively. These solutions are

ui =
{
0
ru
γu

− 1+ηvvi (1+ηsηvs si )+ηs si
ηu

and vi =
{
0
rv
γv

− 1+ηuui+ηs si
ηv(1+ηsηvs si )

. (22)

The steady states of our ODE system have to fulfill (20) and (21) together. Thus, we
look at every possibly combinations of pairs ui and vi from (22) to obtain four different
steady states. For three of the steady states, we can get either no expression of u and
v or high expression of one TF and none for the other:

ui = 0, vi = 0 (23)

ui = ru
γu

− 1 + ηssi
ηu

, vi = 0 (24)

ui = 0, vi = rv
γv

− 1 + ηssi
ηv(1 + ηsηvssi )

. (25)

These steady states share the lower bound 0. Additionally, a rough estimate for an
upper bound is given by the ratios of reproduction and decay ru/γu and rv/γv . For
parameter combinations such that

ru
γu

� 1

ηu
,

rv
γv

� 1

ηv

+ ηs

ηv

si , (26)

the left hand sides of the inequalities provide a reliable estimate for the steady state
values.

The fourth steady state is an oddity that arises by combining the non-zero solutions
for ui and vi from (22). When combined, the corresponding variables ui and vi cancel
out and we find the relation
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(a) si = 0 (b) si = s∗ (c) si = 2s∗

Fig. 2 Streamline phase portraits of ODE system (18) for a single cell and three different values for si .
Arrows show the path from the initial condition towards the respective steady states. States (24) and (25)
are visualized as a single red dot, whereas the infinite steady states resulting from (28) are depicted as a red
line

ηv(1 + ηsηvssi ) = ηu
ruγv

rvγu
. (27)

This also leaves our system to be over-determined and the values of ui and vi cannot
further be identified. However, by using (27) in the steady state solution vi �= 0 in
(22), we obtain the following state:

ui + ruγv

rvγu
vi = ru

γu
− 1 + ηssi

ηu
. (28)

Isolating si in Eq. (27) leads to a critical signal value

s∗ = ruγvηu − rvγuηv

rvγuηvηsηvs
, (29)

for which this steady state will always occur. This critical signal value s∗ contains all
of the model parameters and resembles a difference of the statistical weights ηu and
ηv normalized by the remaining model parameters. Furthermore, s∗ is responsible for
a switching behavior in our system (Fig. 2). For values below or above s∗, a cell ends
up in states (24) (u+v−) and (25) (u−v+), respectively. At exactly s∗, u and v move
towards the straight line defined by (28) with no unique steady state. Altogether, we
have successfully identified the relevant steady states (23)–(25) of our ODE system
(18) as well as the condition to force a switch in the cell’s fate.

3.2 Linear stability analysis

In the following sections, we investigate the steady states in further detail. We employ
linear stability analysis to determine the parameter regime that allows us to find a
desired steady state for the overall system. At the single cell level, we rule out (23),
since it is not relevant to cell fate specification. At the tissue level, we distinguish
between homogeneous and heterogeneous steady states. A homogeneous equilibrium
state consists of cells of a single type only. This means that either all of the cells in
the tissue are in state (24) (u+v−) or all of them are in state (25) (u−v+). Throughout
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this study, we aim for states of the tissue where two different cell types co-occur, i.e.
heterogeneous equilibrium states. Therefore, we aim at excluding the homogeneous
steady states. We follow the definition of linear stability for an ODE system

dxi
dt

= f (x), i = 1, ..., N .

We say, an ODE system is linearly stable in x∗, if its linearization matrix LODE =
f ′(x∗) has only eigenvalues with negative real part. Using the N -dimensional identity
matrix IN , we can write the linearization matrix of (18) as

LODE =
(
ru Auu − γu IN ru Auv

rvAuv rvAvv − γu IN

)
, (30)

Using the chain rule, the block matrices Axy , x, y ∈ {u, v} can be written in terms of
the partial derivatives

Auu = ∂ pu
∂u

+ ∂ pu
∂s

∂s

∂u
, Auv = ∂ pu

∂v
+ ∂ pu

∂s

∂s

∂v
, (31)

Avu = ∂ pv

∂u
+ ∂ pv

∂s

∂s

∂u
, Avv = ∂ pv

∂v
+ ∂ pv

∂s

∂s

∂v
, (32)

where we define ∂ pu
∂u :=

(
∂ pu
∂u j ,

(ui , vi , si )
)

i, j=1,...,N
. The other block matrices are

defined analogously. For our purposes, we only need to focus on the following deriva-
tives

∂

∂u j
pu(ui , vi , si ) =

{
ηu(1+ηvvi (1+ηsηvs si )+ηs s)

(1+ηvvi (1+ηsηvs si )+ηuui+ηs si )2
, if i = j

0, if i �= j
(33)

∂

∂v j
pu(ui , vi , si ) =

{
− ηvηuui (1+ηsηvs si )

(1+ηvvi (1+ηsηvs si )+ηuui+ηs si )2
, if i = j

0, if i �= j
(34)

∂

∂u j
pv(ui , vi , si ) =

{
− ηvηuvi (1+ηsηvs si )

(1+ηvvi (1+ηsηvs si )+ηuui+ηs si )2
, if i = j

0, if i �= j
(35)

∂

∂v j
pv(ui , vi , si ) =

{
− ηv(1+ηsηvs si )(1+ηuui+ηs si )

(1+ηvvi (1+ηsηvs si )+ηuui+ηs si )2
, if i = j

0, if i �= j
(36)

∂

∂si
pu(ui , vi , si ) = − ηuηsui (1 + ηvηvsvi )

(1 + ηvvi (1 + ηsηvssi ) + ηuui + ηssi )2
(37)

∂

∂si
pv(ui , vi , si ) = ηvηsvi (ηvs + ηuηvsui − 1)

(1 + ηvvi (1 + ηsηvssi ) + ηuui + ηssi )2
. (38)

As usual, the eigenvalues of matrix LODE are defined as the roots of the characteristic
polynomial

χ(λ) = det(LODE − λI2N ), (39)
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where I2N denotes the identity matrix in 2N dimensions. At first glance, this deter-
minant seems impossible to calculate. However, when inserting the respective steady
states, we are able to reduce the matrix tremendously.

3.3 Excluding steady state (23)

In the following, we elaborate on how to exclude the first steady state (23) as stable
solution for our ODE system (18).Without loss of generality, we assume u1 = 0 = v1.

This way, in row N + 1 all entries but one of the matrix LODE − λI2N become 0.
The remaining entry with index (N + 1, N + 1) is

rv
∂

∂v1
pv(0, 0, s1) − γv − λ = rvηv

1 + ηsηvss1
1 + ηss1

− γv − λ. (40)

Laplace expansion then enables us to write the determinant of the whole matrix as a
product of (40) and the determinant of the remaining submatrix. Thus, it suffices to
focus on the first eigenvalue given by

rvηv

1 + ηsηvss1
1 + ηss1

− γv − λ
!= 0.

This translates to the eigenvalue λ being

λ = rvηv

1 + ηsηvss1
1 + ηss1

− γv.

Now, λ > 0 yields

ηv >
γv

rv

1 + ηss1
1 + ηsηvss1

.

Although the signal thus far has not been further specified, we propose a realistic
physical representation by assuming si ≥ 0. Furthermore, we consider an activation
of v by the signal s, i.e. ηvs > 1 and therefore, inequality

ηv >
γv

rv
(41)

and consequently

− �εv > ln

(
γv

rv

)
(42)

provide the necessary condition for instability. The exclusion of this steady state
strengthens our focus on (24) and (25), which represent the two different cell types
u+v− and u−v+, respectively.
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3.4 Instability of tissue-wide homogeneous steady state (24)

With steady states (24) and (25), we aim to find a parameter region for which we
achieve a heterogeneous steady state, i.e. we get a tissue with a mixture of cells in the
two states. To this end, we derive conditions for instability of the homogeneous steady
state. We start with state (24) and set ui = ru

γu
− 1+ηs si

ηu
and vi = 0 for all i . Inserting

these expressions into the derivatives (33)–(38) results in a simplification of LODE .
Since (35) and (38) are zero for every i, j , the off-diagonal block matrix Avu = 0.
This means the determinant is given by the product of the determinants of the block
matrices on the diagonal. Again, since (38) is zero, Avv becomes a diagonal matrix
with diagonal entries

(Avv)i = ηv(1 + ηsηvssi )

1 + ηuui + ηssi
, i = 1, ..., N . (43)

Inserting ui yields

(Avv)i = γu

ru

ηv

ηu
(1 + ηsηvssi ), i = 1, ..., N . (44)

Using this, we determine N factors of the characteristic polynomial

χ(λ) = det (ru Auu − (γu + λ)IN ) det (rvAvv − (γv + λ)IN ) (45)

= det (ru Auu − (γu + λ)IN )

[
N∏

i=1

γu
rvηv

ruηu
(1 + ηsηvssi ) − γv − λ

]
(46)

and N eigenvalues are given by the second factor in (46). For instability, it is sufficient
that only one of these is greater than zero. In other words, this results in the inequality

γu
rvηv

ruηu
(1 + ηsηvssi ) > γv.

After appropriate rearranging, we obtain

ηu < ηv

rvγu
ruγv

(1 + ηsηvs max
i

si ) (47)

as a sufficient condition for our parameters. At this point, the general case cannot be
simplified further. Depending on the cell–cell interaction and therefore the incoming
signal si , one can find an even more accurate description of this relation. Alternatively,
we can formulate this condition in terms of energy differences as
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− �εu < −�εv + ln

(
1 + e−�εs−�εvs max

i
si

)
+ ln

(
rvγv

ruγv

)
, (48)

which allows us to see the maximum allowed deviation of the difference between�εu
and�εv . Keep inmind that for this condition, we only relied on the first N eigenvalues.
In truth, this condition might be even more relaxed than what we derived.

3.5 Instability of tissue-wide homogeneous steady state (25)

We set ui = 0 and vi = rv
γv

− 1+ηs si
ηv(1+ηsηvs si )

. Using the same approach as before, we

find that (34) and (37) are zero for all i, j and thus Auv = 0. In addition to that, we
get a diagonal matrix for Auu . For ui = 0, its diagonal entries are

(Auu)i = ηu

1 + ηvvi (1 + ηsηvssi ) + ηssi
, i = 1, ..., N . (49)

Inserting vi yields

(Auu)i = γv

rv

ηu

ηv

1

1 + ηsηvssi
, i = 1, ..., N . (50)

As before, this allows us to determine N factors of the characteristic polynomial

χ(λ) = det (ru Auu − (γu + λ)IN ) det (rvAvv − (γv + λ)IN ) (51)

=
[

N∏

i=1

γv

ru
rv

ηu

ηv

1

1 + ηsηvssi
− γu − λ

]
det (rvAvv − (γv + λ)IN ) . (52)

We exploit again the instability condition that any eigenvalue must be positive and
find the inequality

ηu >
rvγu
ruγv

ηv(1 + ηsηvssi ). (53)

This yields another condition for ηu . As before, it is necessary to fulfill this inequality
for a single value si , i.e. the minimum of all possible signal values suffices in that
regard. Hence, we get

ηu >
rvγu
ruγv

ηv(1 + ηsηvs min
i

si ). (54)
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u−v−

u+v− u−v+

(41)

−Δ
ε v

(54) (47)

−Δεu

Fig. 3 Illustration of the different steady states at the single cell level (left) and the tissue level (right). The
states we are aiming for are highlighted with higher opacity. Nodes and their corresponding number on the
axes reference the relevant equation for the transition from one state to another

Again, we write this in terms of energy differences

− �εu > −�εv + ln

(
1 + e−�εs−�εvs min

i
si

)
+ ln

(
rvγu
ruγv

)
. (55)

3.6 Steady state summary

The stability conditions (48) and (55) define an interval

�εmin < −�εu < �εmax (56)

with

�εmin := −�εv + ln

(
1 + e−�εs−�εvs min

i
si

)
+ ln

(
rvγu
ruγv

)
, (57)

�εmax := −�εv + ln

(
1 + e−�εs−�εvs max

i
si

)
+ ln

(
rvγu
ruγv

)
. (58)

The reproduction rates ru, rv and decay rates γu, γv shift this interval by ln
(
ruγv

rvγu

)
.

The length of the interval is determined by the minimum and maximum signal values
combined with the associated energy differences −�εs and −�εvs . The results of
our stability analysis are summarized in Fig. 3. At the single cell level, we are able
to exclude u−v− cells using inequality (42). Therefore, at the tissue level, we can
distinguish between three different states. The stability interval (56) yields the exact
parameter regime for the transition of the homogeneous states to the heterogeneous
ones. These elegant lower and upper bounds for −�εu incorporate every parameter
in our ODE system (18). Finally, we know that the lower bound in (56) is associated
with the homogeneous u−v+ state, whereas the upper bound is associated with the
homogeneous u+v− state. Therefore, we expect a monotonous increase in the number
of u+v− cells as the energy difference −�εu increases.
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(a) Tissue (b) Cell graph

Fig. 4 Visualization of a tissue with 177 cells (a) and its corresponding cell graph (b). Black lines represent
the cell membranes. The cell centroids are shown as black dots in both pictures. Red lines represent the
edges, which provide information about which cells are in contact with each other (color figure online)

4 Tissue organization

4.1 Cell graph

Cells are represented by two-dimensional points in space with a fixed radius which
is equal for all cells. The Delaunay cell graph provides a reliable indication of the
neighborhood relationships of the cells (Schmitz et al. 2017). Therefore, we initialize
our graph G using the Delaunay triangulation. If the Euclidean distance between two
cells exceeds the sum of their two radii, then the edge is removed from G, i.e. only
cells in direct contact with each other are connected via an edge in G (Fig. 4). Edge
weights are collectively set to 1.We then define the cell distance di j as the length of the
shortest path between cells i and j . In this work, we chose to perform the simulations
on a two-dimensional tissue for easier visualisation. However, the same approach has
already been successfully applied in three spatial dimensions (Dirk et al. 2022).

4.2 Pair correlation function

Cell differentiation patterns in our case are the result of two different cell types arising
in a tissue. Patterns with the same condition have already been quantified using pair
correlation functions (PCFs) (Binder and Simpson 2013).We use a similar approach to
quantify our patterns with a PCF depending on the cell distances di j . The PCF relates
the number of cell pairs of equal type to the random chance of picking two cells of
equal type. Thus, it enables us to find accumulations of cell types at given distances
towards each other. This requires counting different types of cell pairings for certain
distances. In order to describe the PCF mathematically, we first introduce various
sets. The set Sk describes all the cell pairs (i, j) found at a distance di j . Similarly, Suk
denotes the set of all u+v− cell pairs with distance k. Analogously, Sv

k is defined for
u−v+ cell pairs. Finally, the two sets T u and T v contain all u+v− cells and u−v+
cells respectively. In mathematical notation, we write

Sk =
{
(i, j) ∈ N

2 : di j = k, 1 ≤ i, j ≤ N
}

, (59)
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Suk = {
(i, j) ∈ Sk : i and j are u+v− cells

}
, (60)

Sv
k = {

(i, j) ∈ Sk : i and j are u−v+ cells
}
, (61)

T u = {
i ∈ N : i is u+v− cell 1 ≤ i ≤ N

}
, (62)

T v = {
i ∈ N : i is u−v+ cell 1 ≤ i ≤ N

}
. (63)

In the next step, we want to find the proportions of the number of equal pairings by
looking at the ratio of cell pairs of equal type and pair of any type. We denote the
cardinality, i.e. the number of elements, of a set S by |S|. Thus, we calculate the
proportions ruu(k) of u+v− pairs at distance k as well as the proportions rvv(k) of
u−v+ pairs at distance k via

ruu(k) = |Suk |
|Sk | and rvv(k) = |Sv

k |
|Sk | . (64)

The goal is to relate these proportions with the probability of randomly picking two
cells of equal type. For this, we need the total number of u+v− cells T u and u−v+
cells T v . The chance of picking one u+v− cell is |T u |. If one has already been picked,
then the remaining chance of picking a second one becomes (|T u | − 1)/(N − 1). In
total, we can write the probability of randomly selecting two u+v− cells or two u−v+
cells as

puu = |T u |(|T u | − 1)

N (N − 1)
and pvv = |T v|(|T v| − 1)

N (N − 1)
. (65)

Combined, the PCFs measure the ratios of u+v− or u−v+ cell pairs within every
possible distance normalized by the probability of finding these cell pairs, i.e.

ρu(k) = ruu(k)

puu
= |Suk |N (N − 1)

|Sk ||T u |(|T u | − 1)
, (66)

ρv(k) = rvv(k)

pvv

= |Sv
k |N (N − 1)

|Sk ||T v|(|T v| − 1)
. (67)

For a uniformly distributed amount of u+v− or u−v+ cells, the correlation function
returns a value close to 1 for every cell distance k. Consequently, deviations from 1
yield information about how much more or fewer equal cell pairs are found in certain
ranges.

5 Numerical results

In this section, we present the numerical solutions of (18). The explicit Euler method
is used to solve the ODE until a steady state is reached. We consider two different
types of signaling. Paracrine signals that exhibit low diffusivity can be described by
a nearest neighbor signal. For larger diffusivities, the signal disperses throughout the
tissue such that its intensity decreases with the distance traveled.
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5.1 Nearest neighbor signaling

5.1.1 Signal construction

A signal that is secreted by one cell and diffuses slowly throughout the tissue will
likely end up only affecting neighboring cells. Similar to Bessonnard et al. (2014),
Stanoev et al. (2021), we investigate a signal that gets activated by u and depends on
the neighboring cells. However, rather than investigating a time resolved signal, we
consider it only as an instantaneous response such that

si = 1

|NG(i)|
∑

j∈NG (i)

u j . (68)

Here, we used the notation NG(i) from graph theory to denote the neighbors of vertex
i in the graph G. We can also write the whole signal in terms of an adjacency matrix.
For (68), this matrix is

A = (Ai, j )i, j=1,...,M , with Ai, j =
{

1
|NG (i)| if j ∈ NG(i)

0 if j /∈ NG(i)
. (69)

The signal can ultimately be written as s = Au. From the steady state (24) we know
ui = 0 for some of the cells in a heterogeneous tissue. Therefore, the minimum of the
signal will also be 0. The non-zero steady state has a rough upper bound, hence

ui = ru
γu

− 1 + ηssi
ηu

<
ru
γu

. (70)

Therefore, the maximum signal also obeys

max
i

si = max
i

⎛

⎝ 1

|NG(i)|
∑

j∈NG (i)

u j

⎞

⎠ <
1

|NG(i)|
∑

j∈NG (i)

ru
γu

= ru
γu

. (71)

Using parameter combinations, such that

ru
γu

� 1 + ηs
ru
γu

ηu
, (72)

transforms the upper bound into a proper estimate of the signal values, such that we
can conclude

min
i

si = 0 and max
i

si ≈ ru
γu

. (73)

Hence, the stability interval can be approximated by
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(a)
−Δεu = 7

|Tu| : |T v| = 1 : 2
(b)

−Δεu = 7.32

|Tu| : |T v| = 81 : 96
(c)

−Δεu = 7.6

|Tu| : |T v| = 2 : 1

Fig. 5 Checkerboard pattern for three different ratios of u+v− and u−v+ cells. The coloring uses the cell’s
expression levels for v. High v expressions are colored in magenta, low v expressions (high u) in cyan
(color figure online)

− �εv + ln

(
rvγu
ruγv

)
< −�εu < −�εv + ln

(
1 + e−�εs−�εvs

ru
γu

)
+ ln

(
rvγu
ruγv

)
.

(74)

5.1.2 Pattern formation

Models of cell differentiation characterized by lateral inhibition tend to form an
approximate checkerboard pattern of cells (Collier et al. 1996) with a trend towards
alternating cell types wherever possible. In fact, the term “lateral inhibition” comes
from the fact that cells of a primary cell fate prevent cells in the environment from
adopting the same fate. Despite the name, the signal between neighboring cells in Col-
lier et al. (1996) is activating rather than inhibiting. Our model differs by the inclusion
of mutual inhibition and auto-activation. Thus, the goal in this section is to show that
our model is still capable of forming checkerboard patterns. The parameter values and
initial conditions used in any of the following simulations can be found in Table S2.
The remaining energy difference −�εu is varied based on (56) to influence the cell
type ratio. In the resulting cell fate pattern, u+v− cells mostly avoid other u+v− cells
in their neighborhood as much as the given proportion enables them to do so (Fig. 5,
see Fig. S1 for temporal evolution). Increasing −�εu increases the proportions of
u+v− cells throughout the tissue. This results in more and more u+v− cells with
neighbors of equal type. Increasing the proportions even further leads to the opposite
effect of u−v+ cells trying to avoid being neighbored to cells of the same type. In
total, both cell types try to avoid cells of equal type in their neighborhood as much as
the proportions and the geometry of the tissue allows. In a regular 8×8 grid with, this
would resemble a checkerboard. Hence, the term checkerboard pattern.

5.1.3 Cell type proportions

In some biological systems, it might be crucial to generate cell types in precise pro-
portions like in the mouse embryo (Saiz et al. 2016, 2020). Hence, we are interested
in exploring the capabilities of the model to create certain proportions. The range
of possible cell type proportions can be found in the stability interval (56). For the
parameter combinations chosen in this study, we get
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Fig. 6 Simulated cell type
proportions for 20 equidistant
values of −�εu spanning over
the stability interval (56). Cell
proportions for u+v− are
colored in cyan, u−v+ in
magenta

1 + ηs
ru
γu

ηu
≤ 0.0043 � 0.1 = ru

γu
. (75)

Hence, our approximation for the stability interval (74) is valid and yields the following
parameter restrictions for the heterogeneous steady states:

ηu ∈ (403.43, 2606.08) ⇐⇒ −�εu ∈ (6, 7.87). (76)

The various cell type proportions (Fig. 6) were simulated by dividing the bounding
interval (76) into 20 equidistant values for−�εu . The simulation results underline the
result of the stability analysis. At the left and right boundaries, we achieve homogene-
ity. In between, increasing −�εu yields a monotonous transition from only u−v+ to
only u+v− cells. The boundary regions suggest that proportions with about 73% of
one cell type and 27% of the other are the maximum and minimum cell proportions
achievable before reaching homogeneity. An analytical analysis of the relation of the
cell type proportions and the parameter −�εu reveals why these jumps occur. Focus-
ing again on a single cell in the tissue, we already identified the tipping point of the
cell’s fate via Eq. (29). Deviating from s = s∗ to s > s∗ will increase the binding
probability for v, tipping its fate towards u−v+. Analogously, s < s∗ will lead to
u+v−. By definition, si is the mean of a cells neighboring u j values. Assuming the
neighbors to be in steady state and using the steady state approximation ui ≈ ru/γu ,
the signal can be written as a fraction

si = li
|NG(i)|

ru
γu

, li ∈ {0, ..., |NG(i)|}, (77)

where li denotes the number of u+v− cells adjacent to cell i . From this, we can
determine the maximum number of u+v− cells in a neighborhood for the cell to still
adopt the fate u+v−. Therefore, we replace si with s∗ and solve the equation for li to
find

li = |NG(i)|γv

rv

ηu − ηv

ηvηsηvs
. (78)
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Since we are looking for a natural number, the final result is

lmax :=
⌊
|NG(i)|γv

rv

ηu − ηv

ηvηsηvs

⌋
. (79)

Here, �x� describes the floor function, i.e. the nearest lower integer of a number x .
Small differences between energy coefficients ηu = ηv + δ with δ > 0 being small,
will lead to lmax = 0. Therefore, a single u+v− cell will have no neighbor of equal
type. At the same time, cells without any received signal, i.e. si = 0 will adopt u+v−
fate (Fig. 2). In conclusion, a cell surrounded only by u−v+ cells will adopt u+v−
fate, whereas a cell with a single u+v− in its neighborhood has to adopt u−v+ fate. On
an ideal hexagonal grid, i.e. each cell has exactly six neighbors, an ideal arrangement
would amount to 1/3 of the cells being u+v−. This estimate nearly fits the simulated
proportion jumps of 27% at both ends. An exact number cannot be determined, as
the number of neighbors varies from cell to cell with an average of 5.5 ± 1000000
neighbors. Further increases of ηu only lead to discrete increases of lmax, explaining
the different jumps in cell type proportions.

5.2 Distance-based signaling

5.2.1 Signal construction

Motivated by recent studies of long ranging paracrine signaling (Fiorentino and Scial-
done 2022; Stanoev et al. 2021) we investigate the effect of a distance-based signaling
on the pattern formation and cell type proportion. Depending on how a signal disperses
in space, not only directly neighboring cells can have an impact on a cell’s fate. It is
possible, that the collective effect of cells that are further away might also influence
its fate decision. Again, the secreted signal of a cell is activated by ui . We define the
received signal si as the weighted sum of secreted signals over all other cells and
obtain

si =
⎛

⎝
∑

j �=i

s j q
di j−1

⎞

⎠
/ ⎛

⎝max
k

∑

j �=k

qdkj−1

⎞

⎠ , q ∈ [0, 1]. (80)

Here, we use the distances di j from our cell graph. The weights qdi j−1 define the
fraction of the signal that gets transported from cell to cell. Let e.g. q = 0.1, then
second nearest neighbors of a cell receive only 10%of the signal of the direct neighbors
(Fig. 7). The denominator in (80) is used for normalization. It describes the weights of
the cell that gets the highest possible signalingweights. In a perfectly arranged circular
tissue, this would be the cell right in its center due to the mean of cell distances di j
being lower. The dispersion parameter q enables us to describe the transition from a
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u v

s

q signal influence

0.1 90% 9% 1% 0% 0% 0%

0.5 51% 25% 13% 6% 3% 2%

0.9 21% 19% 17% 16% 15% 13%

Fig. 7 Illustration of the GRN represented by our model as well as a representative example of the signaling
in a one-dimensional cell line. Inside the cell, u and v mutually inhibit each other. Additionally, v gets
activated by an extracellular signal, whereas u is inhibited by the same. The signal received by the first cell
on the left of the line is the sum of all cell–cell communication between one cell and any other cell in the
system. The table highlights how much each cell contributes to the received signal for different dispersions
q ∈ {0.1, 0.5, 0.9}. Percentages are rounded to the nearest integer

direct neighbor signal to an equally dispersed signal. For q = 0, the weights become

qdi j−1 = 0di j−1 =
{
1, for di j = 1

0, for di j > 1
. (81)

Hence, the weights for all cells that are not directly in contact with the respective cell
are 0 and we obtain a mechanism similar to the local signal (68). Alternatively, q = 1
yields

qdi j−1 = 1di j−1 = 1. (82)

This describes the case of every cell having the same impact on other cells independent
of the distance between them. In summary, there is a continuous transition from a next
neighbor signal at q = 0, through a distance-based global signal for q ∈ [0, 1], to an
evenly distributed signal at q = 1. In matrix representation we get

A = (Ai, j )i, j=1,...,M with Ai, j =
{
aqdi j−1 if i �= j

0 if i = j
(83)

and the normalization factor

a =
⎛

⎝max
k

∑

l �=k

qdkl−1

⎞

⎠
−1

. (84)
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For the estimation of the stability interval, we again use the upper bound ui < ru/γu ,
such that

si <
ru
γu

⎛

⎝
∑

j �=i

qdi j−1

⎞

⎠
/ ⎛

⎝max
k

∑

j �=k

qdkj−1

⎞

⎠ (85)

≤ ru
γu

⎛

⎝max
k

∑

j �=k

qdkj−1

⎞

⎠
/ ⎛

⎝max
k

∑

j �=k

qdkj−1

⎞

⎠ = ru
γu

. (86)

At this point, we realize that the estimation follows the exact same procedure as before,
leading to (74). It should bementioned, that the choice of (80) is not based on a physical
foundation, but is simply a mathematical construct that could be easily unified with
the result of the stability analysis but still allows to investigate the concept of different
signaling ranges.

5.2.2 Pattern formation

We want to investigate the effect of the distance-based signal on the formation of
the patterns. Therefore, we showcase nine simulation results of organoids with dif-
ferent cell type proportions and different signal dispersions (Fig. 8 and Fig. S2-S4).
The patterns generated for q = 0.1 can mostly be considered of the checkerboard
type. In contrast to the averaged nearest neighbor signal, the signal in this case is not
averaged over the number of neighbors. Cells at the boundary typically have three to
four neighboring cells, whereas cells in the bulk area have a mean of six neighbors.
Therefore, cells at the boundary will potentially not be able to get the same amount of
signal as cells in the bulk area. Such boundary effects are representative of fixed size
systems such as embryoid bodies or organoids. Furthermore, they are likely to occur
at tissue-tissue or tissue-cavity interfaces within developing embryos.

The received signal however, is the deciding factor with regard to the cell fate
decision in our model. The low amounts of signal received at the boundary make them
more likely to adopt the u+v− fate. As q increases, we see a higher accumulation
of u+v− cells near the boundary with a slight clustering behavior in the bulk. For
q = 0.9, the signal disperses strongly enough to generate an engulfing pattern, where
u−v+ cells are completely surrounded by u+v− cells. Varying the proportions of u+v−
cells via −�εu has a different effect based on the signal dispersion q. For low q and
increasing u+v− proportions, we find a ring of u+v− cells engulfing the remaining
checkerboard pattern. For medium to large q this effect is more strongly pronounce
with the formation of several layers of u+v− cells engulfing the tissue.

The pattern formation with respect to q can be quantified using the PCFs for both
u+v− and u−v+ cells (Fig. 9). For comparison, we used a bisection on the stability
interval to find values for −�εu that lead to a ratio of 89 : 88 u+v− and u−v+
cells for every single q. We discover that an increase in q leads to a decrease of
ρv for large distances, i.e. less and less pairs of u−v+ cells pairing in the boundary
regions. Simultaneously, it increases for small distances due to the cells accumulating
in the center. For ρu , we see a slight increase for large q for small distances and a

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Adjusting the range of cell–cell communication enables fin… Page 23 of 29 54

−Δεu

q

0.1

0.5

0.9

6.5 7 7.5

Fig. 8 Different patterns generated by the model on a tissue geometry with 177 cells. Colors depict the
values of vi in steady state. High values of vi correspond to low values in ui and vice-versa, i.e. cyan and
magenta represent u+v− and u−v+ cells, respectively. From left to right, −�εu increases. From bottom
to top, the dispersion q increases (color figure online)

tremendous one for large distances for all q. The slight increase at small distances
comes from the fact that the u+v− cells arrange in layers at the boundary. The values
for intermediate distances slightly decrease as the corresponding regions becomemore
and more devoid of u−v+ pairs. In conclusion, a distance-based signal according to
(80) generates patterns ranging from checkerboard to engulfing by increasing the
dispersion parameter q. Additionally, the PCFs capture the characteristics of these
patterns, making it a powerful tool for pattern identification and comparison.

5.2.3 Cell type proportion

For different dispersion parameter values q, the proportions of u−v+ show a
monotonous decrease with increasing energy difference −�εu (Fig. 10). For low val-
ues of q, the proportions show some similarities to the local model due to individual
larger jumps (Fig. 10a). These jumps become less pronounced for medium (Fig. 10b)
and high dispersions (Fig. 10c). Altogether, we have established full control over the
cell type proportions.
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Fig. 9 PCFs for u+v− cells (left) and u−v+ cells (right) for different dispersion parameters q. Any PCF
represents a tissue with a ratio of u+v−:u−v+ = 88 : 89. The dashed black line at 1 resembles the PCF
values of an ideal uniform distribution of two different cell types. If values lie above 1, this means there are
more pairs found at that distance. Consequently, values below 1 resemble fewer pairs

(a) q = 0.1 (b) q = 0.5 (c) q = 0.9

Fig. 10 Simulated cell type proportions with respect to −�εu . Simulations were performed by dividing
the stability interval for −�εu into 20 equidistant values. Dispersion parameter q increases from (a) to (c)
resulting in different scenarios

6 Discussion

In this study, we have derived and analyzed a model that allows us to generate cell
differentiation patterns based on a system of mutual inhibition of two TFs, auto-
activation and cell–cell communication. The model was thoroughly analyzed and
simulated patterns were characterized.

6.1 Derivation of themodel from statistical mechanics

Statistical mechanics has already proven its usefulness in biological model systems
like ion channel opening and closing as well as oxygen hemoglobin binding (Garcia
et al. 2011). These ideas have further been investigated for transcriptional regulation
and were successfully applied for a wide variety of examples (Bintu et al. 2005a, b).
To our knowledge, cell fate decision models have not been combined with statistical
mechanics to date. We derived a specific model based on two mutually inhibiting
TFs u and v with auto-activation and an external signal inhibiting u and activating
v. Assuming that auto-activation is the dominant factor in transcriptional regulation,
we assume that RNA polymerase binding corresponds to the binding of u and v,
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respectively. Based on this, we were able to derive binding probabilities of RNA
polymerase to the respective promoter. A system of ordinary differential equations
was generated by combining these probabilities with constant production rates and
exponential decay. As long as the auto-activation remains unchanged, minor changes
in the GRN such as the removal of either the signal activation or the signal inhibition
can still be managed by adjusting the equations accordingly.

6.2 Analysis of themodel allows accurate determination of the stability of
heterogeneous steady states

On the single cell level, we identified that the received signal determines the fate of a
cell. There is a critical value of this signal, such that the cell will adopt u−v+ fate if this
value is undercut, or u+v− fate if the value is exceeded. This leads to the signal being
the relevant factor of the switching behavior in this system. This describes a different
point of view compared to systems that utilize differences in initial conditions to
generate a cell fate switch (Cherry and Adler 2000; Huang et al. 2007). At the same
time, models that incorporate a signal dependency, have not yet been analyzed in such
great detail (Bessonnard et al. 2014; Stanoev et al. 2021;Tosenberger et al. 2017). Exact
expressions for all possible steady states were derived. A stability analysis enabled
us to identify parameter values, such that only the states corresponding to u+v− and
u−v+ fates are stable. Thus, we were able to limit the system to these two cell fates.
On the level of multiple cells, we found analytical expressions of parameter bounds
guaranteeing heterogeneous steady states. This means that within these bounds the
pattern created by the system will always be a mixture of two different cell types. In
conclusion,we have provided the necessary analytical tools to guarantee the generation
of heterogeneous patterns of two different cell types.

6.3 Averaged nearest neighbor signaling leads to checkerboard patterns

In some biological systems, cell communication is hypothesized to be limited to direct
neighbors. An example for this is the lateral inhibition of Delta and Notch in epithelial
tissue of Drosophila, which has been studied in great detail (Collier et al. 1996). A
different example is found in the preimplantation development of the mouse embryo,
where TFsNANOGandGATA6decide the fate of cells in the inner cellmass. Different
computational studies have investigated the effects of activation by an external signal
in this biological system (Bessonnard et al. 2014; Mot et al. 2016; Tosenberger et al.
2017). A great common feature in all of these systems is the formation of checkerboard
patterns, i.e. patterns in which cells of one type minimize the number of equal neigh-
bors. Fittingly, we also found this type of pattern in our simulations using an averaged
nearest neighbor signaling. We took this one step further and analyzed the possible
cell type proportions one can create using this model. An analytical expression for
the maximum number of equal cell types in a cell’s neighborhood tells us that the cell
type proportions are highly linked to the average number of neighboring cells in the
system. In our 2D simulations cell type proportions below 30% and above 70% are
not possible.
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6.4 Distance-based signaling enables a range of patterns from checkerboard to
engulfing

In addition to the nearest neighbor signal, we investigated the effects of a signal that is
capable of being dispersed throughout the tissue. This global cell–cell communication
enables a range of patterns. From two cell types in a checkerboard like arrangement to
one cell type engulfing the other depending on the signal dispersion. The introduced
dispersion parameter q allows us to artificially vary between a signal that only reaches
the neighboring cells and a signal that spreads evenly in the tissue. Simulations have
shown that for low signal dispersion u+v− and u−v+ cells tend to avoid being adjacent
to the same cell type, hencewe again recovered the checkerboard pattern. Furthermore,
when increasing the signal dispersion, u+v− cells accumulate more at the boundary
such that overall larger clusters of equal cell types are formed. High signal dispersion
leads to an ideal segregation of cells with u+v− engulfing u−v+ cells. Engulfing
patterns are often believed to be the result of differential adhesion of two cell types.
Indeed, it has already been demonstrated that the minimization of the energy as a
function of differential adhesion leads to this type of engulfing (Emily and François
2007). Not only have we found an alternative way to generate these patterns, but at the
same time we were able to unify the formation of both checkerboard and engulfing
patterns under the notion of differently dispersing signals.

6.5 Biological examples for the different patterns

The lateral inhibition principle exemplified by the Notch-Delta signalling pathway
leads to alternating fates between neighboring cells. At the multicellular level, this
results in a checkerboard pattern. Different systems show patterns of longer spatial
scales of local clusters such as the developingmouse neural tissue (Hawley et al. 2022)
or in vitro stem cell differentiation in embryoid bodies (White et al. 2013) and ICM
organoids. Completely engulfing patterns have been observed as transient patterns in
differentiating embryoid bodies (White et al. 2013) and ICM organoids that have been
cultured for a sufficiently long time (Mathew et al. 2019). Partly engulfing patterns
arise in different embryos including mammalian, e.g. mouse or human (Płusa and
Piliszek 2020), and fish, e.g. zebrafish (Gilbert 2014). The relevance of our model
results to these different systems has to be evaluated based on careful comparison of
the arising patterns and underlying GRNs.

6.6 Conclusion

We have provided a new model to describe transcriptional regulation for a system
of mutually exclusive TFs. Furthermore, the model was analyzed in great detail with
respect to parameters and stability. The model was extended by signaling mechanisms
describing the cell–cell communication. The local and global signaling obey a simple
mathematical rule depending on the number of cells it has to travel across in order
to reach its destination. A detailed description of the signaling transport mechanism,
possibly including diffusion and advection mechanisms, provides room for further
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research. Additionally, signal production and uptake of cells play a crucial role in
how effective different means of signal transport might be. Another perspective can
be achieved by incorporating cell growth and cell division into the model and analyz-
ing their effect on the resulting patterns. With this in mind, our study paves the way
for numerous subsequent studies regarding signal-based pattern formation in devel-
opmental systems.
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