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Phase Diagram for the Winfree Model of Coupled Nonlinear Oscillators
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In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crick-
ets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here
we give the first bifurcation analysis of the model, for a tractable special case. The system displays
rich collective dynamics as a function of the coupling strength and the spread of natural frequencies.
Besides incoherence, frequency locking, and oscillator death, there exist hybrid solutions that combine
two or more of these states. We present the phase diagram and derive several of the stability boundaries
analytically.

DOI: 10.1103/PhysRevLett.86.4278 PACS numbers: 05.45.Xt, 87.10.+e
The collective behavior of limit-cycle oscillators was
first investigated by Winfree [1]. Using a mean-field model
of coupled phase oscillators with distributed natural fre-
quencies, he discovered that collective synchronization is
a threshold phenomenon, the temporal analog of a phase
transition. Specifically, when the strength of the coupling
exceeds a critical value, some oscillators spontaneously
synchronize to a common frequency, overcoming the dis-
order in their natural frequencies. The model was sub-
sequently refined by Kuramoto [2] and others [3,4], with
applications to Josephson junction arrays [5], neutrino fla-
vor oscillations [6], Brownian ratchets [7], bubbly fluids
[8], semiconductor laser arrays [9], and Landau damping of
plasmas [10]. Despite all the activity that Winfree’s work
ultimately provoked, surprisingly little is known about the
dynamics of his original model. The problem is that his
model has been difficult to analyze mathematically, at least
in its most general form.

In this Letter, we identify a special case of the model
which can be solved exactly. This version of the model
is also related to recent work on pulse-coupled oscillators
(where the oscillators interact by firing sudden impulses),
a case of interest in neurobiology [11]. However, our
motivation is more mathematical than biological. The goal
is to understand the collective behavior and bifurcations of
the model as a function of two parameters, the coupling
strength and the spread of natural frequencies.

In the limit of weak coupling and nearly identical
frequencies, our system reduces to the Kuramoto model,
whose behavior is well understood [2–4]: it displays
locked, partially locked, or incoherent states, depending
on the choice of parameters. Away from this familiar
regime, we find several hybrid states corresponding to
various mixtures of locking, incoherence, and oscillator
death (a cessation of oscillation caused by excessively
strong coupling [12]).

The Winfree model is
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for i � 1, . . . , N , where N ¿ 1. Here ui�t� is the phase of
the ith oscillator at time t, k $ 0 is the coupling strength,
and the frequencies vi are sampled from a symmetric uni-
modal probability density g�v�. We assume that the mean
of g�v� equals 1, by a suitable rescaling of time, and that
its width is characterized by a parameter g. The jth oscil-
lator makes its presence felt through an influence function
P�uj�. In turn, the ith oscillator responds to the mean field
(the average influence of the whole population) according
to a sensitivity function R�ui�.

From now on we consider the special case where

P�u� � 1 1 cosu, R�u� � 2 sinu . (2)

Note that this P�u� is a smooth but pulselike function. (At
the end of this paper we consider a much more sharply
peaked P�u�; then u � 0 represents the phase when the
oscillator suddenly fires.) The specific form of R�u� is
chosen for its mathematical tractability. It is also con-
sistent with the qualitative shape of the phase-response
curve of some biological oscillators. For instance, the
flashing rhythm of the firefly Pteroptyx cribellata [13] and
the circadian rhythm of eclosion for Drosophila [14] show
roughly sinusoidal resetting when subjected to weak light
pulses [15]. With these choices, Eq. (1) becomes an ide-
alized model for a population of pulse-coupled biologi-
cal oscillators. The unusual aspect is that the coupling is
through the phase-response curve [16], so that an oscil-
lator can be either advanced or delayed by a pulse from
another oscillator, depending on its phase when it receives
the stimulus. This differs from the strictly excitatory or
inhibitory coupling often used in integrate-and-fire models
of neural oscillators.

We begin by describing our numerical simulations.
Equation (1) was integrated numerically using N � 800
oscillators. The frequencies vi were chosen to be evenly
spaced in the interval I � �1 2 g, 1 1 g�, corresponding
to a uniform density g�v� � 1�2g for v [ I , and
g�v� � 0 otherwise. The long-term behavior of the
system was always found to be independent of the initial
conditions.
© 2001 The American Physical Society
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To compare the long-term dynamics of individual
oscillators, we compute the average frequency (also
known as the rotation number) of each oscillator, ri �
limt!`ui�t��t. In our simulations, the limit was typically
well approximated by integrating the system for 500 time
units, starting from a random initial condition, although
longer runs were sometimes necessary. The rotation
numbers provide a useful measure of synchronization:
two or more oscillators are frequency locked if they have
the same rotation number.

Figure 1 plots ri as a function of vi for increasing val-
ues of g, at a fixed k. For small g, all the oscillators
are locked [Fig. 1(a)]. They can be visualized as a pack
of particles rotating at the same average rate around the
unit circle, where ui�t� denotes the angular position of the
ith oscillator. As g is increased past a critical threshold,
the coupling is no longer sufficient to keep all oscillators
mutually entrained. Just above threshold, the system stays
partially locked, with the fastest oscillators peeling away
from the pack, but drifting incoherently relative to one an-
other [Fig. 1(b)]. With further increases in g, successively
more oscillators peel away until eventually the entire popu-
lation is incoherent [Fig. 1(c)]. For sufficiently large g, the
system converges to a state of partial death in which the
slowest oscillators stop moving altogether, while the faster
ones remain incoherent [Fig. 1(d)].

Partial locking and partial death are hybrid states.
The two distinct branches in their rotation number plots
[Figs. 1(b) and 1(d)] correspond to qualitatively different
dynamics. We have also observed hybrid states with
three and four branches [Fig. 2]. These more complicated
states should all be regarded as variants of partial locking,
since there is at least one branch of locked oscillators in
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FIG. 1. Collective states, as indicated by rotation numbers, for
k � 0.65. Equation (1) with P�u�, R�u� as in (2) was integrated
for 500 time units starting from a random initial condition.
(a) g � 0.1: locking. (b) g � 0.205: partial locking. (c) g �
0.3: incoherence. (d) g � 0.6: partial death.
each case. (Note that all these states are near each other
in parameter space.) We label them according to their
branches, as follows.

Locked-slipping-locked [Fig. 2(a)].—There are two
separate plateaus of locked oscillators, at close to 2:1 fre-
quency ratio in the example shown, separated by a branch
of slipping oscillators. A slipping oscillator typically co-
rotates with a locked group for several periods, then slips
away for a few cycles before eventually rejoining the same
group and repeating the pattern. Oscillators slip more or
less frequently depending on their native frequency vi .

Slipping-locked-incoherent [Fig. 2(b)].—There is a
central group of locked oscillators, flanked by slower ones
that slip and faster ones that drift monotonically.

Quivering-slipping-locked-incoherent [Fig. 2(c)].—
This state exists near partial death. It is similar to the state
in Fig. 2(b), but with an added mode of behavior: the
slowest oscillators quiver about their nearby death phases.
An oscillator that quivers has zero rotation number —it
remains trapped in the neighborhood of a single phase
for all time— and hence is effectively dead, although not
completely motionless. Figure 3 summarizes the system’s
long-term behavior as a function of k and g.
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FIG. 2. Partially locked hybrid states. (a) g � 0.19,
k � 0.78: locked-slipping-locked. (b) g � 0.21, k � 0.76:
slipping-locked-incoherent. (c) g � 0.205, k � 0.79: quivering-
slipping-locked-incoherent.
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FIG. 3. Phase diagram for Eqs. (1) and (2), assuming a uni-
form distribution of natural frequencies on �1 2 g, 1 1 g�. The
boundary between locking and partial locking is determined nu-
merically; all other boundaries are determined analytically. All
of the partially locked hybrid states are lumped together in one
region, for simplicity.

We now outline our analytical calculations of the bound-
aries of the regions corresponding to incoherence, partial
death, and death. Following the standard approach used for
the Kuramoto model [2–4], we rewrite the dynamics in the
infinite-N limit. For each frequency v, let p�u, t, v� de-
note the density of oscillators at phase u at time t, and let
y�u, t, v� denote the local velocity field. Then p satisfies
the continuity equation ≠p�≠t � 2≠�py��≠u, expressing
conservation of oscillators of frequency v. The velocity
y is determined by applying the law of large numbers to
Eq. (1); the sum over all oscillators in (1) is replaced by an
integral as N ! `, yielding y�u, t, v� � v 2 s�t� sinu,
where

s�t� � k
Z 2p

0

Z 11g

12g
�1 1 cosu�p�u, t, v�g�v� dv du .

(3)

Additionally, we demand that p be nonnegative,
2p-periodic in u, and we impose the normalizationR2p

0 p�u, t, v� du � 1 for all t, v.
The key to the analysis is recognizing that incoherence,

partial death, and death correspond to stationary densities
p0�u, v� in the infinite-N limit. Hence, one may solve
for all three states by seeking fixed points of the con-
tinuity equation; these satisfy p0y0 � C�v�, with C�v�
determined by normalization. Depending on its natural
frequency, an oscillator’s steady-state behavior falls into
one of two categories. (i) v # s: In this case, y0 �
v 2 s sinu � 0. The oscillators of a given frequency
v # s all remain stuck at a single phase u��v�, defined
implicitly by sinu� � v�s. Their density is p0�u, v� �
d�u 2 u��v��. Such oscillators are motionless, or dead.
(ii) v . s: These oscillators rotate nonuniformly around
the circle, hesitating near u � p�2 and accelerating near
4280
u � 3p�2, as dictated by their velocity field y0 � v 2

s sinu . 0. Although individual oscillators are moving,
their number density is stationary. The fixed point condi-
tion implies that the density is inversely proportional to the
velocity:

p0�u, v� �
C�v�

v 2 s sinu
. (4)

Normalization then determines C�v� �
p

v2 2 s2�
�2p�. From these two basic scenarios, we are able to
calculate the incoherence, partial death, and death bounda-
ries as follows.

Incoherence exists provided v . s for all v; then all
oscillators belong to category (ii) above. The boundary
separating incoherence and partial death occurs when s �
vmin, where vmin � 1 2 g. The first oscillators to die
are the slowest ones. To solve for s, we substitute (4) into
Eq. (3); this yields s � k. Thus, partial death bifurcates
from incoherence along the straight line

k � 1 2 g , (5)

assuming k is not so large that the system is in the death
region. Remarkably, this result holds for any frequency
distribution g�v�, whether symmetric or not.

The stability of the incoherent state is determined by
linearizing the continuity equation about the incoherent
density (4). The resulting linear operator has a continuous
spectrum that is pure imaginary and a discrete spectrum
that is governed by the equation [17]

k �
Z 11g

12g

lv�v 2
p

v2 2 k2 �
l2 1 v2 2 k2 g�v� dv . (6)

From (6), it is clear there are no eigenvalues l with
Re�l� , 0; if there were, the right-hand side would have
negative real part, contradicting the assumption k $ 0.
Thus, incoherence is either unstable or neutrally stable.
Numerics indicate that the boundary between incoherence
and partial locking corresponds to a Hopf bifurcation. To
obtain the boundary, we solve Eq. (6) for l perturbatively,
assuming g ø 1, and then take the limit Re�l� ! 01.
The result for a uniform g�v� is

k �
8g

p

∑
1 1

16g2

p2 1
16�p2 1 80�g4

p4

∏
1 O�g7� .

(7)

This formula agrees with numerical simulations to within
4% for k # 0.6. In the limit g ! 0, Eq. (7) reduces to
k � 8g�p , which is the critical coupling threshold for the
averaged system (the Kuramoto model, with coupling K �
k�2). Hence, Eq. (7) can be viewed as an extension of
the classical threshold condition [1,2] into the nonaveraged
regime of stronger coupling and frequency disorder.

Finally, to calculate the death boundary we use a self-
consistency argument familiar from mean-field theory [2].
In the death state, each oscillator comes to rest at u��v�,
defined by the zero velocity condition sinu� � v�s. This
requires s $ vmax, where vmax � 1 1 g. Each phase
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FIG. 4. Phase diagram for (1) with R�u� as in (2), P�u� �
an�1 1 cosu�n, n � 10, and a uniform frequency distribution
on �1 2 g, 1 1 g�. Death boundary determined analytically;
all other boundaries determined numerically.

u��v� depends on s, which in turn depends on all phases
via Eq. (3); therefore, s must be determined self-
consistently. For each v, there are two possible roots
u��v�: one in �0, p�2�, the other in �p�2, p�. The unique
stable fixed point of Eq. (1) satisfies 0 # u��v� # p�2
for all v. Putting the corresponding density p0�u, v� �
d�u 2 u��v�� into Eq. (3) gives the self-consistency
condition

s

k
� 1 1

Z 11g

12g

s
1 2

µ
v

s

∂2

g�v� dv . (8)

In order for death to exist, there must be a root s $ 1 1 g

of Eq. (8). The boundary between death and partial death
corresponds to an end point bifurcation, and is found by
setting s � 1 1 g in (8). For a uniform g�v� this yields
the exact expression

1
k

�
1

4g

∑
2 1

p

2
2 D�2 1

p
1 2 D2 � 2 sin21D

∏
,

(9)

where D � �1 2 g���1 1 g�. The remaining portion
of the boundary, separating death from full and partial
locking, corresponds to a saddle-node bifurcation. It is
obtained by solving Eq. (8) numerically, along with the
tangency condition 1�k � F0�s�, where F�s� is the
right-hand side of Eq. (8).

To test the robustness of the phase diagram, we re-
placed P�u� in (2) with a family of influence functions
Pn�u� � an�1 1 cosu�n, n $ 1 which becomes more and
more sharply peaked as n increases. [The normaliza-
tion coefficients an are determined by requiring Pn�u�
to have integral equal to 2p over one cycle. Note that
Pn�u� ! 2pd�u� as n ! `.] We find that all of the
phenomena observed for the model studied in this paper
(n � 1) persist as we increase n. The only difference is
that the boundaries become slightly distorted [Fig. 4].

The mean-field model (1) is one of the simplest models
of pulse-coupled oscillators. More realistic models would
incorporate features such as spatial coupling, time delay,
dynamical synapses, refractory period, non-sinusoidal in-
fluence and sensitivity functions, etc. It remains to be seen
whether such models would exhibit additional states be-
yond those found here. In any case, we now know that
even the most idealized version of the Winfree model dis-
plays a fascinating wealth of dynamics that, curiously, es-
caped notice for over thirty years.
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