
Université Lyon 1 | Departement Biologie |
Systems Biology September 2, 2024

Dynamical Models in Systems Biology
Instructor(s): Samuel Bernard bernard@math.univ-lyon1.fr
link to the latest version: http://math.univ-lyon1.fr/homes-www/bernard/teach/systems_biology/dm.pdf

1 What is a dynamical model?

A dynamical model is a mathematical or computer model where the variables, or
quantities of interest, vary in time. They usually do so according to a causal mech-
anism, i.e. the values of the variables at a given time depend on their values in the
past.
Perhaps the simplest dynamical models are difference equations

difference
equations

dynamical variable︷︸︸︷
xt+1 =

update rule︷ ︸︸ ︷
f(xt) .

Time is discrete, and the causal mechanism is clear: xt+1 is a function of xt. For
example, the famous logistic map is

xt+1 =

growth rate︷︸︸︷
r xt

limiting factor︷ ︸︸ ︷
(1− xt) .

The variable x is the size of the population of a certain species, expressed as a frac-
tion of a maximal size. The logistic equation was used to show how the size of a
population can follow a complex dynamics in absence of environmental fluctuations
(May, 1976). A small populations grows with a multiplication factor r (factor rx).
When it gets larger, the growth is impeded by the factor 1−x, which could represent
competition for resources. We will see later how such a simple equation can lead to
complex dynamics.
The most important class of dynamical models are ordinary differential equations

ordinary
differential
equations

(ODEs). The time t varies continuously, and the causal mechanism f(x(t)) describes
how variables x(t) should vary (this is the derivative on the left-hand side) as a
function of their current state:

rate of change︷︸︸︷
dx

dt
=

rule of change︷︸︸︷
f(x) .

1

The state variable x is a function of time, x(t), but it is usual to drop the explicit
state variabledependence on time to highlight the fact that changes in the system depend on the

state variable rather than time. Many physical laws can be formulated is such a way,
and big parts of biology also have their laws, which we express asmotifs. The Lotka-

motifsVolterra model was developed to study predator-prey interaction. The mechanism is
reminiscent of the logistic equation. The prey density y grows at a constant rate by,
and is harvested by the predator at a rate proportional to the predator density xy,
while the predator density grows at the harvest rate and dies at a constant rate ax.
The equation can be expressed as

dx

dt
=

harvest term︷︸︸︷
yx −

death rate︷︸︸︷
a x, x : predator density,

dy

dt
=

growth rate︷︸︸︷
b y −

harvest term︷︸︸︷
xy , y : prey density.

The term dx/dt denotes the derivative of x with respect to time. The derivative is
the rate or the speed at which the variable changes. Difference equations and ODEs
may have analytic, or closed form solutions, but these are the exception, not the
rule. These solutions, when we can find them, are not as useful as one might think;
they are often opaque and do not provide additional insight into the behavior of the
model.
Exercise 1 Units
What kind of physical units can x, y, a and b have? Are the equations consistent in
terms of units?
In general, dynamical models include constantmodel parameters, that do not vary
with time. Parameters are important because they can affect the behavior of the
solution, and they often have biological significance. Estimating parameter values
given a model and experimental data is the subject of the session Inferring model
parameters.
Rather than looking for analytical solutions, we will use a combination of computer
simulations and stability analysis to characterize the behavior of the dynamical mod-
els. R codes necessary to simulate the logistic equation and the Lotka-Volterra model
are available on the [Systems Biology Class webpage].
Other dynamical modeling formalisms include delay differential equations, stochas-

delay
differential
equations

tic processes, partial differential equations, individual-based models. These are

stochastic
processes

partial
differential
equations

individual-
based
models

out of scope of this introduction to dynamical models.
Why is it important in systems biology? Dynamic models provide mechanisms, and
mechanisms provide understanding, which provide ground for validating results.

2

2 How to use dynamical models?

Here is a modelling-centric workflow for using dynamical models. Each step may,
and will, fail; this is normal. Then go back to previous step and start over.
• What biological question do I want to model?
Two favorite questions of mine are: Can we reproduce these strange looking
data with a very simple model (sufficient mechanism), and what are the condi-
tions for my treatment to work (necessary mechanisms). These questions are
best studied with dynamical models because they relate to mechanisms. When
the mechanism is well understood, we can try to estimate model parameters.

• What would be the appropriate model for it?
Choose the variables
The choice mostly depend on the availability of experimental data and the
question asked.
Select the mechanisms
Here the devil is in the details. Which of the known mechanism should we
include? Here there is no fixed method, but everybody would agree that given
twomodels with similar solution, the simplest model should be favored. This is
the Occam’s razor, or parsimony principle. By simple, wemean few parameters,
dynamical variables and nonlinear terms (in that order).

• What type of data do I need?
Are data available, or should I collect new data?

• Find an existing model, or develop a new one
Translating the mechanisms into equations has many pitfalls. Ambiguous lan-
guage or imprecise wording makes it difficult to define equations uniquely.
Once interpreted, the mechanism must satisfy physical and biological con-
straints, which may be easily overlooked.

• Get an intuition of the behavior of the model
Very important step. How should the solution look like? This step is useful to
detect any error in the equations or in the numerical implementation of the
model (they are not the same! See below).

• Implement the model and run simulations to confirm intuition
The numerical implementation of the model is not the same as the equations.
Furthermore the equations might not represent well the mechanisms.

• Compare to experimental data
Before any attempt to fit the model to experimental data, it is important to
look whether the model reproduces the important features of the data. Only
then fitting the model makes sense.

• Perform analysis of the model
Models can reproduce experimental data very well for some sets of parameters,
but may be fragile in the sense that small change of parameters can lead to
vastly different dynamical behavior. This can be a weakness when the system
is expected to be robust, but may also provide testable predictions: can the
different behaviors be observed experimentally?

• Answer the questionOnce themodel is validated and the parameters are known,

3

do not forget to answer the initial question!
• Find a new question

3 Modeling with motifs

Unlike chemical and physical systems, biological systems are not easy to reduce to
simple parts. Whether we look at the gene expression, protein interaction, cell fate,
metabolism, tissue or organ physiology, in vivo systems are complex and interrelated.
This does not mean that it is impossible to isolate single mechanisms, but that there
is no fundamental rules on how to express them. For example, how gene expression
is affected by a transcription factor depends on the availability of the binding site,
which depends on the DNA conformation, which depends on histone acetylation,
and so on. Motifs are small blocks of regulation that can be used to distill all the
complexity of biology into simple parametric term.
In the following list, the variable x denote the species of interest. This can be
gene expression level, mRNA or protein concentration, cell density, drug concen-
tration.
• Loss/death/degradation rate - Linear. The species dies or is removed at a rate
proportional to its level, with a constant k: kx.
Example: a protein with initial concentration x0 is degraded at a rate k = 0.1
per hour, and is not synthesized. The equation for the concentration of x is
dx/dt = −kx, x(0) = x0. This ODE has an explicit solution x(t) = x0e

−kt, the
concentration decreases exponentially.
- Saturated. The loss rate is linear with constant k0/K when x is small, but
saturate to a fixed value k0 when x is large. The simplest model for saturated
kinetics is the Michaelis-Menten model: k0x/(K + x).

• Constant production rate. Production refers to a supply of the species that does
not depend directly on its concentration: b.

• Proliferation/reproduction/synthesis rate - Linear: rx, - Logistic (competition)
rx(1−x/K). - Negative feedback: r0/(Kh+xh). - Positive feedback: r0xh/(Kh+
xh).

The parameter h is a cooperativity coefficient, called Hill coefficient. It defines the
strength of the feedback. High Hill coefficient will make the feedback quite sensitive
to small variations of x. This can lead to complex dynamics such as oscillations and

oscillationsbistability.
bistability

4 Examples

Examples are implemented in R, with the package deSolve. All major programming
languages offer some numerical solvers: matlab, python. Here we use R because it
offers many functionalities to deal with complex datasets as found in systems biol-
ogy. Python and matlab also offer similar functionalities but user-friendliness may

4

vary.
Example 1 Birth/death model
Here is the simplest ODEmodel we can think of, the linear birth-death ODEmodel,

dx

dt
=

immigration︷︸︸︷
b +

proliferation︷︸︸︷
rx −

loss︷︸︸︷
kx .

The species has a constant production rate b (immigration), a linear growth rate r
(proliferation) and a linear death or loss rate k.

birthDeath <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

--
Define the equations here
--
deathRate <- k * x
productionRate <- b
proliferationRate <- r * x

dxdt <- productionRate + proliferationRate - deathRate

return(list(c(dxdt)))
--

})
}

pars <- c(k = 0.5, # per day, death rate
b = 0.2, # individuals per day, production from

outside source↪→

r = 0.1) # per day proliferation (or reproduction)
rate↪→

y0 <- c(x = 1.0)
timespan <- seq(0, 20, by = 0.1)
birthDeath.sol <- ode(y0, timespan, birthDeath, pars)
summary(birthDeath.sol)

To plot the result

plot(birthDeath.sol)

Exercise 2 Exercises on the birth/death model
(a) With the parameters given above, the solution x(t) converges to a constant value,
which one?

5

(b) The solution does not always converge to a constant. Find conditions on the
parameters so that the solution always converge to a positive value given a positive
initial condition.
(c) How can the equation be modified to ensure that the solution will always remain
bounded given positive initial conditions? Write down the modified birth/death
model and try to guess to which value the solution will converge.
(d) Implement the modified birth/death model in R and run simulations to verify
your intuition.
Example 2 Lotka-Volterra
We have seen above the equations for the Lotka-Volterra model

dx

dt
=

harvest term︷︸︸︷
yx −

death rate︷︸︸︷
a x, predator,

dy

dt
=

growth rate︷︸︸︷
b y −

harvest term︷︸︸︷
xy , prey.

The R code for the Lotka-Volterra equations

LotkaVolterra <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

--
Define the equations here
--
killingRate <- Prey * Predator
preyGrowthRate <- rGrowth * Prey
predatorDeathRate <- rDeath * Predator

dPreydt <- preyGrowthRate - killingRate
dPredatordt <- killingRate - predatorDeathRate

return(list(c(dPreydt, dPredatordt)))
--

})
}

pars <- c(rGrowth = 0.5, # per day, growth rate of prey
rDeath = 0.2) # per day, death rate of predator

y0 <- c(Prey = 10, Predator = 2)
timespan <- seq(0, 200, by = 1)
LotkaVolterra.sol <- ode(y0, timespan, LotkaVolterra, pars)
summary(LotkaVolterra.sol)

The solution can be plotted with

6

Figure 1. Lotka-Volterra dynamics

plot(LotkaVolterra.sol)

Exercise 3 Exercises on the Lotka-Volterra model
(a) Run the simulations with different initials conditions. What do you observe?
(b) Modify the code above so that the growth rate of the prey also include competi-
tion between the preys for resources.
Example 3 A negative feedback loop (Goodwin model)
Negative feedback loops occur everywhere were the product inhibits its own produc-
tion. This can be through limited food or space, or through homeostatic regulation,
to control body temperature or blood pressure for instance. In most cases negative
feedback loops have the effect of making steady state more stable, i.e. after external
perturbation the system quickly returns to its natural state. This useful for instance
for rapid red blood cell mobilisation after blood loss. However too much of a good
thing can have unintended effects, and negative loop can destabilize an otherwise
stable steady state. This occurs in the Goodwin model below.
The Goodwin model is the prototype of the negative feedback loop that occurs in
many gene regulation networks. To work properly, we need three species. Here
we take mRNA concentration X, a protein product concentration Y and a modified
protein complex concentration Z. All species have linear degradation rates. The pro-
tein is produced at a rate proportional to the mRNA concentration, and the protein
complex is produced at a rate proportional to the protein concentration. For simplic-

7

X

Y

Z

Figure 2. (Left) Diagram of the Goodwin network. Arrow heads denote positive effect and “tee” heads
denote negative effects. (Right) Solution of the Goodwin model. Solutions are oscillatory.

ity, we set the degradation and production rates of the protein and the complex to
the value β, and the mRNA degradation rate to α. To construct the negative feed-
back loop, we will assume that the protein complex binds to the gene promoter to
repress mRNA synthesis is a concentration-dependent manner. Moreover we will as-
sume that in absence of the repressor, mRNA is transcribed (produced) at a constant
rate.
Using the negative feedback motif, we can write down the mRNA synthesis rate
as

f(Z) = k0
Kh

Kh + Zh
.

When there is no repressor (Z=0), the synthesis rate is k0, and when the repressor
expression is Z = K, the synthesis rate is reduced by half k0Kh/(Kh +Kh) = k0/2.
We obtain a set of three ODEs

dX

dt
= f(Z)− αX,

dY

dt
= β(X − Y),

dZ

dt
= β(Y − Z).

The R code to implement the Goodwin model

8

Goodwin <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

--
Define the equations here
--
mRNAproductionRate <- k0*K^h/(K^h + Z^h)
mRNAdegradationRate <- alpha * X

dXdt <- mRNAproductionRate - mRNAdegradationRate
dYdt <- beta * (X - Y)
dZdt <- beta * (Y - Z)

return(list(c(dXdt, dYdt, dZdt)))
--

})
}

pars <- c(k0 = 2, # transcripts per hour, max mRNA
synthesis rate↪→

alpha = 1.0, # per hour, mRNA degradation rate
beta = 1.0, # per hour, kinetic rate
K = 1, # mmol, half-repression concentration
h = 20) # no unit, Hill coefficient

y0 <- c(X = 1, Y = 0, Z = 0)
timespan <- seq(0, 20, by = 0.1)
Goodwin.sol <- ode(y0, timespan, Goodwin, pars)
summary(Goodwin.sol)

Note There is a Goodwin model in the field of economics as well, and to make thing
confusing, the economic Goodwin model is mathematically equivalent to the Lotka-
Volterra model. Thus although both economic and biological Goodwin model can
display oscillations, they are completely unrelated to each other.
Exercise 4 Goodwin model
(a) There is a unique positive steady state. Using the parameters values in the R code,
find it (set all derivative to zero in the ODE system and solve the three equations for
X,Y and Z).
(c) Vary the Hill coefficient h until the steady state becomes stable. What is the
value of h? At this value, we say that the Goodwin model undergoes a bifurcation,
i.e. a change in the qualitative behavior of the system. Many diseases are associ-
ated to qualitative changes in physiology, and dynamical models are used to devise
therapeutic strategies to reverse bifurcations. The most successful ones are for heart
arrhythmia, such as calcium channel blockers or pacemakers.
Example 4 A positive feedback loop
Positive feedback loop are inherently unstable. They do occur in irreversible events

9

such as mitosis, birth giving, differentiation and lineage choice, etc.
The positive feedback loop rests on the positive loop motif for the production of the
species with concentration X.

g(X) = k0
Xh

Kh +Xh
,

where the Hill coefficient h > 1. The production depends strongly on X. For low
concentrations, the production is low. However for high concentrations, the produc-
tion is much higher. This nonlinear production curve leads to possible low and high
concentrations stable steady states. The ODE reads

dX

dt
= g(X)− aX.

When they exist, the two stable steady states are always separated by a third steady
state, which is unstable. They can be found by setting dX/dt = 0. This leads to a
fixed point equation on X: aX = g(X).
The R code to obtain bistability is

Bistability <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

--
Define the equations here
--
mRNAproductionRate <- k0*X^h/(K^h + X^h)
mRNAdegradationRate <- a * X

dXdt <- mRNAproductionRate - mRNAdegradationRate

return(list(c(dXdt)))
--

})
}

pars <- c(k0 = 2, # transcripts per hour, max mRNA
synthesis rate↪→

a = 1.0, # per hour, mRNA degradation rate
K = 1, # mmol, half-repression concentration
h = 20) # no unit, Hill coefficient

y0 <- c(X = 1.1)
timespan <- seq(0, 20, by = 0.1)
Bistability.sol1 <- ode(c(X = 0.9), timespan, Bistability, pars)
Bistability.sol2 <- ode(c(X = 1.1), timespan, Bistability, pars)
Bistability.sol3 <- ode(c(X = 1.0), timespan, Bistability, pars)

To plot all three solutions on one graph

10

plot(Bistability.sol1, Bistability.sol2, Bistability.sol3)

Exercise 5 Bistable model
(a) With the parameters given in the code above, find (approximately) all three
steady states. Which ones are stable, unstable?
Example 5 Logistic map
The logistic map is the difference equation

xt+1 = rxt(1− xt),

for t = 0, 1, ..., with the initial condition x0 given. The R codes to solve the logistic
map follow the same lines as ODE models, except that the we use the iteration
method.

LogisticMap <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

--
Define the equations here
--
xiter <- r * x * (1 - x)

return(list(c(xiter)))
--

})
}

pars <- c(r = 3.76) # basal growth parameter

y0 <- c(x = 0.2)
timespan <- seq(0, 50, by = 1)
LogisticMap.sol <- ode(y0, timespan, LogisticMap, pars, method =
"iteration")↪→

summary(LogisticMap.sol)

The logistic map is one of the simplest dynamical model displaying chaos, oscillatory
solutions but very irregular and sensitive to initial conditions. Chaos arises as the
parameter r increases from 1.0 to 4.0. For small values of r, the logistic map has one
stable steady state. As the parameter is increased, the steady state becomes unstable
and is replaced by a periodic solution with period 2. This is followed by a series of
period doubling bifurcations, ultimately ending up in chaos.
Exercise 6 Logistic map
(a) Explore the solutions of the logistic map. Try to find solutions with periods 2, 4,
8… Can you find a solution with period 3? With period 5?

11

Figure 3. Period doubling bifurcation road to chaos in the logistic map.

5 Delay Differential Equations

Models of self-regulating systems often include discrete delays in the feedback loop
to account for the finite time required to perform essential steps before the loop is
closed. Such mathematical simplifications are especially welcome in biological ap-
plications, where knowledge about the loop steps is usually sparse. This includes
maturation and growth times needed to reach reproductive age in a population, sig-
nal propagation along neuronal axons, and post-translational protein modifications.
Introduction of a discrete delay in an ordinary differential equation can destabilize
steady states and generate complex dynamics, from limit cycles to chaos.
The discrete delay differential equation of the form

ẋ = F
(
x, x(t− τ)

)
is a model paradigm in biology and physics. The first argument of F is the instan-
taneous part of the loop and the second one, the delayed or retarded part, which
closes the feedback loop. The discrete delay τ is a positive constant.

discrete delay
Example 6 The Goodwin model with a transcriptional delay
We can assume that there is a lag between initiation of transcription and the synthesis
of a mRNA molecule, i.e. that X should depend on the concentration of Z, but at a
time τ earlier.

12

dX

dt
= f(Z(t− τ))− αX,

dY

dt
= β(X − Y),

dZ

dt
= β(Y − Z).

The package deSolve includes a delay differential equation solver called dede. Here
is an example of how to solve the Goodwin equation with a transcriptional de-
lay.

Goodwin.delay <- function(Time, State, Pars) {
with(as.list(c(State, Pars)), {

--
Define the equations here
The delayed variable Z(t - tau) is accessed with the
function lagvalue: Z(t - tau) = lagvalue(Time - tau,3)
The argument Time - tau must be greater than 0.
When Time < tau, the delayed variable is specified by its
initial condition, here Z = 0.
--
if (Time < tau)

mRNAproductionRate <- k0*K^h/(K^h) # Z = 0 initially
else

mRNAproductionRate <- k0*K^h/(K^h + lagvalue(Time - tau,3)^h)

mRNAdegradationRate <- alpha * X

dXdt <- mRNAproductionRate - mRNAdegradationRate
dYdt <- beta * (X - Y)
dZdt <- beta * (Y - Z)

return(list(c(dXdt, dYdt, dZdt)))
--

})
}

pars <- c(k0 = 2, # transcripts per hour, max mRNA
synthesis rate↪→

alpha = 1.0, # per hour, mRNA degradation rate
beta = 1.0, # per hour, kinetic rate
K = 1, # mmol, half-repression concentration
h = 3, # no unit, Hill coefficient
tau = 10) # transcriptional delay

y0 <- c(X = 1, Y = 0, Z = 0)
timespan <- seq(0, 100, by = 0.1)
Goodwin.delay.sol <- dede(y0, timespan, Goodwin.delay, pars)
plot(Goodwin.delay.sol)

13

6 Stochastic Differential Equations

The Lanvegin equation was introduced by Paul Langevin to describe the random
motion of a large particle (a Brownian particle) in a bath of microscopic particles
(atoms). The Brownian particle, being much heavier than the atoms, moves much
more slowly, and its motion is influence by a large number of atoms. In the over-
damped limit where the viscosity is large (γ is large), the acceleration term can be
neglected, and the Langevin equation reduces to a first-order equation

γ
dx

dt
= ξ(t).

The term ξ(t) is a stochastic (random) noise term that needs to be defined. It is
usual, but not necessary, to choose ξ(t) as a Gaussian white noise. A Gaussian

Gaussian
white noise

white noise is a Gaussian random variable with mean 0 (centered) that is completely
uncorrelated: if t ̸= t′, then ξ(t) is completely independent of ξ(t′). However, at any
given time t, the variance of ξ(t)must be large, otherwise the noise term would have
no effect on the Langevin equation.
More generally, an overdamped particle subject to the potentialU(x) has the Langevin
equation

γ
dx

dt
= −∂U

∂x
+ ξ(t).

In biological applications, the variable x is not necessarily a position, it can be a
density or concentration, or an electrical potential. Likewise, the term −∂U

∂x can be
any function f describing the “deterministic” part of the movement. The Langevin
equation can be re-expressed in a more common way

dx

dt
= f(t, x) + g(t, x)ξ(t),

where the positive function g is the intensity of the noise. This is the most common
class of stochastic differential equation used in biology.

stochastic
differential
equation

There is a specific method for solving stochastic differential equations called the
Euler-Maruyama scheme. Because the solution is stochastic, the Euler-Maruyama
method computes specific realizations of the solution. To compute a realization x(t)
over the time interval 0 ≤ t ≤ T , we choose a small timestep h, and discretize
the time at points 0, h, 2h, ..., T . We denote by tk the time point hk, and by xk the
numerical solution at that time point. The numerical scheme computes the solution
at time step k + 1, assuming that the solution is known at time step k:

xk+1 = xk + hf(tk, xk) + g(tk, xk)
√
hξk,

where ξk are i.i.d. (independent identically distributed) Gaussian random variables
with distribution N(0, 1).

14

6.1 Case study: Electrical properties of cells membranes

We are interested in the electric potential across the membrane of a neuron Let x
be the voltage or the difference of potential between inside and outside the cell.
The membrane of a cell is a good insulator and electrons cannot freely cross it. For
the voltage to change, ions such as sodium and potassium have to go through ion
channels. These ion channels can be open or close, and their state depends on the
voltage x itself. The voltage across the membrane is proportional to the electric
charge of the cell, with a proportionality constant C,

C = Q/x,

where Q is the electric charge of the cell, x is the voltage and C is called capacitance.
Change in electric charge (and voltage) occurs when ions cross the membrane. The
rate of change of charge is the current I

dQ

dt
= I,

and from the voltage-charge relation

C
dx

dt
= I,

The total current through the membrane is the sum of ionic currents, which is zero at
rest (dx/dt = 0). At rest, the cell has an electric potential different from zero because
active ion pump maintain a difference in ion concentrations across the membrane.
When voltage changes, ion channels close or open, and ions flow in or out of the cell,
creating a current. The Hodgkin-Huxley model is a detailed model of the different
ion channels. A simplified version is the FitzHugh-Nagumo model. If we neglect the
recovery variable in the FitzHugh-Nagumo model, we obtain a nonlinear Langevin
equation

dx

dt
= x− x3 + σξ(t) = −∂U

∂x
+ σξ(t),

with potential U(x) = −x2/2 + x4/4, and ξ(t) a Gaussian white noise.
This is admittedly a very schematic model for a neuron, but we can draw analytic in-
sight from it. In absence of noise (σ = 0), there are three steady states: one unstable
steady state at x = 0 and two stable ones at x = ±1. These steady state corre-
spond to local extrema of the potential U(x). In presence of noise, trajectories are
not constant, so steady states cannot exist as in the deterministic case. Nevertheless,
trajectories starting near one of the local minima of the potential will stay there for a
while, until a perturbation large enough can kick the trajectory near the other local
minimum. In the long run, expect the probability density of x to be concentrated
near the local minima of U(x). Therefore −U(x) gives us an idea of the shape of the
probability density of x(t), given large enough times t.

15

7 Partial Differential Equations

To make things more quantitative, let p(x, t) be the probability density of x at time
t, i.e.

Pr(x < a) =

∫ a

−∞
p(x, t)dx.

The Fokker-Planck equation is an partial differential equation for the probability
Fokker-Planckdensity of the solution of the Langevin equation. For the equation

dx

dt
= µ(x) + σξ(t),

with a nonlinear deterministic part µ(x) and a noise with constant σ, the Fokker-
Planck equation reads

∂p

∂t
= −∂µp

∂x
+

σ2

2

∂2p

∂x2
,

This is a partial differential equation, and analytic solutions only exist for specific
cases. Nevertheless, we can try to solve for a stationary distribution p(x, t) = p(x),
that is a solution independent of time. Setting ∂p/∂t = 0, the Fokker-Planck equation
reduces to an ordinary differential equation

dµp

dx
=

σ2

2

d2p

dx2
.

(We have replaced the partial derivative symbol ∂ by the ordinary derivative d.)
Integrating on both sides with respect to x,

µp =
σ2

2

dp

dx
+ C.

The integration constant C = 0 here because of both p and its derivative must van-
ish at infinity, leaving C = 0. This leaves a first order linear ordinary differential
equation to solve for. The nonlinear function µ does not depend on p, only on the
independent variable x. We find the solution by separation of variables:

∫
µdx =

σ2

2

∫
1

p
dp =

σ2

2
ln p+ C,

and

p(x) = K exp
(∫ µ(x)dx

σ2/2

)
.

16

The constant K = e2C/σ2 is a normalisation constant so that ∫ p(x)dx = 1. The
stationary solution p(x) is best written in term of the potential U(x). The potential
U(x) = −

∫
µ(x)dx (the integration constant does not matter, it will be absorbed in

the constant K), and the stationary solution

p(x) = K exp
(
−U(x)

σ2/2

)
.

It is now quite clear how U(x) is related to the stationary density: up to a constant,
U(x) is the log of p(x).
For the neuron model defined above, we find that the stationary solution

p(x) = K exp
(x2 − x4/6

σ2

)
.

Exercise 7 The Fokker-Planck equation provides a way to compute the probabil-
ity density of the solution of a Langevin equation. Conversely, the Langevin equa-
tion provides a way to compute the solution of the Fokker-Planck equation. For the
bistable model

dx

dt
= x− x3 + σξ(t)

with Gaussian white noise, compute several trajectories numerically up to a fixed
time t, and plot the histogram of the solution x(t). Compare with the analytical
stationary density.

8 Numerical schemes

This section presents widely used and simple numerical schemes for solving differ-
ence equations, ordinary differential equations, stochastic differential equations, and
stochastic processes.

8.1 Numerical scheme for difference equations

For the equations xt+1 = f(xt, yt), yt+1 = g(xt, yt), the pseudo-code of the numerical
scheme is a simple loop:

x0 = ... # define the initial value x0
y0 = ... # define the initial value y0
T = ... # define the number of time step
x = x0 # x is the current value of x_t. set the current value of x

to x0↪→

y = y0 # y is the current value of y_t. set the current value of y
to y0↪→

xsol = x # xsol is the array of x for all time points
ysol = y # ysol is the array of y for all time points
t = 0 # set time to 0

17

while(t < T) {
x = f(x,y) # update the value of x
y = g(x,y) # update the value of y
xsol.append(x) # append the solution x to xsol
ysol.append(y) # append the solution y to ysol
t = t + 1 # update t

}

8.2 Numerical scheme for ordinary differential equations (ODEs)

For the equations
dx

dt
= f(x, y),

dy

dt
= g(xt, yt),

we can use the explicit, or forward Euler method (FE method). The pseudo-code of
the numerical scheme is a simple loop:

x0 = ... # define the initial value x0
y0 = ... # define the initial value y0
T = ... # define the final time
dt = ... # define the numerical time step. This value

is the temporal resolution of the solution. It should
be smaller than the time scale of interest, and small
enough to avoid numerical instabilities. Try dt = 0.01
for a start.

x = x0 # x is the current value of x_t. set the current value of x
to x0↪→

y = y0 # y is the current value of y_t. set the current value of y
to y0↪→

xsol = x # xsol is the array of x for all time points
ysol = y # ysol is the array of y for all time points
t = 0 # set time to 0
while(t < T) {

x = x + dt*f(x,y) # update the value of x
y = y + dt*g(x,y) # update the value of y
xsol.append(x) # append the solution x to array xsol
ysol.append(y) # append the solution y to array ysol
t = t + dt # update t

}

8.3 Numerical scheme for stochastic differential equations (SDEs)

If we add noise terms ξ1 and ξ2, with strengths σ1, σ2, the ODEs become stochastic
differential equations

dx

dt
= f(x, y) + σ1ξ1,

18

dy

dt
= g(xt, yt)σ2ξ1.

We can use the Euler-Maruyama method. For a noise strength σ, this scheme adds
a Gaussian random term that has a standard deviation equal to σ/

√
h. This is the

appropriate form for a noise term that has a zero average, a fixed standard deviation
and no memory (i.e. noise is uncorrelated from one moment to the other). This type
of noise is called white noise. The pseudo-code of the numerical scheme is a simple

white noiseloop:

x0 = ... # define the initial value x0
y0 = ... # define the initial value y0
T = ... # define the final time
dt = ... # define the numerical time step. This value

is the temporal resolution of the solution. It should
be smaller than the time scale of interest, and small
enough to avoid numerical instabilities. Try dt = 0.01
for a start.

x = x0 # x is the current value of x_t. set the current value of x
to x0↪→

y = y0 # y is the current value of y_t. set the current value of y
to y0↪→

xsol = x # xsol is the array of x for all time points
ysol = y # ysol is the array of y for all time points
t = 0 # set time to 0
while(t < T) {

x = x + dt*f(x,y) + \sqrt(dt)*sigma1*randn(0,1) # update the value
of x↪→

y = y + dt*g(x,y) + \sqrt(dt)*sigma2*randn(0,1) # update the value
of y↪→

xsol.append(x) # append the solution x to array xsol
ysol.append(y) # append the solution y to array ysol
t = t + dt # update t

}

8.4 Numerical scheme for stochastic processes

When the dynamical variables describe species that have low counts, say n < 100, it
can be useful to model the variable as integer numbers, and to count each addition
and loss individually.
The simplest numerical scheme assume low counts and a discrete time. To implement
the stochastic process, it is necessary to explicitly provide the gain and loss terms for
each species in the model. This means that the difference equation needs to be
written as xt+1 = gain(xt)− loss(xt). The time step needs to be chosen small enough
so that the gain and loss terms are much smaller than 1. In this case, over on time
step, it is unlikely that many gain or loss event would occur, and it can be safely
assumed that the value of x can only change by one unit.

19

x0 = ... # define the initial value x0
T = ... # define the number of time step
x = x0 # x is the current value of x_t. set the current value of x

to x0↪→

xsol = x # xsol is the array of x for all time points
t = 0 # set time to 0
while(t < T) {

addx = (rand() < gain(x)) # test for adding one to x
removex = (rand() < loss(x)) # test for removing one to x
x = x + addx - removex # update the value of x
xsol.append(x) # append the solution x to xsol
t = t + 1 # update t

}

For example, a cells in a colony divide randomly in average every 12 hours, and have
a lifespan of around 48 h. During a time interval τ hours, we expect to that a colony
of x cells has τx/12h divisions, and τx/48h cell deaths. We choose a time step τ
small enough that these values are much less than one. If we expect x to be less than
50, then taking τ < 12/50 is necessary. If we take τ = 0.01h, the probability of one
division is exactly the same as the number of expected divisions (so long as we ignore
the rare occurences of many divisions). Themeans that gain(x) = τx/12 = 8.33e−4x
and loss(x) = τ/48x = 2.083e−4x. The gain and loss terms are zero when x = 0. If x
reaches zero, then it will stay there forever. In this example, cell divisions will quickly
outnumber cell deaths; x will grow to values larger than 50, and the choice of the
time step τ will not be appropriate anymore. Another scheme, called the stochastic
simulation algorithm can be used to deal with fluctuating counts.
The Stochastic Simulation Algorithm is a numerical algorithm that takes advantage

Stochastic
Simulation
Algorithm

of the discrete nature of jumps in counts. For the numerical implementation, we need
to define
• the initial conditions x0 y0, ...,
• a list of all events (gain, loss, change of state...), numbered from 1 to r,
• for each event k, k ∈ {1, ..., r}, the propensity λ(k) of the event k. Propensi-
ties can have nonlinear dependence on the counts of each species, but cannot
depend on the occurrence of other events; event probabilities are independent.

• the law of birth or death conditional to event k, given the counts before the
event, Pr(add jmembers) = w

(N)
k (j), j = ...,−2,−1, 0, 1, 2,

The propensites define a memoryless process. That is, the time to the next event has
an exponential distribution. Neglecting all other events, the time τk to event k has
an exponential distribution with parameter λk. When the r events are considered
together, the time τ to the next event will be just min1≤k≤r{τk}. This is because
during the interval [t, t + τ), the event probabilities are independent. At time t, the
law of τ is therefore exponential with parameter λ, with

λ =
r∑

k=1

λk. (1)

20

Independence also ensures that no two events can occur at the same time. When the
event k is realised, the solution to the process will be x(t + θ) = x(t) for θ ∈ [0, τ),
and x(t + τ) = j, with probability w(x(t−))

k (j). The probability to choose event k is
proportional to its propensity λ(N)

k . After re-normalization,

Pr(choose event k) = λk

λ
. (2)

A realization of x(t), y(t), ... can be computed iteratively, by advancing in time by
steps of size τ .
The algorithm goes as follows

################# SSA algorithm #################
input:
X0: array of integers of size n, initial conditions
t0: real value, initial time
T : positive real value, time interval
output:
X: array of integers of size n, the solution at N(t0 + T)
X = X0;
t = t0;
while (t < t0 + T) {

lambda = sum(lambda_k);
tau = draw from exponential distribution with parameter lambda;
k = draw from distribution with probabilities lambda_k/lambda;
j = draw from distribution with probabilities w_k_j;
X = X + j;
t = t + tau;

}

Notes. Parameters tau, k, j are drawn from specific distributions that can be easily
reproduced using only a standard pseudo-random number generator by using the
reciprocal of the repartition function. If the random variable X has a repartition
function F (x) = Pr(X < x) and U is random variable with a uniform density on the
[0, 1] interval, then the random variable F−1(U) has the same distribution asX. The
time to the next event can be computed with these steps

Generate an exponential covariate
u = rand01(); # u drawn from a uniform distribution on [0,1]
tau = -log(u)/lambda; # log: natural log
return tau;

For discrete probability laws, the repartition function is piecewise constant, and can-
not be inverted. However, the repartition functon induces a partition of the unit
interval. The i-th sub-interval has the size of the i-th probability. This means that
drawing a integer i with probability pi is equivalent to identifying which sub-interval
contains a random variable drawn from a uniform distribution in the unit inter-
val.

21

Generate a discrete covariate
p: array of size I of probabilities, p[i] = prob(choose i)
If needed, the values of i are rescaled between 1 and I

u = rand01(); # u drawn from a uniform distribution on [0,1]
c = cumsum(p); # c array with right-ends of sub-intervals
i = find_first(u < c); # find first index i such that u < c[i]
return i;

The algorithm can be adapted for distributions with an infinite number of possibe
values.

9 Glossary (English/French)

Definition 1 Dynamical Model/modèle dynamique
A dynamical model is a system in which equations describe the time dependence of a
set of variables in a geometrical space. Difference equations and ODEs are dynamical
models when the independent variable is time.
Definition 2 Dynamical variables/variables dynamiques
Dynamical variables are variables that change over time, by opposition to constant
parameters. Also called state variables.
Definition 3 Difference equation/équation aux différences
A difference equation is an equation that sets a relationship between the values of
state variable at finite differences an independent variable (here the independent
variable is time). It is usual to denote the value of the variable x at time t by xt for
t = 1, ..., to indicate that the time t takes discrete values.
Definition 4Ordinary differential equations/équations différentielles ordinaires
An ordinary differential equation is an equation that sets a relationship between a
set of variables and their derivatives with respect to continuous independent variable
(here the independent variable is time).
Definition 5 Model parameter/paramètre du modèle
Model parameters are constant value contained in dynamical models.
Definition 6 Initial conditions/conditions initiales
Initial conditions are the values of the state variables at the beginning of the sim-
ulation (usually at t=0, but not necessarily). Initial conditions are needed because
dynamical models only provide relations between states, not absolute values.
Definition 7 Steady state/état d’équilibre
A steady state is a special solution of a dynamical system such that, if the initial
conditions are on the steady state, the solution remains on the steady. For an ODE x̄
is a steady state if dx̄/dt = 0. For a difference equation xt+1 = f(xt), x̄ is a steady

22

state if x̄ = f(x̄). A steady state is stable if solutions with initial conditions close to
the steady state will stay close to the steady state.
Definition 8 Oscillations/oscillations
Oscillations is a type of non-constant solution where at least one of the variables
comes back through a certain value regularly, for any amount of time.
Definition 9 Bistability/bistabilité
Bistability is a property of a system where there exists two stable states. Which
stable state will attract solution depends on the initial condition. Switch between
stable states can be obtained by perturbing the system.
Definition 10 Motifs/motifs
Motifs are small blocks of regulation that can be used to distill all the complexity of
biology into simple parametric term.

10 References

- RM May, Simple mathematical models with very complicated dynamics (1976) Na-
ture 261:459–467 - Lotka-Volterra as individual-basedmodel<http://www.ahahah.eu/trucs/pp/>
- An Introduction to R<https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf>
- E Klipp et al., Systems Biology, Wiley-VCHWeinheim 2009 - U Alon, An introduction
to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC
2007

23

Index
Fokker-Planck, 16
Gaussian white noise, 14
Stochastic Simulation Algorithm, 20
Bistability, 4
Delay differential equations, 2
Difference equations, 1
Discrete delay, 12
Individual-based models, 2
Motifs, 2
Ordinary differential equations, 1
Oscillations, 4
Partial differential equations, 2
State variable, 2
Stochastic differential equation, 14
Stochastic processes, 2
White noise, 19

24

	What is a dynamical model?
	How to use dynamical models?
	Modeling with motifs
	Examples
	Delay Differential Equations
	Stochastic Differential Equations
	Case study: Electrical properties of cells membranes

	Partial Differential Equations
	Numerical schemes
	Numerical scheme for difference equations
	Numerical scheme for ordinary differential equations (ODEs)
	Numerical scheme for stochastic differential equations (SDEs)
	Numerical scheme for stochastic processes

	Glossary (English/French)
	References

