
Université Lyon 1 | Departement Biologie |
Systems Biology September 3, 2024

Inferring model Parameters in Systems Biol-
ogy
Instructor(s): Samuel Bernard bernard@math.univ-lyon1.fr
link to the latest version: http://math.univ-lyon1.fr/homes-www/bernard/teach/systems_biology/mi.pdf

The problem of parameter inference is the problem of estimating the values of parameter
inferencemodel parameter, given data, and the uncertainty on these values.

Let us consider a dataset with n observations yi at time points ti, i = 1, ..., n, and a
model functionm(t; θ) that depends on time and on a certain number of parameters

model
function

θ = (θ1, θ2, θk). Can we find values for θ such that the function m will take values
close to yi when evaluated at ti:

m(ti; θ) ∼ yi

In other words we are trying to minimize the difference between mi = m(ti; θ) and
yi, for all i = 1, ..., n. If the number of parameter k equal to or larger than n, it is in
general possible to match exactly all the data: mi = yi. This is called interpolation. interpolationHowever, when the number of parameters if smaller than n, it will be in general not
possible to match all data points, and there will be a trade-off to achieve between
being far-off for few data points and close to the others, or being a bit further away
from all data point.
The way to resolve this trade-off is to pose a minimization problem. That is, we

minimization
problem

will define a scalar-valued objective-function f that depends on m and y and has
the property that f(y, y) = 0. By far the most common objective-function used in
biology is the sum of squares of the errors between mi and yi: sum of

squares of the
errorsf(m, y) =

n∑
i=1

(mi − yi)
2 = ||m− y||2

Clearly, the smaller the sum of square of the error (or SSE) is, the closer the model
is to the data. The SSE can only take values greater or equal to zero, so we are
guaranteed to have at least one global minimum. Trying to find the parameters that
minimize the SSE is called least-square fitting. Least-square fitting has at least one
solution, but in real life there is often many parameters sets that will minimize the
SSE.

1

Figure 1. raw data

1 Small is beautiful

Why bothering with a small number of parameters, when taking k = n is sufficient
to fit perfectly (SSE=0) the dataset? The bottom line answer is: models with small
numbers of parameters have more explanatory power than models with large num-
bers of parameters, and they have a better predictive power.
Let see first why too many parameters is not good for prediction. We randomly
generate n=15 pairs of points, x in [0,1] and y in [-1,1].

n <- 15
x <- runif(n) # generate n random numbers in [0,1]
y <- runif(n, min = -1, 1) # generate response in [-1,1]
plot(x,y)

Now we fit a polynomial of degree 14 (it has 15 coefficients/parameters)

interp <- lm(y ~ poly(x,n-1))
^^I^^Iplot(x,y)
^^I^^Isx <- sort(x)
^^I^^Ilines(sx, predict(interp, data.frame(x = sx)))

The fit is perfect, the polynomial function goes through all the data points. Suppose
we get a new pair of data (x, y). How good will be the prediction?

newx <- runif(1)
newy <- runif(1) # add a new data point
plot(c(0,1),c(-1,1), type = 'n', xlab = 'x', ylab = 'y')

2

Figure 2. interpolated data

points(x,y)
points(newx,newy, pch = 19)
lines(sort(c(x,newx)), predict(interp, data.frame(x = sort(c(x,newx)))))
points(sort(c(x,newx)), predict(interp, data.frame(x =

sort(c(x,newx)))), pch = 3)↪→

The prediction is terrible! The reason for that is that a polynomial function of degree
14 is 1) quite oscillatory, and 2) quit unbounded. But the problem is not restricted
to polynomials; any interpolating function will be bad at predicting the new data
point because they fit noise. Given a new data point, the best guess for y is 0, i.e.
the mean of the random numbers between -1 and 1. Interpolation will pick noise in
the neighbouring data points and propagate is to the new prediction.
Instead of interpolating the data, we now perform a standard linear regression of
the data. Prediction is now much better, and more in line with the intuitive under-
standing of a prediction.
The linear regression has two parameters, (intercept and slope). Between 2 and 15
parameters, there is probably a optimal number of parameters that can be fitted for
a given dataset.

2 Nonlinear regression with a known model function

We use the pharmacokinetics of Indomethacin dataset Indometh from the datasets
package in R.

Indo.1 <- Indometh[Indometh$Subject == 1,]
with(Indo.1, plot(time,conc))

3

Figure 3. Prediction of a new random data point

Figure 4. Linear regression of the data

4

Figure 5. Indometh dataset, patient 1

We perform a nonlinear least-square fit with the routine nls from R. The response
variable is the concentration conc, the independent variable is time, and the model
is the exponential model

exponential
model

m(t) = c0 exp(−kt)

with two parameters c0 and k.

indometh.nls <- nls(conc ~ c0 * exp(- k * time), # model
data = Indo.1, # dataset
start = list(c0 = 1, k = 0)) # initial guess for the parameters
lines(seq(0,8, by = 0.1),predict(indometh.nls, list(time = seq(0,8, by =

0.1))))↪→

summary(indometh.nls)

The output of the last command shows the estimated values (column Estimate) and
error on the estimate (column Std. Error)

Formula: conc ~ c0 * exp(-k * time)

Parameters:
Estimate Std. Error t value Pr(>|t|)

c0 2.0332 0.1392 14.60 1.42e-07 ***
k 1.3563 0.1232 11.01 1.60e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.07371 on 9 degrees of freedom

Number of iterations to convergence: 10
Achieved convergence tolerance: 8.285e-06

5

Figure 6. Indometh data fitted with conc c0 * exp(-k * time)

Name Equation
Michaelis-Menten y = ax

1+bx

2-parameter asymptotic exponential y = a(1− e−bx)

3-parameter asymptotic exponential y = a− be−cx

Gompertz y = ae−be−cx

Bi-exponential y = aebx + ce−dx

Table 1. Non-linear functions in biology.

3 List of useful non-linear functions

4 Nonlinear regression with an ODE model

To have a basis for comparison, we use the same dataset and the same model, except
we express the model as an ODE

dC

dt
= −kC

with initial condition C(0) = c0. The R code is a bit more complex

rhs <- function(Time, conc, k) {
return(list(c(- k * conc)))

}

odemodel <- function(Time,c0,k) {
timespan <- sort(Time)
addedzero <- FALSE
if (timespan[1] > 0)
{

timespan <- c(0, timespan)

6

addedzero <- TRUE
}
expmodel.sol <- ode(c(conc = c0), timespan, rhs, k)
if (addedzero)
{

return(expmodel.sol[-1,2])
}
else
{

return(expmodel.sol[,2])
}

}

with(Indo.1, plot(time,conc))
indomethode.nls <- nls(conc ~ odemodel(time, c0, k), # model

data = Indo.1, # dataset
start = list(c0 = 5, k = 1.2)) # initial guess for the parameters

summary(indomethode.nls)

The results is identical to the exponential model

^^I^^IFormula: conc ~ odemodel(time, c0, k)

^^I^^IParameters:
^^I^^I^^I Estimate Std. Error t value Pr(>|t|)
^^I^^Ic0 2.0332 0.1392 14.60 1.42e-07 ***
^^I^^Ik 1.3563 0.1232 11.01 1.60e-06 ***
^^I^^I---
^^I^^ISignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

^^I^^IResidual standard error: 0.07371 on 9 degrees of freedom

^^I^^INumber of iterations to convergence: 7
^^I^^IAchieved convergence tolerance: 3.348e-06

5 Refining and selecting a model

The fit with the exponential model is quite good at initial times, but after 2 hours, the
concentration decreases more slowly than the fitted exponential. This may be be-
cause there is residual amount of drugs in peripheral tissues with slower elimination
rates. A bi-exponential model can take care of the two sections of the pharmacoki-

bi-exponential
model

netic data
b(t) = c01 exp(−k1t) + c02 exp(−k2t)

The R code is

7

Figure 7. Indometh data fitted with a bi-exponential

biexpmodel <- function(Time,c01,c02,k1,k2) {
return(c01*exp(- k1 * Time) + c02*exp(- k2 * Time))

}
with(Indo.1, plot(time,conc))
indometh.biexp <-

nls(conc ~ biexpmodel(time,c01,c02,k1,k2), # model
data = Indo.1, # dataset
start = list(c01 = 2,

c02 = 1,
k1 = 2,
k2 = 1)) # initial guess for the parameters

lines(seq(0,8, by = 0.1),predict(indometh.biexp,
list(time = seq(0,8, by = 0.1))))

The fit looks much better! That the fit is better is to be expected, the bi-exponential
includes as a subset the exponential model. So, it is really better? One way to test
this is with the Akaike Information Criterion. The Akaike Information Criterion (AIC)
can be used select the most appropriate model. It takes into account the SSE and the
number of model parameters.

print(c(AIC_biexp = AIC(indometh.biexp),
AIC_exp = AIC(indometh.nls)))

AIC_biexp AIC_exp
-34.01319 -22.35806

The lower the AIC, the better. Here the bi-exponential clearly wins over the expo-
nential model.

8

Figure 8. Number of lynx trapped in Canada

6 Exercises

(a) The bi-exponential model can also be expressed as the solution of a system of
ODEs. How could it look likes?
(b) Figure 8 shows the number of lynx in trapped in Canada between 1821 and 1934.
If you were a planner, trying to manage the lynx population in a sensible way, how
would you do?

7 References

MJ Crawley, The R Book, 2012, Wiley

9

Index
Bi-exponential model, 7
Exponential model, 5
Interpolation, 1
Minimization problem, 1
Model function, 1
Parameter inference, 1
Sum of squares of the errors, 1

10

	Small is beautiful
	Nonlinear regression with a known model function
	List of useful non-linear functions
	Nonlinear regression with an ODE model
	Refining and selecting a model
	Exercises
	References

