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Introduction en français

Je présente dans ce manuscrit des travaux réalisés depuis ma thèse, principalement en tant
que chargée de recherche à l’ICJ depuis 2014. Comme la suite le montrera, ces travaux
touchent à des domaines a priori distants des probabilités. Leur juxtaposition n’est pas
pour autant fortuite. Leur point de départ est une famille de modèles de physique statis-
tique : les systèmes de particules avec contraintes cinétiques (KCM). Ce sont les modèles
sur lesquels je m’étais concentrée pendant la thèse et que je présente au début de la section
1.1. Outre leur intérêt intrinsèque, ils fournissent des exemples naturels de systèmes dans
lesquels des hypothèses classiques (typiquement, d’ellipticité ou de monotonie) ne sont pas
vérifiées. C’est avec ces exemples en tête que j’ai commencé à explorer les thématiques
des limites hydrodynamiques et des marches aléatoires en milieu aléatoire dynamique (RW-
DRE). Le présent texte est structuré suivant ces trois thèmes : KCM en chapitre 1, limites
hydrodynamiques en chapitre 2 et RWDRE en chapitre 3. Inévitablement, il y a une part
d’arbitraire dans le découpage effectué, et certains problèmes et discussions auraient pu se
retrouver naturellement dans une partie différente.

Le premier chapitre concerne donc les KCM. Il s’agit de systèmes de particules sur
réseaux dont la dynamique est aléatoire, et qui ont la particularité de n’évoluer que si une
certaine contrainte locale – garantissant un certain espace disponible – est satisfaite. Ces
processus ont été introduits avec une motivation physique précise : l’étude de la transition
vitreuse. Cette origine oriente les travaux de ce domaine dans des directions particulières.
J’ai regroupé dans le chapitre 1 les travaux présentés pour cette HDR dans lesquels le point
de vue me semblait vraiment spécifique aux KCM.

La section 1.1 est une introduction aux modèles avec contraintes cinétiques. Il con-
tient d’abord un rappel des motivations physiques qui ont mené à leur formulation (Sec-
tion 1.1.1). Viennent ensuite (en Section 1.1.2) une définition assez générale et des exemples
illustratifs. J’y rappelle en particulier la distinction KCSM (Kinetically Constrained Spin
Models, dynamiques de type Glauber avec création/destruction de particules) et KCLG
(Kinetically Constrained Lattice Gases, dynamiques de type Kawasaki avec déplacement
de particules). J’énonce ensuite certaines propriétés de base des KCM, et d’abord que tous
ces systèmes sont réversibles par rapport à une mesure produit. J’explique ensuite com-
ment identifier à quelles densités les KCSM sont ergodiques, ce qui dépend exclusivement
de la présence ou non d’amas bloqués, une notion issue de la percolation bootstrap. On
voit enfin qu’en général le trou spectral des KCSM est non nul dans la région d’ergodicité,
ce qui implique un mélange exponentiel de la dynamique à l’équilibre.

On entre ensuite dans le vif du sujet avec une section 1.2 donnant un récapitulatif
(partiel !) des résultats concernant la dynamique à l’équilibre et à basse température (ou
à l’approche du seuil critique, au-delà duquel le système cesse d’être ergodique). Le but
des études présentées ici est de comparer le comportement des KCM à celui des matériaux
vitreux, et en particulier si les KCM présentent un ralentissement de la dynamique similaire
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à celui des systèmes physiques. Il y a différentes façons de quantifier la rapidité de la
dynamique, ou la fluidité du système. On s’intéresse en général principalement au temps de
relaxation (inverse du trou spectral), qui est étroitement lié au temps de persistance, mais
le coefficient de diffusion d’un traceur peut constituer une mesure alternative de la mobilité
du système. On se demande donc dans cette section comment ces quantités divergent à
l’approche du seuil critique. Concernant le trou spectral, les résultats sont nombreux
(et particulièrement complets en dimension 2 pour les KCSM, en particulier grâce à une
approche systématique inspirée par celle développée pour la percolation bootstrap). Je ne
les évoque que partiellement - ceux qui sont abordés sont regroupés en Section 1.2.1. En
section 1.2.2 j’évoque les résultats plus partiels connus sur le coefficient de diffusion d’un
traceur. Je décris en particulier le premier résultat présenté pour cette HDR [B3], écrit
avec Cristina Toninelli : il n’y a pas de transition de phase pour la diffusion d’une particule
marquée dans le modèle de Kob-Andersen (KA). Ceci contredit des prédictions issues de
la littérature physique et basées sur des simulations numériques. L’erreur d’interprétation
peut s’expliquer par la convergence très rapide vers 0 du coefficient de diffusion.

La section 1.3 conclut ce chapitre avec un recensement (à la fois plus court et plus
complet) des résultats connus sur la dynamique hors équilibre des KCSM. La question
générale est la suivante : lorsque la configuration initiale est choisie suivant une mesure qui
n’est pas la mesure d’équilibre, la loi du système converge-t-elle vers la mesure d’équilibre,
et si oui comment ? Ce problème est en fait abordé sous deux angles un peu différents. Le
cas le plus naturel est celui où la mesure initiale est produit, mais avec une densité différente
de celle de la mesure d’équilibre. Dans le même ordre d’idée, on peut considérer différentes
mesures initiales, avec un comportement assez homogène en espace. On s’attend au moins
à ce qu’en l’absence d’amas bloqués au temps initial, et pour des densités d’équilibre
inférieures au seuil critique, il y ait convergence vers la mesure d’équilibre. Ce résultat
minimal n’est pourtant connu que dans des cas très particuliers. Un deuxième type de
problème se présente lorsqu’on choisit la mesure initiale de sorte qu’une fraction de l’espace
soit initialement occupée. On s’intéresse alors à la frontière entre la région des points où
une mise à jour a été possible et son complémentaire. Dans des cas très particuliers (dont
l’un est étudié dans [B4], avec Aurélia Deshayes et Cristina Toninelli), on sait montrer
que cette frontière progresse linéairement en temps, avec des fluctuations gaussiennes en
dimension 1. Pour les deux questions, les résultats sont très partiels et laissent à penser
qu’il manque encore des outils pour résoudre le problème. Un point crucial dans les travaux
présentés et qui demande à être mieux compris est la capacité d’un KCSM à générer des
espaces vides (permettant de satisfaire les contraintes) – ou du moins à les conserver.

Dans le deuxième chapitre de ce manuscrit, je présente mes travaux liés aux limites
hydrodynamiques. Les questions étudiées sont les incontournables de ce domaine : on
considère un système de particules avec dynamique conservative, et on s’interroge sur
l’évolution du profil de densité avec le temps. Plus précisément, on cherche d’une part
quelle équation aux dérivées partielles (EDP) décrit cette évolution au premier ordre,
et d’autre part comment décrire les fluctuations autour de ce profil limite. J’étudie ici
des dynamiques où le comportement de chaque particule est de type marche aléatoire
symétrique, ce qui induit une évolution du système sur une échelle de temps diffusive (une
région de taille N évoluera en temps d’ordre N2), et des EDP limites où la dérivée en
temps est donnée par le Laplacien d’une certaine fonction de la densité. Après un bref
rappel des questions posées et des méthodes classiques, en Section 2.1, je m’intéresse à des
modèles particuliers.

Le premier est le processus d’exclusion facilité (FEP) ; les résultats le concernant sont
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décrits en Section 2.2. Dans ce modèle de type exclusion, chaque particule saute vers un
voisin vide à condition d’avoir une autre particule comme voisine. Les résultats disponibles
jusqu’ici sont restreints à la dimension 1. Dans ce cas, il est en effet possible d’associer
au FEP un processus de type zero-range dont l’analyse est plus simple. Dans une paire
de travaux en collaboration avec Clément Erignoux, Makiko Sasada et Marielle Simon
[B5, B6], nous montrons que la limite hydrodynamique de ce système est décrite par une
équation de type problème de Stefan (donc problème à frontière libre)

∂tρ = ∆

(
2ρ− 1

ρ
1ρ>1/2

)
. (1)

Dans [B5], nous montrons d’abord le résultat de limite hydrodynamique dans le régime
surcritique où la densité est uniformément supérieure à 1/2. Pour appliquer la méthode
d’entropie, l’étape principale consiste à montrer qu’en temps sous-diffusif, le système at-
teint une configuration active (dans laquelle les sites vides sont isolés). Dans [B6], nous
identifions les mesures stationnaires invariantes par translation du FEP, ce qui nous permet
de montrer la limite hydrodynamique pour un profil initial quelconque. Le deuxième ré-
sultat principal de l’article est de montrer que se forme en temps sous-diffusif une frontière
entre phases active/gelée au niveau microscopique. Cette frontière coïncide nécessairement
avec la frontière macroscopique définie par le problème de Stefan limite.

Le deuxième modèle considéré est celui des milieux poreux, traité en Section 2.3. Dans
ce modèle, une particule en x saute en x± 1 à un taux donné par le nombre de particules
présentes sur les deux sites voisins de la paire {x, x± 1}. Il était connu [53] que la limite
hydrodynamique est donnée par l’équation des milieux poreux ∂tu = ∆u2. Dans [B7],
avec Patricia Gonçalves et Marielle Simon, nous étudions les fluctuations de ce système
à l’équilibre (donc autour d’un profil constant) dans le cadre faiblement asymétrique, où
chaque particule a un biais d’ordre N−γ vers la droite. Nous montrons que, pour γ > 1,
le champ de fluctuations converge dans la limite diffusive vers un processus d’Ornstein-
Uhlenbeck dYt = 2ρ∆Ytdt +

√
2ρ2(1− ρ)∇dWt. Dans le cas plus intéressant γ = 1/2,

c’est l’équation de Burgers stochastique qui émerge à la limite :

dYt = 2ρ∆Yt − 4∇(Y2
t )dt+

√
2ρ2(1− ρ)∇dWt.

L’ingrédient principal pour montrer ce résultat est la preuve d’un principe de Boltzmann-
Gibbs à l’ordre 2. Les propriétés d’ergodicité du processus ne sont pas suffisantes pour
suivre la preuve standard de ce principe (en particulier, une configuration dans laquelle les
particules sont toutes à distance supérieure à 3 est gelée). Nous pallions ce problème en
utilisant des arguments de chemin.

Pour terminer, le chapitre 3 de ce manuscrit rassemble mes travaux effectués dans
le domaine des marches aléatoires en milieu aléatoire (dynamique). Je commence par
rappeler en Sections 3.1.1 et 3.1.2 certains résultats classiques basés sur des arguments
d’analyse spectrale qui peuvent s’utiliser lorsque l’environnement vu de la particule est
stationnaire. On peut considérer que cette partie de la théorie est bien comprise. Lorsque
l’environnement vu de la particule n’est plus stationnaire, les résultats sont beaucoup plus
partiels. En Section 3.1.3, je rappelle certains résultats disponibles dans ce cas, sous des
hypothèses de mélange fortes sur l’environnement. Mes travaux visent en particulier à
obtenir des théorèmes limites (loi des grands nombres et théorème central limite) sous des
hypothèses de mélange non-uniforme – un des exemples d’applications que je garde en tête
étant les KCM.
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En Section 3.2, je décris les travaux [B1, B2] écrits avec Luca Avena et Alessandra
Faggionato. Dans [B1], nous considérons des environnements stationnaires satisfaisant
une inégalité de Poincaré (par exemple comme beaucoup de KCSM dans le régime er-
godique). Les marches aléatoires que nous considérons sont des perturbations de marches
“stationnaires” : l’environnement vu de la marche non perturbée reste stationnaire, et
la taille de la perturbation est contrôlée par le trou spectral de l’environnement. Ces
hypothèses nous permettent d’écrire des développements en série de quantités qui carac-
térisent l’environnement vu de la marche perturbée, et à terme de montrer loi des grands
nombres et TCL. Une des difficultés est qu’on doit changer d’espace : si l’environnement
est naturellement décrit par un semi-groupe dans L2(µ), l’environnement vu de la marche
perturbé se comporte mieux dans L2(µ̂), où µ̂ est sa mesure stationnaire. Dans [B2],
nous explorons quelques conséquences des résultats de [B1] dans des cas particuliers, par
exemple lorsque l’environnement est donné par le modèle Est – l’un des KCSM les plus
emblématiques. Un résultat intriguant porte sur la ε–marche aléatoire, qui saute à droite
avec proba 1 + ε sur une particule, 1− ε sur un site vide. Dans le régime où les résultats
de [B1] sont valides (ε assez petit), la vitesse asymptotique est la même (et non nulle), que
l’environnement soit le modèle Est ou son image par une symétrie miroir.

Dans les travaux suivants, je travaille avec des hypothèses de mélange moins rapide (non
exponentiel) sur l’environnement, au prix d’une perte de généralité soit sur l’environnement
soit sur la marche aléatoire.

En Section 3.3, je considère un environnement donné par un nuage poissonnien de
marches aléatoires simples indépendantes. Dans [62], les auteurs montrent qu’à forte den-
sité, la ε–marche aléatoire satisfait LGN et TCL. Dans [B8, B10], avec Marcelo Hilário,
Renato dos Santos, Vladas Sidoravicius and Augusto Teixeira, nous étendons ces résultats
dans plusieurs directions. D’une part, toujours à haute densité mais en dimension plus
grande ; d’autre part à basse densité ou avec fort biais sur les particules en dimension
1. La preuve repose sur un argument de renormalisation pour montrer une propriété de
ballisticité de la marche aléatoire. C’est principalement cette étape de la preuve qui de-
mande des idées nouvelles par rapport au cadre de [62]. Une fois la ballisticité établie, la
connaissance fine que nous avons de l’environnement choisi permet de définir des temps de
renouvellement, et donc de découper la trajectoire de la marche en incréments iid.

Le dernier travail présenté ici ([B9], avec Marcelo Hilário et Augusto Teixeira, Sec-
tion 3.4) porte sur des environnements assez généraux, mais uniquement en dimension 1.
L’autre restriction forte porte sur les marches aléatoires qui peuvent être considérées : nous
n’autorisons que des marches faisant des sauts de ±1. En revanche, notre cadre de travail
n’utilise pas de propriété de Markov, et nous pouvons considérer des marches en milieu
aléatoire avec une interaction plus générale que celle couramment utilisée. L’hypothèse
principale que nous faisons sur l’environnement demande une décroissance des covariances
polynomiale en temps, avec un exposant suffisamment élevé. En particulier, cette hy-
pothèse ne demande pas d’uniformité dans la propriété de mélange, et permet (en dimen-
sion 1 et pour des marches aux plus proches voisins) d’étendre les résultats de [B1] hors
du régime perturbatif. L’hypothèse de mélange étant aveugle à l’inversion du temps, nous
pouvons aussi traiter le cas par exemple du processus de contact rétrograde, beaucoup
moins bien compris que le processus de contact standard.
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Introduction in English

In this manuscript, I present work I did after my PhD, mainly as a junior researcher
placed at ICJ since 2014. As we will see, though these works concern a priori distant
domains in probability, they are not placed together by chance. At the beginning of the
story lies a family of models: kinetically constrained models, or KCM. These are the
systems on which I did my PhD and I present them at the beginning of Section 1.1. Aside
from their intrinsic interest, they offer natural examples of systems in which classical
hypotheses fail (typically, ellipticity, monotonicity). It is therefore with these examples
in mind that I started to explore hydrodynamic limits (Chapter 2) and random walks in
random environment (RWDRE). The present manuscript is organized along these three
themes: KCM in Chapter 1, hydrodynamic limits in Chapter 2 and RWDRE in Chapter 3.
Inevitably, this segmentation is partly arbitrary and some problems and discussions would
be appropriate in a different section.

The first chapter is about KCM. Those are interacting particle systems on lattices, with
stochastic synamics, with the specificity that they only evolve if a certain local constraint –
guaranteeing a certain amount of free space – is satisfied. These processes were introduced
with a precise physical motivation: the study of the glass transition. This origin guides
the works in this domain towards specific directions. I collected in Chapter 1 the works
presented for this habilitation in which the point of view seemed most specific to KCM.

Section 1.1 is an introduction to kinetically constrained models. It contains first a re-
minder of the physical motivations that led to their formulation (Section 1.1.1). Next (in
Section 1.1.2) we find a general definition and illustrative examples. I recall in particular
the distinction between KCSM (Kinetically Constrained Spin Models, with Glauber-type
dynamics, i.e. creation/destruction of particles) and KCLG (Kinetically Constrained Lat-
tice Gases, with Kawasaki-type dynamics in which particles jump around). I then state
some basic properties of KCM, first that they are reversible w.r.t. a product measure. I
then explain how to identify at which densities KCSM are ergodic, which depends exclu-
sively on the presence of blocked clusters, a notion coming from bootstrap percolation.
Finally, we see that in general the spectral gap of KCSM is non-zero in the ergodicity
region, which implies exponential mixing of the equilibrium dynamics.

Then we enter the core of the subject, with a Section 1.2 giving a (partial!) recap
of results concerning equilibrium and low temperature dynamics. The goal is to compare
the behavior of KCM to that of glassy materials, and in particular check whether KCM
present a dynamical slowdown similar to that of physical systems. There are several ways to
quantify the speed of the dynamics, or the system’s fluidity. Generally, one considers mostly
the relaxation time (inverse of the spectral gap), which is closely related to the persistence
time. However, the diffusion coefficient of a tracer can be an alternative to measure the
mobility of the system. In this section, we examine how those quantities diverge as the
critical threshold is approached. Concerning the spectral gap, there are numerous results
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(and particularly complete in dimension 2 for KCSM, thanks to a systematic approach
inspired by that developed for bootstrap percolation). I only mention them partially -
those that do appear are gathered in Section 1.2.1. In Section 1.2.2, I mention the sparser
results available on the diffusion coefficient of a tracer. I describe in particular the first
result presented for this habilitation [B3], written with Cristina Toninelli: there is no
phase transition for the diffusion of a tagged particle in the Kob-Andersen model (KA).
This contradicts predictions coming from the physics literature and based on numerical
simulations. The interpretation error may be explained by the very fast convergence to 0
of the diffusion coefficient.

Section 1.3 concludes this chapter with a tour (both shorter and more complete) of
known results on non-equilibrium dynamics of KCSM. The general question is the following:
when the initial configuration is chosen with a distribution that is not the equilibrium
measure, does the law of the system converge to the equilibrium measure, and if so, how?
This problem is in fact attacked from two different angles. The most natural case is the
one in which the initial measure is product, but with a density slightly different from
that of the equilibrium measure. Similarly, one can consider different initial measures
that are more or less homogeneous in space. We expect that, unless there is initially a
blocked cluster, for equilibrium densities below the critical threshold, there is convergence
to equilibrium. However, this result is only known in very specific cases. A second type
of problem arises when one chooses the initial configuration so that a whole fraction of
space (e.g. a half-space) is initially occupied. We may then consider the frontier between
the region in which updates are possible and its complement. In very specific cases (one
of which is presented in [B4]), we can show that this frontier advances linearly in time,
with gaussian fluctuations in dimension 1. For both types of questions, the results are very
partial and we think that we are still lacking appropriate tools to handle the problem. A
crucial point in the works presented here, and which begs to be better understood, is the
capacity of a KCM to generate empty spots (which allow the constraint to be satisfied) –
or at least to preserve them.

In the second chapter of this manuscript, I present my works in connection to hydro-
dynamic limits. The questions I study are the fundamental ones: consider an interacting
particle system with conservative dynamics. How does its density profile evolve? More
precisely, what PDE describes this evolution at first order, and how can the fluctuations
around the limit profile be described. I study dynamics in which the behavior of each
particle is similar to a symmetric simple random walk, which means the system evolves
on a diffusive time scale (a region of size N evolves in a time of order N2). Also, the
time derivative in the limit PDE is given by the Laplacian of some function of the density.
After a short reminder of standard questions and methods in Section 2.1, I consider specific
models.

The first one is the facilitated exclusion process (FEP). The results about it are pre-
sented in Section 2.2. In this exclusion-type model, each particle jumps to an empty
neighbor provided it has another particle as a neighbor. So far the only available results
are restricted to dimension 1. Indeed, in that case it is possible to associate with the FEP a
zero-range process which is simpler to analyze. In two works in collaboration with Clément
Erignoux, Makiko Sasada and Marielle Simon [B5, B6], we show that the hydrodynamic
limit of this system is described by a Stefan problem (i.e. by a PDE with a free boundary
problem)

∂tρ = ∆

(
2ρ− 1

ρ
1ρ>1/2

)
. (2)
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In [B5], we first show the hydrodynamic result in the supercritical regime in which the
density is uniformly above 1/2. To apply the entropy method, the main step consists
in showing that the system reaches an active configuration (in which empty sites are
isolated) in subdiffusive time. In [B6], we identify the translation invariant stationary
measures of the FEP, which allows us to show the hydrodynamic limit for a general initial
density profile. The second main result of the paper is to show that a separation between
active/frozen region appears in subdiffusive time. In the hydrodynamic limit, this frontier
necessarily coincides with that which appears in the Stefan problem.

The second model I consider, in Section 2.3, is the porous medium model. In this
system, a particle at x jumps to x±1 at a rate given by the number of particles present on
the two neighboring sites of the pair {x, x± 1}. It was already known [53] that the hydro-
dynamic limit is given by the porous medium equation ∂tu = ∆u2. In [B7], with Patricia
Gonçalves and Marielle Simon, we study the fluctuations of this system at equilibrium (i.e.
around a constant profile), in the weakly asymmetric setting where every particle has a
bias of order N−γ to the right. We show that, for γ > 1, the fluctuation field converges in
the diffusive limit to an Ornstein-Uhlenbeck process dYt = 2ρ∆Ytdt+

√
2ρ2(1− ρ)∇dWt.

In the more interesting case γ = 1/2, it is the stochastic Burgers equation that we find in
the limit:

dYt = 2ρ∆Yt − 4∇(Y2
t )dt+

√
2ρ2(1− ρ)∇dWt.

The main ingredient to show this result is the proof of a second-order Boltzmann-Gibbs
principle. The ergodicity properties of the process are not sufficient to follow the stan-
dard method to obtain this principle (in particular, a configuration in which all particles
are pairwise at a distance larger than 3 is frozen). We remedy this issue by using path
arguments.

The last chapter gathers my works on random walks in (dynamic) random environment.
In Sections 3.1.1 and 3.1.2, I start by recalling some standard results based on spectral
arguments that can be used when the environment seen from the particle is stationary.
We may consider this part of the theory well-understood. When the environment seen
from the particle is no longer stationary, results are much sparser. In Section 3.1.3, I recall
some available results in this setting, with strong mixing hypotheses on the environment.
My works aim mostly to obtain limit theorems (law of large numbers and central limit
theorem) under non-uniform mixing hypotheses – a class of applications that I keep in
mind being the KCM.

In Section 3.2, I describe [B1, B2], written with Luca Avena and Alessandra Faggion-
ato. In [B1], we consider stationary environment satisfying a Poincaré inequality (like e.g.
most KCSM in the ergodic regime). The random walks we consider are perturbations of
“stationary” walks: the environment seen from the unperturbed walk is still stationary, and
the perturbation size is controlled by the spectral gap of the environment. These hypothe-
ses allow us to write series expansions of quantities that characterize the environment seen
from the perturbed random walk. Eventually, this allows to show LLN and CLT. One of
the difficulties is that we need to change space: if the environment is naturally described
by a semigroup in L2(µ), the environment seen from the perturbed walk behaves better
in L2(µ̂), where µ̂ is its stationary measure. In [B2], we explore some consequences of the
results of [B1] in specific cases, e.g. when the environment is given by the East model –
one of the most emblematic KCSM. We have an intriguing result on the ε–random walk,
which jumps right with probability 1 + ε on a particle, 1 − ε on an empty site. In the
regime where the results of [B1] apply (small ε), the asymptotic speed is that same (and
non-zero), whether the environment is the East model or its image under mirror symmetry.
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In the next works, I work with slower (non exponential) mixing hypotheses on the
environment. The cost is a loss of generality either on the environment or the random
walker.

In Section 3.3, the environment is given by a poissonian cloud of independent simple
random walks. In [62] the authors show that, at high density, the ε–random walk satisfies
LLN and CLT. In [B8, B10], with Marcelo Hilário, Renato dos Santos, Vladas Sidoravicius
and Augusto Teixeira, we extend this result in several directions. On the one hand, still
at high density but in higher dimension; on the other hand at low density or strong drift
on particles, in dimension 1. The proof relies on a renormalization argument to show a
ballisticity property of the random walker. It is mostly this step of the proof that requires
new ideas w.r.t. [62]. Once ballisticity is established, the precise understanding we have of
the environment allows us to build regeneration times, and thus to slice the random walker
trajectory into iid increments.

The last work presented here ([B9], with Marcelo Hilário and Augusto Teixeira, Sec-
tion 3.4) concerns rather general environments, but only in dimension 1. The other strong
restriction is on the random walkers that may be considered: we only allow walkers that
perform ±1. On the other hand, our setting does not rely on the Markov property, and
we may consider walkers with an interaction with their environment more general than
the one commonly used. The main hypothesis we have on the environment requires a
polynomial decay of covariances in time, with an exponent high enough. In particular, this
hypothesis requires no uniformity in the mixing property and allows (in dimension 1 and
for nearest-neighbor random walkers) to extend the results of [B1] out of the perturbative
regime. The mixing hypothesis is also insensitive to time-reversal, so we may for instance
treat the case of the backward contact process, which is generally much less understood
than the forward version.
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Chapter 1

Kinetically constrained models

1.1 Generalities on KCM

1.1.1 Physical motivations

Kinetically constrained models (KCM) have been introduced in the physics literature, originally
by H. G. Fredrickson and H. C. Andersen1 [46, 45]. Their works are part of an ongoing investiga-
tion into the physics of glasses. Glassy materials present indeed two features whose juxtaposition
is puzzling: they are amorphous, yet solid. Microscopically, there is no discernible order in the
molecules that constitute them. Macroscopically, at room temperature, glass is rigid enough that
is can be used routinely in containers or windows [103]. Glassy materials are often described as
amorphous solids.

There are several phenomena that are known to play a role in the particular dynamics of
glasses (see [30, 5] for reviews). Let me focus on one that specifically motivated the definition of
KCM: the cage effect. In order to produce glass, one heats up an appropriate material (e.g. silica)
until it starts being malleable. It is then cooled down very rapidly (quenched), in order to avoid
the transition to crystal. One thing that happens during this cooldown is that –schematically–
molecules are pressed together. This creates a crowding effect, meaning that molecules become
trapped by their neighbors, which effectively form a cage. Note that in order to open a cage
by removing a neighbor, one needs the cage of the latter to be open, and so on. This gives
rise to the idea of models in which motion is forbidden unless there is enough space around.
Kinetically constrained models with conservation of the number of particles (KCLG – typically
the Kob-Andersen model [72], see below) fit this picture reasonably well.

It is a slightly different phenomenon, maybe more subtle, that gave rise to the formulation of
the Fredrickson-Andersen (FA) model and their cousins the kinetically constrained spin models
(KCSM). It occurs on a coarse-grained scale rather than on the molecular level. There, one can
observe that the system is split between regions which are densely packed and practically frozen,
and more active regions. The latter are rare, being energetically costly, but their presence helps
rearrange neighboring regions which in turn can become active and so on. This phenomenon
is called dynamical facilitation. In the model proposed in [46], spins represent coarse-grained
regions, and the authors impose the constraint that regions can flip between active and frozen
only if a neighboring region is active.

In view of their origin, the study of KCM has mostly been focused on their dynamical
properties. The goal is to identify which of the landmarks of glassy behavior are well reproduced
by these models whose thermodynamic behavior (equilibrium distribution) is trivial. Features of
interest include rigidification at low temperature, super-Arrhenius divergence of the viscosity at
the approach of the transition, heterogeneous dynamics, aging... [88, 98] As we will see, KCM
successfully reproduce a number of these phenomena, up to a certain degree. For appropriate
choices of constraints, they can display an ergodic phase transition corresponding to rigidification
below a certain temperature (see Section 1.1.3). Super-Arrhenius divergence of the relaxation

1Not to be confused with the author of The Little Mermaid.
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18 CHAPTER 1. KINETICALLY CONSTRAINED MODELS

time is a feature commonly shared by most KCM, while Arrhenius behavior (which occurs
in strong glasses) is also possible (see Section 1.2.1). Dynamical heterogeneity has also been
identified rigorously in some cases [31, 24], as well as aging phenomena [42, 43, 99].

More recently, KCM have showed up in a different context [90]. In a system of qubits with
strong conservative noise, the second moment of operators is described by the FA-1f model (see
below), and the results of [B4] describe the spreading of the support of local operators.

1.1.2 Definitions and examples

Kinetically constrained models are Markov processes on {0, 1}V , where V is a priori the countable
vertex set of a graph G. In this manuscript, we will always consider G to be either Zd (with
its canonical graph structure) for some integer d, or a subset Λ ⊂ Zd. (e1, . . . , ed) denotes the
canonical basis of Zd. I will write x ∼ y to say that x and y are connected by an edge. Let
ΩΛ := {0, 1}Λ for Λ ⊂ Zd. When Λ = Zd the subscript can be omitted. KCM will be denoted
by (ηt)t≥0, with ηt ∈ ΩΛ. For a configuration η ∈ ΩΛ, η(x) ∈ {0, 1} will denote the state of η at
site x ∈ Λ. I will refer to sites with η(x) = 1 as occupied by a particle, and those with η(x) = 0
as holes, empty sites or zeros. For Λ′ ⊂ Λ, η|Λ′ denotes the restriction of η to Λ′. For x, y ∈ Λ,
η ∈ ΩΛ, we define moreover ηx and ηx,y the configurations satisfying respectively

ηx(z) =

{
η(z) if z 6= x
1− η(x) if z = x

, ηx,y(z) =


η(z) if z /∈ {x, y}
η(y) if z = x
η(x) if z = y.

(1.1)

A local function f : ΩΛ → R is a function that depends on a finite number of coordinates,
i.e. there exists a finite set Λ′ ⊂ Λ such that for all η, η′ ∈ ΩΛ, η|Λ′ = η′Λ′ implies f(η) = f(η′).

In this Chapter 1, for a parameter p ∈ [0, 1] we will write q := 1 − p, and denote by µp the
product Bernoulli measure with parameter p on Ω or ΩΛ. When possible, p may be omitted from
the notation. We also write Varµp , or simply Varp for the variance associated with µp.

We use the following standard notation for asymptotic comparisons: for two functions

f, g : (0, 1]→ R∗+, we write


f = O(g) if lim supq→0 f(q)/g(q) <∞,
f = o(g) if f(q)/g(q)→q→0 0,

f = Ω(g) if lim infq→0 f(q)/g(q) > 0,

f = Θ(g) if f = Ω(g) and f = O(g).

In order to define KCSM and KCLG, let us first introduce the notion of update family : it
is a finite family U = {U1, . . . , Un} of finite subsets of Zd \ {0}. With a given update family is
associated a family of constraints (cx(η))x∈Zd,η∈Ω which takes values in {0, 1} and is defined as

cx(η) =

{
1 if ∃k ∈ {1, . . . , n} s.t. η|x+Uk ≡ 0,

0 else. (1.2)

Definition 1. The KCSM with update family U = {U1, . . . , Un} and density p ∈ [0, 1] is the
Markov process (ηt)t≥0 with generator

Lf(η) =
∑
x∈Zd

cx(η)[p(1− η(x)) + qη(x)] [f(ηx)− f(η)] , (1.3)

defined on local functions. We will sometimes abbreviate rx(η) = p(1− η(x)) + qη(x).

A version of this process can be constructed more explicitly in a standard way. Attach to
each site x ∈ Zd independent Poisson point processes of parameter 1 and think of them as clock
rings, signalling times for possible updates. When a clock rings at x, check if the constraint is
satisfied. If that is the case, sample independently a Bernoulli variable with parameter p and
replace the value of the configuration at x by this variable. If the constraint is not satisfied, the
configuration is not updated. A standard argument allows to justify that this construction is
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well-defined [59]. The associated semi-group (acting on f ∈ L2(µp)) will be denoted by Ptf(·)
or E·[f(ηt)].

We can also define KCSM in a restricted region of space Λ ⊂ Zd. In that case, we fix a
configuration ω ∈ Ω which acts as a boundary condition and define

cΛ
x (η) = cx(η|Λ · ω|Λc), (1.4)

where the dot indicates concatenation. The KCSM in Λ with boundary condition ω is then
defined as (1.3), restricting the sum to x ∈ Λ and replacing cx by cΛ

x . A graphical construction
similar to the one above is possible.

Let me introduce some of the most emblematic KCSM. The East and FA-1f models in di-
mension 1 are illustrated in Figure 1.1.

FA-jf The Fredrickson-Andersen j-spin facilitated model has the constraint that at least j nearest
neighbors are empty. In the above framework, that means that the Ui’s are the

(
2d
j

)
subsets

of nearest neighbors of the origin with cardinality j. In particular, we need j ≤ 2d in order
to possibly satisfy the constraint somewhere. j = 0 is just the empty constraint, in which
case we are left with the dynamics known as Independent Spin Flips.

East The East model was originally introduced in one dimension [66], with the constraint that
the neighbor on the East side is empty. On Z, this means that U = {{1}}. In higher
dimension, this can be generalized to U = {{e1}, . . . , {ed}}, so the constraint requires at
least one empty neighbor in the positive direction.

North-East This is another possible generalization of the East model in higher dimension. The con-
straint is stronger, in that it requires all neighbors in the positive direction to be empty,
i.e. U = {{e1, . . . , ed}}.

Let us now define Kinetically Constrained Lattice Gases (KCLG). In general, one could be
interested in dynamics that allow long-range jumps (or exchanges). For the purpose of this
manuscript, it is enough to consider only nearest-neighbor jumps. We can then define KCLG
through a family of constraints (cx,y(η))x∼y∈Zd,η∈Ω that should be satisfied in order to allow an
exchange between the configurations at x and y. The constraint should not involve x, y in that
it should be satisfied both before and after the exchange. It should also be local and translation
invariant.

Definition 2. The KCLG with constraints (cx,y(η))x∼y∈Zd,η∈Ω is the Markov process with gen-
erator

Lf(η) =
∑
x∈Zd

∑
y∼x

cx,y(η) [f(ηx,y)− f(η)] . (1.5)

Just as for KCSM, one can give a graphical construction for these processes, in which Poisson
clocks are attached to edges and signal times at which states might be exchanged at an edge’s
ends. We use the same notations as for KCSM. KCLG restricted to a subset Λ can also be defined,
and one then has to decide what happens at the boundary. One possibility is to fix a boundary
condition and allow exchanges only between sites in Λ; another is to allow creation/destruction
of particles at the boundary, which then acts as a reservoir.

Let us now give the examples of KCLG that we will consider here.

KA-jf The Kob-Andersen models [72] are the conservative version of the FA-jf models. In the
KA model with parameter j, cx,y requires that both x and y have at least j − 1 empty
neighbors in Zd \ {x, y}. For j = 1, we recover the simple symmetric exclusion process
(SSEP).

PMM The porous medium model has been studied in [13, 53]. Section 2.3 will explain why this
name is starting to stick. In its simplest version, cx,y requires that either x has an empty
neighbor before and after the exchange, or y does. In Section 2.3 we will see a more
complicated version of this.
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Figure 1.1: Top, the dynamics of the East and FA-1f models in dimension 1 with density p = 0.4;
bottom, the PMM model. Particles are in black, holes in white. The initial configuration is
chosen as the product Bernoulli measure with parameter 0.4. The time direction is vertical and
downwards (but the latter precision is superfluous, see Property 1).
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1.1.3 Basic properties: reversibility and ergodicity

The first notable property that is shared by KCSM and KCLG is that they admit a very simple
equilibrium measure2.

Property 1. Let p ∈ [0, 1]. KCSM with density p and KCLG are reversible w.r.t. µp. µp is
called equilibrium distribution.

This can be easily checked by noticing that the detailed balance condition is satisfied. If one
removes the constraints from (1.3) and (1.5) this is a well-known fact. But adding the constraint
does not affect detailed balance, since the constraint is the same to perform an update and
reverse it.

Remark 1. If one wants to write the probability of a configuration σ as exp(−βH(σ)), with
H(σ) =

∑
x(1 − σ(x)) a Hamiltonian without interaction terms, it is natural to express the

inverse temperature β as log(p/q).

This gives us in particular one invariant measure for KCSM and a family of invariant measures
for KCLG. It is however not true in general that it is the only one (it is not even the only reversible
measure in general). In fact, we have few answers to the following question.

Question 1. What are the reversible or invariant measures for a given KCM?

An easier question, directly related to the physical motivation for KCMs, is whether they can
be qualified as rigid at some density, meaning that some updates would never occur.

Question 2. 1. Fix a KCSM with density p ∈ (0, 1). Starting from µp, is it true that with
probability 1 any given site will switch state during the dynamics (i.e. the dynamics is
ergodic)?

2. Fix a KCLG and a density p ∈ (0, 1). Starting from µp, is it true that with probability 1
any pair of neighboring sites will exchange their states during the dynamics?

There is a satisfying answer to this question in the case of KCSM, as I detail below (see
Proposition 1). For KCLG however a general strategy to answer this question has yet to be
found. Before moving to the answer in the case of KCSM, let us examine some illustrative
examples.

The first one is the case of initial density 1: when every site is initially occupied by a particle,
unless the constraint is moot (e.g. a KCSM with U = ∅), the system remains frozen in its initial
state. This is a trivial observation, but already signals that KCSM admit at least two reversible
measures: µp and δ1, where 1 denotes the entirely filled configuration.

Let us examine the case of FA-3f in dimension d = 2. There, it is readily checked that a 2×2
initially occupied square will remain occupied throughout the dynamics, since the four particles
collaborate in preventing their respective constraints from being satisfied. In particular, if the
initial configuration is sampled with law µ, there are infinitely many such finite structures that
remain frozen. This argument can be generalized to any FA-jf with j > d, and from now on we
will only consider the cases j ≤ d. Similarly, KA models will always have parameter j ≤ d.

Let us now move to FA-2f. There it can be checked that no finite structure is frozen on its
own. However, a double infinite line of particles can never be updated. One could also cook up
more complicated structures that remain frozen throughout the dynamics.

It appears that one obstruction to answering Question 2 positively is the existence of a blocked
cluster, which is defined below. It turns out that it is in fact the only one. In order to state this
properly, let us define the bootstrap procedure associated with the update family U . It takes an
initial configuration η ∈ Ω, removes particles at every site where the constraint is satisfied and
iterates infinitely many times (this is similar to running the KCSM dynamics in discrete time
with parameter p = 0). In the limit, we obtain a configuration [η] in which no occupied site
satisfies the constraint. We say that the remaining particles form blocked clusters.

2This is in fact a built-in property, see e.g. [46, 88].
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Proposition 1. [27] The KCSM dynamics at density p is ergodic iff µp([η]0 = 0) = 1. This
defines a critical density pc ∈ [0, 1] such that the KCSM is ergodic for all p < pc and non-ergodic
for p > pc.

In particular, East and FA-jf (j ≤ d) are ergodic at any density p < 1; FA-jf (j > d) is
ergodic at no density p > 0; North-East is ergodic for p ≤ pc, where pc is the critical parameter
for site oriented percolation (every remaining particles in [η] is the starting point of an infinite
up-right path of occupied sites).

For KCLG, there is no known systematic procedure that would play the role of bootstrap
percolation. It is however possible to show the existence of a critical density pc. It is characterized
([29, Proposition 2.16]) as the highest density below which, with probability one, it is possible
(through arbitrarily many allowed exchanges) to exchange the values at the extremities of any
edge. For KA with parameter j ≤ d and the PMM model, pc = 1 [101]. Note that this is obvious
in the case of the PMM: if initially there are somewhere in the system two empty sites at distance
1 or 2, it is possible to move them around the space, regardless of the configuration of particles,
and thereby bring them where they are needed to perform an exchange. Systems presenting
this feature (a finite group of empty sites can move freely throughout space) are known as non-
cooperative. KA models on the other hand are cooperative (except for j = 1), which makes their
study significantly more involved.

Question 1 is harder to answer, even in the case of KCSM. It is already clear that in the
non-ergodic cases, there are several reversible measures. This can also happens in ergodic cases:
in the East model, any product measure in which the density is 1 to the right of a certain x,
0 at x and p to the left of x is reversible (they are in fact the only invariant measures, along
with the limit cases x = ±∞ corresponding to µ and δ1). Thanks to Jan Swart, we recently
discovered that [84] can be adapted to show that the only invariant measures for the FA-1f model
in dimension 1 are µ and δ1 (Appendix A). This is also expected to hold in higher dimension.
Aside from that, unfortunately, little is known.

1.2 Equilibrium and low temperature dynamics

In this section, we focus on equilibrium dynamics of KCMs: we consider their dynamical prop-
erties when the initial configuration is sampled from the equilibrium measure µp. The goal is to
understand how fast the system relaxes, that is, how long it needs to wait before most informa-
tion on the initial configuration is erased. Of course we need to give a precise meaning to this. A
general result [27] shows that for a large class of KCSM, in the ergodic regime, the process relaxes
to equilibrium exponentially fast in L2(µp), i.e. Varp(Pt) ≤ e−t/T for some T = T (p) ∈ R∗+. The
main object of interest here is the (best) constant T (p), and specifically how it behaves as p
approaches the threshold for ergodicity. On this question, tremendous progress has been made
in the last few years, of which I can give but an unfair account. The interested reader would do
well to check out Ivailo Hartarsky’s thesis manuscript [60] for a more accurate picture.

1.2.1 Relaxation time

A central tool in the study of the dynamics of KCMs is the inverse of the spectral gap of L, or
relaxation time. This quantity can be defined through spectral notions, but we will mostly use
the following variational characterization.

Definition 3. The relaxation time Trel of a KCM is given by

T−1
rel := inf

f : Varp(f) 6=0

D(f)

Varµp
, (1.6)

where the infimum is taken over f ∈ L2(µp) satisfying Varp(f) 6= 0, and D(f) is the Dirichlet
form which can be computed as

D(f) = −µp(fLf) =
1

2

∑
x∈Zd

µp

(
cx(η)rx(η) [f(ηx)− f(η)]2

)
. (1.7)
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It is a standard exercise to show the following, which quantifies the decorrelation properties
of the system in terms of Trel.

Property 2. For any f, g ∈ L2(µp) with µp(g) = 0,

Varp(Ptf) ≤ Varp(f)e−2t/Trel , |µp(fPtg)| ≤
√

Varp(f)Varp(g)e−t/Trel . (1.8)

In view of the previous proposition, it is natural to ask whether Trel is a finite quantity.

Question 3. In which cases do we have

Trel <∞?

It is immediately clear that this cannot be the case for KCSM in the non-ergodic regime.
Theorem 3.3 in [27] gives a (not too restrictive) condition on KCSM which implies Trel(p) <∞
in the ergodic regime p < pc. In all known cases, Trel(p)→∞ as p↗ pc.

For KCLG on Zd, as for any conservative system, Trel = ∞ at every density. A more
interesting question is to consider the dynamics restricted to a finite volume, say ΛL := [−L,L]d,
and ask whether Trel,ΛL/L

2 has a finite limit (or at least liminf and limsup) as L ↗ ∞. To
have a non-trivial answer, one should further restrict to an ergodic component of the dynamics.
This can be achieved either by replacing µp,ΛL by the measure conditioned on an irreducible
component of the Markov chain [83], or by adding sources in the vicinity of the boundary [13,
101, 29, 79].

Before we move to the understanding of Trel as p approaches pc, let us state another natural
question.

Question 4. Is p 7→ Trel(p) non-decreasing? Increasing in the ergodic regime?

It would seem intuitively clear that, as density increases, the system should take longer to
relax, since fewer constraints are satisfied. The monotonicity of Trel in the density is however
still an open question.

It is now time to consider the most important question concerning Trel. This quantity (or
closely related ones) can be measured experimentally in glassy materials, and its anomalous
behavior as the system freezes is one of the landmark of glassiness. Being able to quantify the
divergence of Trel at the approach of pc is therefore critical to assess the relevance of KCSM in
the study of glassy materials.

Question 5. In KCSM, how does Trel(p) diverge as p↗ pc?

For a comprehensive review of the current state of the art on this question, the reader is
advised to check [60]. Here, I will merely collect the results concerning the examples of models
introduced in Section 1.1.2. But I do want to point out that available results have reached an
impressive degree of generality, especially in dimension 2. In that case, for every model with
pc = 1, the leading behavior of Trel can be predicted on the basis of simple geometric properties
of the update family.

Theorem 1. We have the following estimates on Trel(p) as p↗ pc (recall that q = 1− p).

FA-1f [27, 92]

Trel = Θ(1/q3) if d = 1
∃0 < c < C <∞ s.t. c/q2 ≤ Trel ≤ C log(1/q)/q2 if d = 2

Trel = Θ(1/q2) if d ≥ 3.

FA-2f [61] In dimension d = 2,

exp

(
π2

9q
(1−O(

√
q))

)
≤ Trel ≤ exp

(
π2

9q
(1 +

√
q(log 1/q)O(1))

)
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East [1, 27, 35, 23, 34] Let n := dlog2(1/q)e. In dimension d = 1,

Trel = (1/q)O(1) n!

qn2(n2)
and Trel = qO(1) n!

qn2(n2)
, so that Trel = e

log(1/q)2

2 log 2
(1+o(1)

.

In dimension d ≥ 2,
Trel,Zd = (Trel,Z)

1
d

(1+o(1)).

The results above display a variety of possible behaviors for Trel. The divergence for FA-1f
(a power of q) is called Arrhenius behavior and corresponds to an exponential in the inverse
temperature. The divergence for East (an exponential in the square of the inverse temperature)
corresponds to a fit that has been proposed for fragile glasses [88].

Question 6. In KCLG, how do lim inf or lim supTrel,ΛL/L
2 diverge as p↗ pc?

For KA, the question is solved by the following result. Here, a source is a point on the
boundary which is updated by creating (resp. destroying) a particle at rate p (resp. q). Adding
these sources to the dynamics on ΛL fixes the equilibrium density at p.

Theorem 2. [79] For the KA-2f model with sources at the boundary of ΛL, there exist positive
constants c, c′ such that

exp

(
c

1

q1/(d−1)

)
≤ lim inf Trel,ΛL/L

2 ≤ lim supTrel,ΛL/L
2 ≤ exp

(
c′

log(q)2

q1/(d−1)

)
.

For the KA-jf model with sources at the boundary of ΛL, there exist positive constants c, c′ such
that

exp(j−1)

(
c

1

q1/(d−1)

)
≤ lim inf Trel,ΛL/L

2 ≤ lim supTrel,ΛL/L
2 ≤ exp(j−1)

(
c′

1

q1/(d−1)

)
,

where expk denotes the exponential iterated k times (e.g. exp(2)(x) = ee
x).

[13, 83] gives the existence of the lim sup for the PMM model with sources or restricted to
an ergodic component with fixed number of particles. The divergence of the optimal bounds as
q → 0 is still unsettled ([83] gives an upper bound q−4).

1.2.2 Tracer diffusion

1.2.2.1 Diffusion coefficient

Another way to measure the mobility of the system consists in probing it with an extra particle (as
in Brown’s observation of trapped particles in pollen grains). This extra particle can be described
by a Brownian motion with a certain diffusion coefficient which is related to the dynamics of the
surrounding fluid. A celebrated property of homogeneous liquids, is the Stokes-Einstein relation,
which states that the product between diffusion coefficient D and relaxation time is proportional
to the temperature [58]:

DTrel ∝ β−1. (1.9)

In heterogeneous media, this relation is no longer true, which is interpreted as the fact that the
extra particle only needs local rearrangements to diffuse and can restrict its trajectory to more
favorable regions of space, whereas relaxation time by nature has to consider equally regions
with different mobilities. In experiments, (1.9) has to be corrected to D ≈ T−ξrel with ξ 6= 1.

Let us define what we mean by a tracer in a KCM. In KCLG, it is simply a tagged particle
started from the origin. If we denote L the generator of the KCLG, the generator of the joint
process of the tracer and its environment (Xt, ηt)t≥0 is given by

LT f(x, η) = Lf(x, ·)(η) +
∑
y∼x

cx,y(η)η(x)(1− η(y)) [f(y, ηx,y)− f(x, η)] . (1.10)
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In KCSM, a tracer is an extra particle that is not felt by the surrounding material and can only
move between empty sites. The generator of the joint process is given by

LT f(x, η) = Lf(x, ·)(η) +
∑
y∼x

(1− η(x))(1− η(y)) [f(y, η)− f(x, η)] . (1.11)

Note that in both cases, the trajectory of the tracer (Xt)t≥0 is not a Markov process. The
process with generator LT is a bit annoying to study, given the interdependence of its coordinates,
its non-compact state space etc. A more pleasant object is the environment seen from the particle,
which we will meet again in Part 3. It is simply the process defined on Ω by σ· := (τXtηt)t≥0. A
first nice feature is that it is markovian, with generator

Lf(σ) =
∑
y∼0

c0,y(σ)(1− σ(y))
[
f(τy(σ

0,y))− f(σ)
]

+
∑

x∼y∈Zd\{0}

cx,y(σ) [f(σx,y)− f(σ)] (KCLG) (1.12)

Lf(σ) =
∑
y∼0

(1− σ(0))(1− σ(y)) [f(τyσ)− f(σ)]

+
∑
x∈Zd

cx(σ) [f(σx)− f(σ)] (KCSM). (1.13)

Also, several nice properties of the environment are transferred to this process.

Property 3. 1. The process with generator L is reversible w.r.t. µp in the KCSM case, µ̄p :=
µp(·|σ(0) = 1) in the KCLG case.

2. If the process with generator L is ergodic w.r.t. µp, the process with generator L is ergodic
w.r.t. the previous reversible measure.

In addition to having nice properties, the environment seen from the particle is useful, in that
its knowledge allows to reconstruct the trajectory (Xt)t≥0. We will only need this to be true in
a very weak sense. Precisely,

Xt =

∫ t

0
j(σs)ds+Mt, (1.14)

whereM is a martingale w.r.t. the natural filtration and j is the instantaneous drift of the tracer,
i.e.

j(σ) =

{∑
y∼0 y(1− σ(0))(1− σ(y)) (KCSM)∑
y∼0 yc0,y(σ)(1− σ(y)) (KCLG).

(1.15)

(1.14) is very useful, given the nice properties of the process σ· that appears in the integral.
Indeed, as I detail in Chapter 3, standard results [70, 37, 95] allow to deduce the following limit
theorem for (Xt)t≥0.

Proposition 2. When the tracer starts from the origin and the environment is chosen initially
with law µp for KCSM (resp. µ̄p for KCLG) in the ergodic regime:

εXt/ε2 =⇒ε→0

√
2DBt, (1.16)

where B is a standard Brownian motion and the convergence holds in the sense of weak conver-
gence of path measures in the Skorokhod space D(R+,Rd).

Moreover, the diffusion matrix D is characterized by the following variational formula: for
u ∈ Rd, for KCSM

u ·Du = inf
f

{
D(f) +

∑
x∼0

µp

(
(1− σ(0))(1− σ(x)) [u · x+ f(τxσ)− f(σ)]2

)}
, (1.17)
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while for KCLG,

u ·Du = inf
f

 ∑
x∼y∈Zd\{0}

µ̄p

(
cx,y(σ) [f(σx,y)− f(σ)]2

)

+
∑
x∼0

µ̄p

(
c0,x(1− σ(x))

[
u · x+ f(τx(σ0,x))− f(σ)

]2)}
. (1.18)

In both cases, the infimum is taken over local functions f .

1.2.2.2 Positivity of D

The convergence (1.16) is only meaningful if D > 03. It is therefore natural to aks when this
holds.

Question 7. When do we have D > 0?

For KCSM, D > 0 holds as soon as the relaxation time is finite (which in most cases covers
the ergodic regime, except maybe at the critical density). This is consistent with the idea that,
if the system can rearrange, it can also allow the tracer to diffuse.

Proposition 3. [23] For KCSM, there exists c > 0 such that

DTrel ≥ cq2.

For KCLG as usual the answer is less general. [13] shows that D > 0 for the PMM model,
but relies a lot on the non-cooperative nature of this model (a finite group of empty sites can
move freely throughout space). With Cristina Toninelli, we showed [B3] that D > 0 for KA-jf
models with j ≤ d, suggesting a strategy of proof that could apply to other cooperative models.
After collecting the above results, let me explain the strategy with some detail.

Theorem 3. [13, B3]At any density p < 1, for the PMM and KA-jf (j ≤ d) models, D > 0.

Strategy of proof for KA. The main tool that we use is the one that was developed to show
ergodicity of the models, namely the notion frameability. A box ΛL = [−L,L]d is frameable if it
is possible to rearrange the configuration inside it (without looking outside) in such a way that
its boundary becomes empty. It is known [101, 29] that, as L → ∞, the probability of being
frameable goes to 1.

The initial idea [100] to show D > 0 was to couple the tagged particle with a random walk
in a random environment given by the superposition of frameable boxes. This turned out to be
difficult to track down, as the motion of the tagged particle had itself an effect on its environment.
What we did instead was to compare D with the diffusion coefficient of an auxiliary walk, which
could only jump on a coarse-grained lattice (L+ 2)Zd, with L large enough.

It is easier to describe this auxiliary walk in dimension 2 (and j = 2). The interested reader
can check [B3] for the generalization to higher dimensions. We split the coarse-grained lattice as
indicated in Figure 1.2.2.2. We have square boxes of side length L, rectangles of dimension 2×L
or L× 2, and small 2× 2 squares. The auxiliary walk jumps between down-left corners of small
squares, but only if a certain condition is satisfied by the environment around these positions.
We want that the 6 big squares in Figure 1.2.2.2 are frameable, and that the 7 rectangles each
have an extra zero. Rotating the picture gives the condition required to jump between x and
x+(L+2)e2. This auxiliary walk satisfies two conditions, which put together yield the theorem.

1. For L large enough, the auxiliary walk is a random walk on a supercritical percolation
cluster, and its diffusion coefficient Daux is therefore positive [37]4.

3If D = 0, we have the wrong scaling. This happens for instance in the KA-1f model (aka SSEP) in dimension
1[95].

4There is a minor issue with the fact that the percolation structure underlying the auxiliary walk has a finite
range of dependence, but this is easily solved.
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x x + (L + 2)e1

L

Figure 1.2: The condition that has to be satisfied by the environment in order for the auxiliary
walk to be allowed to jump between x and x+(L+2)e1. Frameable boxes are depicted as already
framed (i.e. with empty boundary).

2. If the conditions are satisfied for the auxiliary walk to jump between x and x+ (L+ 2)e1,
it is possible for the KA dynamics to bring a particle from x to x+ (L+ 2)e1 in a number
of (allowed) moves bounded by some constant depending on L (more on that later). This
means that the terms appearing in the variational formula for Daux (similar to (1.17))
can be bounded (thanks to Cauchy-Schwarz inequality) by a sum of terms that appear in
(1.17). In particular, D ≥ c(L)Daux with c(L) > 0.

To conclude, we just need to take L large enough but finite.

Let me conclude this section with an intriguing question. In [51], the authors consider the
spiral model in 3 dimensions (a KCSM with special rules that we do not need to define for the
discussion) and argue that its critical density coincides with that of oriented site percolation
(which is false and does not even fit their simulations). More interestingly, they also observe
in their simulations a regime of densities above the critical one (i.e. where the KCSM is not
ergodic) in which a tracer seems to have positive diffusion coefficient. The intuitive explanation
is that just above the critical density, the first blocked clusters that develop are essentially one-
dimensional. In particular their presence should not restrain the tracer to a finite region in space,
and it would be able to move through their complement, a bit like a bird in a room encumbered
by columns. As the density increases further, the blocked clusters start forming a percolating
surface and the diffusion coefficient vanishes.

Question 8. Is it possible to have diffusion in the non-ergodic regime? Can the convergence
(1.16) still hold in this regime and can the diffusion coefficient have a transition that does not
coincide with the ergodic one?

1.2.2.3 Low temperature estimates

The next natural question concerns the behavior of D at the approach of the critical density.
The picture is less complete than for the relaxation time and (apart from Proposition 3) concerns
only special models.

Theorem 4. [23] For the FA-1f model, D = Θ(q2).
For the East model, qO(1) ≤ DTrel ≤ (1/q)O(1). In particular, the exponent ξ mentioned

below (1.9) can only be 1 in this case.
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What about other KCSM? For models where Trel is a power of 1/q, we expect D = qα+o(1)

and that the methods in [23] should allow to compute α for each example (though no general
proof is available). For other models, the lower bound of Proposition 3 always holds, and the q2

correction does not matter: at first order, D is lower bounded by Trel. On the other side, one
typically needs to find a good test function to plug into (1.17). Following the idea of [79], one
can find an upper bound in terms of the infection time of the origin in bootstrap percolation.
This sometimes matches the lower bound, but for models with a discrepancy one would need to
cook something more precise.

Let us now turn to KCLG. For the PMM, [13] indicates that cq4 ≤ D ≤ Cq2 for some
constants C > c > 0. For KA models, [B3] left the question of the correct behavior open. We
concluded the proof of Theorem 3 by saying the length L appearing in the construction should
be well chosen. In fact, as q → 0, the length at which a box starts to become frameable with
good probability diverges with q. Let us call it Lq. The bounds obtained in [B3] only showed
D ≥ e−cLq , while the natural (and correct guess) would be D ≈ 1/Lq. This has been showed,
along with (almost) matching upper bounds by Assaf Shapira and my student Anatole Ertul in
[41] thanks to the understanding developed in [79].

Theorem 5. [41] For the KA-jf model, for some positive constants c, c′,

exp

(
−c log(1/q)2

q1/(d−1)

)
≤ D ≤ exp

(
− c′

q1/(d−1)

)
if k = 2 (1.19)

exp(j−1)

(
− c

q1/(d−1)

)
≤ D ≤ exp(j−1)

(
− c′

q1/(d−1)

)
if k ≥ 3. (1.20)

Explaining this would take us too far for the purpose of the manuscript; the interested reader
can check [41] for more details. Let us just note that it is no accident that this resembles closely
Theorem 2.

1.3 Non-equilibrium dynamics

So far, we have only considered KCM at equilibrium, in the sense that the initial configuration
was always chosen with distribution µp. In this section, we examine what happens when this is
not the case. As we will see, results in this direction are still very partial. In this section, we
will in fact only discuss KCSM. We discuss some results on KCLG in Chapter 2, particularly in
Section 2.3.

The first question we examine – in Section 1.3.1 – is that of return to equilibrium. Pick ν a
distribution on Ω and let (ηt)t≥0 be a KCSM with η0 ∼ ν. We ask whether it is true that the
law of ηt is close to µp for large t, and in which sense.

Question 9. Consider the random variables Eη[f(ηt)], where f belongs to some class of test
functions5 and η ∼ ν. Does the following holds for some notion of convergence:

Eη[f(ηt)] −→
t→∞

µp(f)? (1.21)

The typical example to have in mind for the choice of ν is µp′ , for some p′ 6= p. Physically,
this would correspond to a quench in temperature of the system.

In Section 1.3.2, we investigate how excitations propagate through the system. We choose
the initial configuration in such a way that part of the system (say, a half space) is initially
occupied. We want to elucidate if and how empty spaces eventually invade the whole space. A
follow-up question is whether this propagation of zeros entails relaxation to equilibrium; this is
in fact very connected to the issues treated in Section 1.3.1.

5Typically, local functions, but in some cases it will be possible and useful to make the support of f dependent
on t.
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1.3.1 Non-equilibrium relaxation

When we choose the initial distribution as µp, where p is the equilibrium density of the KCSM,
we are in a reversible setting. As we saw in Section 1.2, an implication of this fact is that we have
at our disposal quantities that can be easily manipulated (mainly through variational formulas)
to understand the relaxation of the system. There is a quantity which plays a role analog to that
of the spectral gap in the non-equilibrium setting. It is the log-Sobolev constant, which has a
variational characterization similar to (1.6):

α = sup
f : Varµp (f)6=0

2Ent(f2)

D(f)
, (1.22)

where Ent(f) = µp(f log f)−µp(f) logµp(f). When this quantity if finite, (1.21) holds for every
initial η. For us however, α = ∞ and it is simply not true that (1.21) holds regardless of the
initial configuration (just consider η ≡ 1). In fact, the log-Sobolev constant for the dynamics
restricted to a finite set Λ typically scales like the volume |Λ| [43, 20].

Another tool one could wish to use are coupling arguments. For instance, it may seem natural
that, if ν initially contains more empty sites than µp, there should be no significant obstacle to
(1.21). Similarly, it would seem that if (1.21) holds for some p > 0, it should also hold for
p′ < p. Sadly, we have no way of affirming this rigorously. The reason is that KCSM are by
nature non-attractive: in the standard coupling, it is easy to find transitions that do not respect
monotonicity. In particular, we cannot use censoring inequalities, which have proved a very
efficient tool in other contexts.

So what do we have? Positivity of the spectral gap, and not much more. Consequently, we
also have only very partial results, in three directions: 1) perturbative (ν is close to µp), 2) on
the East model (for which a very specific feature allows a rather complete study), 3) on FA-1f
and other supercritical models, at low enough density.

1.3.1.1 A perturbative result

A natural idea, since everything we know is about equilibrium dynamics, is to replace the initial
configuration by one sampled from µ. On a finite volume, this has a cost that can be estimated
by the infinite norm of the Radon-Nicodym derivative of ν w.r.t. µp. If this cost is small enough,
equilibrium relaxation kicks in and we get (1.21). If we deal with infinite volume dynamics, by
finite speed propagation we can reduce the problem to that of a segment with diameter growing
linearly with time. Since the decay given by the spectral gap is exponential in time, the resulting
estimate goes to zero as long as the Radon-Nicodym derivative is at most ec`/Trel on [−`, `] for
some c > 0 small enough.

Proposition 4. [28] Assume Trel < ∞ and d = 1. There exists c > 0 (depending on the range
of the update family) such that, if sup` e

−c`/Trel

∥∥∥ dν|[−`,`]
d(µp)|[−`,`]

∥∥∥
∞
< ∞, then for any local function

f there exist c′ = c′(p) > 0 and C = C(f) <∞ such that

|ν (Eη[f(ηt)])− µp(f)| ≤ Ce−c′t.

Note that the condition holds if for instance ν = µp′ with p′ sufficiently close to p. On the
other hand, even in this simple case, it would not be true in higher dimension.

1.3.1.2 The East model

The East model in dimension 1 is certainly the best understood KCSM, and this is mainly due to
a very specific feature, identified in [1] and refined in [28, 21, 49]. Essentially, the distinguished
zero is a particular trajectory on Z which acts as a dynamic empty boundary condition for the
system on its left (see Section 3.4.2 for a proper definition). Its most important property is that,
if the system on its left is initially at equilibrium, it remains so at a later time. The idea is then
the same as before: by paying an appropriate price we can pretend that the initial distribution
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is µp and then use the relaxation provided by the spectral gap. The advantage here is that the
region on which we need to change the measure is potentially much smaller than in the previous
setting.

Theorem 6. [28, 21, 22, 49] Let f a local function with Supp(f) = [a, b] and assume η has
a zero at some position z > b. Then for the East process on Z, there exist c = c(p) > 0 and
C = C(p) <∞ such that

|Eη[f(ηt)]− µp(f)| ≤ ‖f‖∞(z − a)C∆(η)e−ct, (1.23)

where ∆(η) measures the maximum distance between zeros in [a, z].

In higher dimension, the distinguished zero is a bit less powerful but still very useful. Using
it, [33] was able to establish a stretched exponential decay, later reinforced by Marêché.

Theorem 7. [77] Assume ν satisfies ν(η|[0,`]d ≡ 1) ≤ Ce−c` for some 0 < c < C < ∞.
Then there exist c′ > 0, C ′ < ∞ such that for all t > 0, for all functions f with support in
[−C ′t1/d, 0]d \ {0},

ν (|Eη[f(ηt)]− µp(f)|) ≤ ‖f‖∞e−c
′t/c′. (1.24)

1.3.1.3 The FA-1f model

Let us now turn to the FA-1f model. One might hope that, the constraint being easier to satisfy
w.r.t. the East model, relaxation to equilibrium should occur with greater facility. This may be
true, but we have so far no way of actually showing this, and results on the FA-1f model are
limited to small enough densities.

Recall that Theorem A1 shows that, in dimension 1, the only invariant measures for the
FA-1f model at density p are δ1 and µp. By compactness of the set of probability measures on
Ω, this implies that in order to show (1.21), it is enough to prove that no subsequence of νPt
converges to δ1. This should hold as soon as ν 6= δ1, but so far we are only able to show this for
small enough p (see [84]). The game is essentially to ensure that zeros cannot escape to infinity,
that there is some persistence of zeros around their initial position. This issue haunts the study
of non-equilibrium dynamics for KCSM. In the East model, it was (more or less) easily resolved
via the use of the distinguished zero. In the FA-1f model, the question is more delicate.

The strategies follow essentially two directions. One [20] is rather in the spirit of the above
paragraph, trying to bring the non-equilibrium dynamics into a framework where we can exploit
the positivity of the spectral gap. This is rather efficient in one dimension, where it gives
exponential decay for a rather wide set of densities; less so in higher dimension where it only
gives stretched exponential decay for p < 1/2. The persistence of zeros is controlled by showing
that the distance of the closest zero to the origin is dominated by a biased random walk – which
requires p < 1/2. The second strategy [81] consists in a percolation-type argument saying that, if
the equilibrium density is low enough, the density of updates where the constraint is satisfied is
very high. This has the inconvenient of restricting rather arbitrarily the set of densities covered
by the result, but does give the correct exponential decay in any dimension, and generalises to
every supercritical model in dimension 2 [78].

With the first strategy, we get the following results. The first statement is a more quantitative
result in dimension 1, useful for considering supports of the test functions growing with t. Note
that while (1.23) allowed to choose a support growing exponentially in t, the condition here is a
bit more restrictive.

Theorem 8. [20],[B4, Corollary 3.3]

1. Fix α < 1/2, d = 1. If p < 1/2, there exists c > 0 such that, for all t ≥ 0, if K ≤ et
α , for

all f with support in [−K,K], for all σ whose longest sequence of ones is shorter than
√
t,

|Eν [f(ηt)]− µp(f)| ≤ c−1‖f‖∞e−c
√
t. (1.25)
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2. For x ∈ Zd, η ∈ Ω, denote ξx(η) the smallest distance between x and a zero of η. Assume
there exists θ > 1 such that supx∈Zd ν

(
θξ
x)
<∞ and p < 1/2. Then there exist c > 0 such

that for every local function f , there exists C <∞ such that

|Eν [f(ηt)]− µp(f)| ≤
{
Ce−ct if d = 1,

Ce−c(t/ log t)1/d if d ≥ 2.
(1.26)

The second strategy on the other hand yields the following.

Theorem 9. [81] Assume there exists z ∈ Zd such that ν(θξ
z
) < ∞ for some θ > 1. There

exists p0 > 0 such that for all p < p0 there exists c > 0 such that for all local function f , there
exists C <∞ such that

|Eν [f(ηt)]− µp(f)| ≤ C(f)e−ct. (1.27)

1.3.2 Front progression

1.3.2.1 Results in one dimension

One way of interpreting the first point in Theorem 8 is to say that if initially in a given region of
space, there are no zeros across a distance L, this will be resolved by time at most O(L2). This is
merely an upper bound, but does raise the question of understanding how initially distant zeros
end up at the distance O(1) predicted by the equilibrium distribution.

Let us start in dimension 1 and consider an initial distribution such that, with probability
1, the negative integers are all occupied by particles, and the origin is empty. We would like to
understand how the occupied space is invaded by zeros. Let us denote Xt the position of the
left-most zero (X0 = 0).

Question 10. Does Xt → −∞ as t → ∞? Does Xt/t converge to a negative constant? If so,
can we quantify the fluctuations around the limit?

It is somewhat remarkable that we can basically answer either all or none of the above
questions, depending on the model and density we consider.

Theorem 10. In the East model at any density p ∈ [0, 1)[21, 49], or in the FA-1f model [B4]
at density p < p̄ with p̄ ≈ 0.24, there exists v > 0, σ ≥ 0 such that, for every distribution ν such
that ν(η(x) = 1) = 1 for all x < 0 and ν(η(0) = 0) = 1,

Xt

t
−→
t→∞

−v Pν–a.s., (1.28)

Xt + vt√
t

=⇒
t→∞

N (0, σ2) under Pν . (1.29)

Let us make a few remarks about the statement. First, while it may not be surprising to
have a law of large numbers, it is in fact highly non-trivial to prove. The reason is once again
the lack of monotonicity of KCSMs. If the systems considered were attractive, (Xt)t≥0 would
be a subadditive process and Kingman’s subadditive theorem would give (1.28) almost for free
(though some work would still be required to check v > 0).

Note that the threshold for validity of the result in the FA-1f model is even lower than in
Theorem 8 for instance. The reason is that we need to guarantee an a priori “spreading of zeros”
even stronger than for the non-equilibrium results. p̄ can in fact be defined in terms of the critical
parameter for the contact process λc: p̄ = (1 + 2λc)

−1. This is not the optimal value that our
proof allows: in principle we could take p̄ = (1 + λTc )−1, with λTc the critical parameter of the
threshold contact process, defined below.

Also notice that in order to fully solve Question 10 in the regime covered by the theorem,
one would additionnally need to show that σ > 0. This is so far only known in the East model
for small enough densities [49]. Finally, note that the speed v and variance σ2 depend only on
the model and density – not the initial distribution. This should become clear with Theorem 11
below: Theorem 10 is a consequence of the (fast) convergence of the process seen from the front
to an invariant measure.
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Theorem 11. Define ωt := τXtηt. Denote by µ̃νt the distribution of ωt under Pν , and by ‖π−π′‖Λ
the total variation distance between the restrictions to ΩΛ of π, π′ two probability measures on Ω.

1. [49] In the East model, for any p ∈ [0, 1), there exist µ̃ a probability measure on Ω, d∗ > 0,
α ∈ (0, 1), C ∈ R+ s.t.

‖µ̃νt − µ̃‖[0,d∗t] ≤ Ce−t
α
. (1.30)

2. [B4] In the FA-1f model, for any p < p̄, there exist µ̃ a probability measure on Ω, d∗ > 0,
c > 0, C ∈ R+ s.t.

‖µ̃νt − µ̃‖[0,d∗t] ≤ Ce−ce
(log t)1/4

. (1.31)

Remark 2. It is possible to view the front as a random walk in random environment (RWRE –
see Chapter 3). With this point of view, Theorem 11 is a very natural statement, saying that the
environment seen from the particle is ergodic and quantifying how fast it approches its invariant
measure.

The framework here differs however from the standard one, since the random walk is inserted
in the environment, e.g. in the sense that its graphical construction uses the same Poisson clocks
and Bernoulli variables. Another standard assumption in works on RWRE is that the law of the
environment is translation invariant. This is obviously not the case here – except in a few specific
situations.

Consider for instance the East model in dimension 1. Since the dynamics on x depend only
on the system restricted to [x,∞], it is not difficult to check that the front can be artificially
considered as a random walk in stationary East environment (and using the same set of Poisson
clocks and Bernoulli variables). This allows to apply the results of [B9] (see Section 3.4).

Once again it is instructive to compare how far we can go in the FA-1f and East model. The
slower decay (still faster than any polynomial) in FA-1f is ultimately inherited from the slower
decay in (1.25) w.r.t. (1.23).

Let us conclude this section by going back to the original problem: Theorem 10 (and its proof)
allows us to quantify even more precisely the return to equilibrium studied in Section 1.3.1. Let
us this time consider the East or FA-1f process in finite volume [1, L], with a boundary condition
that ensures ergodicity (empty boundary condition at L + 1 for the East model, at 0 and/or
L + 1 for FA-1f). General finite state Markov chain results ensure that the processes converge
exponentially fast to equilibrium. But we can be a lot more precise: the understanding we have
gained from the study of the front allows to establish cutoff.

Theorem 12. [49, 40] Denote by µσt,L the distribution of the process started from σ at time t,
and d(t) := supσ∈Ω[1,L]

‖µσt,L − µp‖TV the maximum total variation distance between the law of
the process at time t and the equilibrium measure µp. Under the conditions of Theorem 10, for
all ε > 0 there exists α ∈ R+ independent of L s.t. for L large enough

• For the East model with zero boundary condition on L+ 1, or FA-1f with mixed boundary
condition (zero on L+ 1, one on 0 or vice-versa),

d

(
L

v
− α
√
L

)
≥ 1− ε, d

(
L

v
+ α
√
L

)
≤ ε, (1.32)

where v is the speed appearing in Theorem 10.

• For the FA-1f model with zero boundary condition at 0 and L+ 1,

d

(
L

2v
− α
√
L

)
≥ 1− ε, d

(
L

2v
+ α
√
L

)
≤ ε. (1.33)
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1.3.2.2 Sketch of proof of Theorem 10

Most of the work consists in establishing Theorem 11. With the quantitative convergence to the
invariant measure in our pocket, we can consider Xt =

∑btc
k=1(Xk+1−Xk)+Xt−Xbtc as a sum of

random variables with good mixing properties (i.e. Xk+1 −Xk and Xk′+1 −Xk′ are only weakly
correlated if |k − k′| is large). In a stationary setting, it is a well-known problem to establish
limit theorems for such sums [25]. Here, since we are close to stationarity by Theorem 11, it is
also possible to follow the same kind of strategy.

So how do we prove Theorem 11? Let us assume we have a way to guarantee that zeros do
not wander too far: if at a time s < t there is a zero at a certain position x, then with high
probability at time t there will still be a zero in a small window around x. Then this should give
a push to the front leftwards, and also ensure that the space it goes through remains populated
by zeros. Let us state this as an informal lemma – precise statements are [B4, Lemma 4.4], [49,
Theorem 3.3] or [21, Corollary 4.2].

Lemma 1. Under the hypotheses of Theorem 10, if `, L, t are large and the initial configuration
satisfies some condition depending on M , with high probability the longest sequence of ones in
(ωt)|[L,L+M ] is shorter than `.

For the East model, the desired property is easily established using the distinguished zero.
For the FA-1f, it is more tricky, and the way we follow in [B4] is to use a coupling with an
auxiliary threshold contact process. This is where the threshold p̄ appears. The auxiliary process
(σt)t≥0 uses the same clocks and Bernoulli variables as the graphical construction of the FA-1f
process (see below Definition 1). The difference is that when the Bernoulli variable is 1, the
threshold contact does not need to satisfy the constraint to update the system: it is always
allowed to create particles. It is not difficult to check that the coupling is order-preserving: if
σ0 ≥ η0, for all t ≥ 0, σt ≥ ηt. The interest of introducing σ is that we fall in the realm of
attractive systems. In particular it is now standard that below a certain density threshold6, with
positive probability, starting from a unique infection, the set of infections grows linearly with
time (survival event). Since there are more zeros in FA-1f than infections in the contact process,
this gives us the property we want. It just remain to notice that, on the event of extinction, we
can restart the process from one of the extra zeros of FA-1f (see Figure 1.3.2.2).

It is unclear that this lemma can generalize to higher densities in the FA-1f model. In the high
density regime, the zeros look like they form a branching/coalescing structure (Figure 1.3.2.2),
though there is yet no formalization of this intuition.

With Lemma 1, we are in a good position to apply the results of Section 1.3.1. The issue
of course is that while we try to show that we relax to equilibrium in [Xt, Xt + M ], the front
is moving, so that we always fall short of grasping what is happening immediately near the
front. The workaround is to consider somewhat separately a region “near the front”, which is
allowed only a very short relaxation time and will only manage to behave well with some (small)
positive probability, and a larger region “behind the front”, which is allowed the necessary time
to be brought close to equilibrium. We thus build a coupling between the processes seen from
the front started from two different configurations and show that with high probability they
eventually coincide on [0, d∗t].

1.3.2.3 Open problems

Question 10 has natural generalizations in higher dimensions. Rather than generalizations of
Xt, it is convenient to consider At the set of sites that have been updated by time t, i.e. sites
where there was a clock ring before t at a time when the constraint was satisfied. In dimension
1, At is an interval and it is not difficult to show (under the hypotheses of Theorem 10) that
its leftmost extremity is close to Xt. Now in order to formulate a relevant question, we need to

6In the contact process literature, one usually uses the vocabulary of infections; in our setting, infections
correspond to zeros and a low density for FA-1f means a high infection rate in the contact process.
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Figure 1.3: Two simulations of the FA-1f process on Z started from a single zero. Space is
horizontal and time goes downwards. Left, density is .3; particles are depicted in black, zeros
present in the FA-1f and contact process are in white, zeros present in the FA-1f but not the
contact process in gray. Right, density is .7; initial particles are in black, zeros in white, occupied
sites that have been updated at least once are in gray.

chose an initial configuration that allows At (at least in principle) to invade the entire space.
This will depend on the model. Rather than a long discussion, a few examples are displayed in
Figure 1.3.2.3.

Question 11. Does the process (At)t≥0 have a limit shape, i.e. A s.t.

(1− ε)tA ⊂ At ⊂ (1 + ε)tA (1.34)

for any ε > 0 and t large enough?

This is so far only known in the case p = 0 (and then only for specific examples, but there
should be no significant difficulty to extend the arguments), using subadditivity. Although it
brings us rather far from the initial questions of Section 1.1.1, p = 0 is in fact an interesting case
to consider. Indeed, the FA-1f model with p = 0 is nothing but First Passage Percolation (FPP)
[6] with exponentially distributed i.i.d. passage times (also known as the Richardson model).
The North-East model with p = 0 corresponds to Last Passage Percolation [67], again with i.i.d.
exponential passage times. The East model in dimension 2 with p = 0 corresponds to oriented
FPP [50]. KCM at p = 0 give a natural generalization of these well-studied models.

In the case p > 0, only very partial results are available. [32] shows that the mixing time of
oriented models in [0, L] with empty boundary condition is O(L logL) as soon as the spectral
gap is positive. If there is a limit shape in that case, we expect instead that the mixing time
should be of order L.
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Figure 1.4: Simulations of (top to bottom) the FA-1f, North-East and East model in dimension
2, at densities 0.3, 0.2, 0.3 respectively. Zeros are in white, particles that have been updated at
least once (i.e. in At) in gray, other particles in black. Simulations of FA-1f start from a single
zero in the middle (left) or with empty boundary condition on the left and periodic top/bottom
b.c. (right). North-East is sampled with empty top-right boundary condition (left), or starting
from an empty diagonal (right). East is sampled with empty boundary condition in the top-right
corner (left) and starting from an empty diagonal (right).
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Chapter 2

Scaling limits of constrained models

2.1 Scaling limits of conservative particle systems

The evolution of many physical systems is traditionally described through differential equations.
This is often very efficient and gives good predictions for the behavior of the system consid-
ered. However, in the microscopic world, the relevant structures are discrete in nature (atoms,
molecules, cells, etc). It is a longstanding endeavour to reconcile these two visions of physical
systems. Mathematically, this is generally achieved by taking the scaling limit of a discrete
system.

We consider a Markov process (ηt)t≥0. For simplicity, we consider the state space to be
{0, 1}Z, or {0, 1}TN , where TN := Z/NZ. In principle, a lot of the discussion here would apply
to more general state spaces, e.g. SZd for some countable set S. N , whether present in the state
space or not, is a integer parameter whose destiny is to go to infinity and fixes the space scale
(TN should be thought of as embedded in T := R/Z, with points separated by distance 1/N ,
and similarly Z embedded in R). We will consider conservative systems with nearest neighbor
jumps. This differs from the examples of Section 1.3, and implies that we will have to wait for a
time at least of order N before the evolution of the system can be felt on the macroscopic scale.

The easiest example that we can keep in mind for comparison purposes is the Simple Symmet-
ric Exclusion Process (SSEP), in which particles jump left/right with equal probability, provided
their landing site is empty. Its generator is given by

LSSEP f(η) =
∑
x∈Z

[f(ηx,x+1)− f(η)]. (2.1)

2.1.1 Hydrodynamic limits of symmetric gradient systems

The type of questions we are interested in in this chapter is the following. We want to start our
process from a measure µN associated with a density profile ρ0 : T → [0, 1]. A standard way of
doing that is to choose µN = νNρ0(·), the product measure on {0, 1}TN satisfying

νNρ0(·)(η(x) = 1) = ρ0(x/N). (2.2)

When ρ0 ≡ α ∈ [0, 1], we just write νNα .
There are several ways to allow for more general initial distributions. The one that will

appear in the following discussions involves the relative entropy

H(µ|ν) =

{∫ dµ
dν log dµ

dν dν if µ� ν

∞ else
(2.3)

= sup
f

{∫
fdµ−

∫
efdν

}
, (2.4)

37
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where the supremum is taken over bounded functions. In the methods presented below, it will
be convenient to request that (for ρ0 ∈ (0, 1))

H(µN |νNρ0(·)) = o(N). (2.5)

Note that if ρ̃0 : T→ (0, 1), H(νNρ̃0(·)|νNρ0(·)) = o(N) implies ρ̃0 = ρ̃. Also, if H(µN |νρ(·)) = o(N),
µN is associated with the density profile ρ(·), in the sense that (see [71, Chapter 6, Corollary
1.3]), for any continuous function H : T→ R,

µN

∣∣∣∣∣∣ 1

N

∑
x∈TN

φ(x/N)η(x)−
∫
T
φρ(t, ·)

∣∣∣∣∣∣
 −→

N→∞
0. (2.6)

The question is then to describe the evolution of the density in the system. Intuitively, one
would like to understand the variations of PµN (ηt(x) = 1) as time evolves. In practice, this
quantity is difficult to access and we rather define the density at x using local averages of ηt as
e.g. in (2.6). But the most important point is that, before the first order of this density becomes
different from ρ0, one needs to wait for a time that diverges with N . Typically the time scale is
N2 for symmetric systems, N for asymmetric systems. We will focus on the first case.

Question 12. Can the distribution µNt of ηtN2 under PµN be associated with a profile ρ(t, ·)?
How can we describe ρ(t, ·)?

In the compact setting we chose, it is standard that any limit point of the distribution µNt
has a density w.r.t. the Lebesgue measure. The question of identifying the density is more
interesting. Let us sketch what happens for the simple case of the SSEP. It is well known that
the following quantity is a martingale.

ηtN2(x)− η0(x)−N2

∫ t

0
[LSSEPη(x)]sN2ds, (2.7)

with predictable quadratic variation [η(x− 1)− η(x)]2+[η(x+ 1)− η(x)]2. The integrated quan-
tity can be rewritten as ηsN2(x+ 1) + ηsN2(x− 1)− 2ηsN2(x). The fact that this is the discrete
Laplacian of a local function is crucial to the rest of the story, and is called the gradient property.
Lη(x) can always be written as the gradient of the current: jx−1,x − jx,x+1(η), where jx,x+1 is
the signed current between x and x+ 1, i.e. the rate at which a particle jumps from x to x+ 1
minus the rate at which a particle jumps from x+ 1 to x. The gradient property says that jx,x+1

itself can be written as the gradient of a local function. In the SSEP case,

jx,x+1(η) = η(x)(1− η(x+ 1))− η(x+ 1)(1− η(x)) = η(x)− η(x+ 1). (2.8)

Let us take the average of (2.7), and assume we can replace EµN [ηsN2(x)] by ρ(s, x/N) at
the cost of a negligible error. Choosing x = Nu for some u ∈ T, we get

ρ(t, u)− ρ0(u) =

∫ t

0
∆Nρ(s, u)ds+ error, (2.9)

with ∆Nh(u) = N2(h(u + 1/N) + h(u − 1/N) − 2h(u)). This gives a good guess for ρ(t, ·): it
should be the solution at time t to the heat equation on T with initial condition ρ0

1:

∂tρ = ∆ρ, ρ(0, ·) = ρ0. (2.10)

Let us now discuss two standard methods to reach the conclusion that µNt can be associated
to the density profile ρ(t, ·). The reader already familiar with these methods may skip to the
next section.

1I have not yet proved anything. In reality, one would write an equation satisfied by the empirical measure
against a test function and reach the conclusion that ρ is a weak solution of the heat equation – rather than a
mild solution as appears here.
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Entropy method Let us use (2.7) and integration by parts to write that, for a smooth function
φ,

1

N

∑
x∈TN

φ(x/N)ηtN2(x)− 1

N

∑
x∈TN

φ(x/N)η0(x)−
∫ t

0

1

N

∑
x∈TN

∆Nφ(x/N)ηsN2(x)ds (2.11)

is a martingale whose predictable quadratic variation

∑
x∈TN

[η(x+ 1)− η(x)]2
[
φ

(
x+ 1

N

)
− φ(x/N)

]2

vanishes when N →∞. Note that, in the SSEP case, (2.11) is merely a function of the empirical
measure, which allows to identify possible limit points for µNt rather easily.

However, when one deals with more general gradient systems, the integral term involves
τxh(ηsN2) for some local function h, rather than just ηsN2(x). In particular, this term can-
not be written as a function of the empirical measure. The idea is then to replace τxh(ηsN2)
by h̄

(
τxη

εN
sN2

)
, where h̄(ρ) = νNρ (h), νρ is “the” stationary measure at density ρ and η`(x) =

1
2`+1

∑
|y|≤` η(x+ y). This allows to obtain a close equation on any limit point of the empirical

measures.
Define

V`(η) :=

∣∣∣∣∣∣ 1

2`+ 1

∑
|y|≤`

τyh(η)− h̄(η`(0))

∣∣∣∣∣∣ (2.12)

In order to show that the replacement does not modify the limit, one shows that for some
α ∈ (0, 1),

lim sup
ε→0

lim sup
N→∞

sup
f

∫
1

N

∑
x∈TN

τxVεN (η)f(η)νNα (dη) ≤ 0, (2.13)

where the supremum is taken over densities whose Dirichlet forms satisfy the same general bound
as (the time-average of) µNsN2 .

This is generally performed in two steps: one replacing εN by ` and taking the `→∞ limit
after the N limit (the one-block estimate); the second by estimating the cost of replacing η` by
ηεN (the two-block estimate). We focus on the first part, which will play the most important role
in following discussions.

One-block estimate: lim sup
`→∞

lim sup
N→∞

sup
f

∫
1

N

∑
x∈TN

τxV`(η)f(η)νNα (dη) ≤ 0, (2.14)

where DN (f) := −νNα (
√
fL
√
f) ≤ C/N . The idea is to take advantage of the fact that V` is a

local function (for fixed `), νNα is translation invariant, and we can therefore replace the integrand
by V`(η)f̃`(η), where f̃ = 1

N

∑
x∈TN τxf and f̃` is the density obtained from f̃ by averaging the

configuration outside {−`, . . . , `}. Taking the limit N →∞, it turns out that any limit density
has to satisfy D`(f) = 0 and therefore we only have to show that

lim sup
`

sup
f :D`(f)=0

∫
V`fdν

`
α ≤ 0. (2.15)

A density f such that D`(f) = 0 is invariant under particle jumps. This tells us that in fact, a
limit density is a mixture of uniform measures on the sets of configurations with a fixed number
of particles. These measure being well understood, it is now a standard problem to show the
estimate above.
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Relative entropy method I describe this method in the context of the SSEP. This gives a
rather circonvoluted proof of a result that can be showed more efficiently (see the paragraph
above). However, this does allow to keep the exposition simple.

The relative entropy method, as its name suggests, uses the relative entropy of µNt w.r.t.
νNρ(t,·), where ρ solves the equation (2.10). The idea is to show that HN (t) := H(µNt |νNρ(t,·))
satisfies a Gronwall lemma:

HN (t) ≤ o(N) + C

∫ t

0
HN (s)ds. (2.16)

This in turn implies that

H(µN |νNρ0(·)) = o(N), =⇒ H(µNt |νNρ(t,·)) = o(N), (2.17)

and therefore that µNt can indeed be associated with the density profile ρ(t, ·). In turn, the
Gronwall lemma (2.16) is proved through a bound on the derivative of HN (t). Let us denote for
fixed α ∈ (0, 1) and ρ0 ∈ (0, 1)

ψNt (η) =
dνNρ(t,·)

dνNα
(η), λNt (u) = log

ρ(t, u)(1− α)

(1− ρ(t, u))α
, fNt (η) =

dµNt
dνNα

(η). (2.18)

Then it holds [104]:

H ′N (t) ≤
∫ [

N2L∗ψNt − ∂tψNt
ψNt

]
fNt dν

N
α , (2.19)

and the game is to bound the term in the integral. Except fNt , everything in the right-hand side
can be exactly computed. The computation is a bit long, but not difficult. A Taylor expansion,
continuous approximations of discrete derivatives and the fact that ρ(·, ·) solves the heat equation
show that

N2L∗ψNt − ∂tψNt
ψNt

= o(N) +
∑
x∈TN

∆λNt (x/N) [η(x)− ρ(t, x/N)]

+
∑
x∈TN

∇λNt (x/N)2
[
τxg(η)− ḡ(ρ(t, x/N))− ḡ′(ρ(t, x/N))(η(x)− ρ(t, x/N))

]
, (2.20)

where g(η) = η(0)+η(1)−η(0)η(1), and ḡ(ρ) = νNρ (g). Discrete integration by parts allow easily
to replace the η(x) above by η`(x) := 1

2`+1

∑`
y=−` η(x + y), up to an error term that is again

o(N) (for fixed `). It is now time to use again the one-block estimate:

lim
`→∞

lim
N→∞

∫
1

N

∑
x∈TN

∇λNt (x/N)2
[
g(η(x))− ḡ(η`(x))

]
fNt dν

N
α = 0. (2.21)

This means the only non-negligible terms from (2.20) are∑
x∈TN

∆λNt (x/N)
[
η`(x)− ρ(t, x/N)

]
+
∑
x∈TN

∇λNt (x/N)2
[
ḡ(η`(x))− ḡ(ρ(t, x/N))− ḡ′(ρ(t, x/N))(η`(x)− ρ(t, x/N))

]
. (2.22)

Notice the Taylor expansions in both lines. For ` large, under νNρ(t,·), η
`(x) should be close to

ρ(t, x/N), and the averages of these terms should therefore be small. Working under νNρ(t,·) rather
than µNt is feasible, at the cost of adding a term H(t) to the estimate, and working in the large
deviations regime: for any γ > 0∫

(2.22)fNt dνα ≤ γ−1HN (t) + γ−1 log

∫
exp [γ × (2.22)] dνNρ(t,·). (2.23)

As hinted above, the last term, by large deviations methods, goes to 0 as N →∞, then `→∞.
This concludes the (sketch of) proof.
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2.1.2 Fluctuations

An answer to Question 12 can be understood as a law of large numbers for (ηtN2)t≥0. In turn,
the next natural question is to consider the process (ηtN2 − ρ(t, ·N ))t≥0 and ask whether it can
be scaled in a way that gives it a non-trivial limit (like a CLT).

Question 13. Can the fluctuations of ηtN2 around its hydrodynamic limit ρ(t, ·) be described by
a random process?

We will in fact focus on the equilibrium case where the initial density ρ0 ≡ ρ is constant. Let
us define the fluctuation field, for functions H in the Schwartz space S(R),

YNt (H) =
1√
N

∑
x∈Z

H(x/N) (ηtN2(x)− ρ) . (2.24)

Using again (2.7), we get that

YNt (H)− YN0 (H)−
∫ t

0
N−1/2

∑
x∈Z

(ηsN2(x)− ρ)∆NH(x/N)ds (2.25)

is a martingale whose predictable quadratic variation at time t converges to 2ρ(1− ρ)t
∫
R(∇H)2

when N → ∞. This martingale converges to a Brownian motion with diffusion coefficient
2ρ(1− ρ)

∫
R(∇H)2. In turn, one can show that the process (YNt )t converges (as a càdlàg process

in S ′(R)) to the infinite dimensional Ornstein-Uhlenbeck process, solution to

dYt = ∆Ytdt+
√

2ρ(1− ρ)∇dWt, (2.26)

where dWt is a standard white noise on S ′(R). This makes the fluctuations of the SSEP fall in
the Gaussian universality class.

In the eighties [68], physicists identified a different equation (the KPZ equation), describing
the height fluctuations of growing interfaces:

dh = σ∆hdt+ λ(∇h)2dt+
√
DdWt. (2.27)

In particular, it is expected that for a large class of weakly asymmetric conservative particle sys-
tems, the fluctuations should be described by this equation. For instance, the weakly asymmetric
simple exclusion process (WASEP) has generator

LWASEPf(η) =
∑
x∈Z

(1 +
1

N
)η(x)(1− η(x+ 1))

[
f(ηx,x+1)− f(η)

]
+
∑
x∈Z

(1− 1

N
)η(x+ 1)(1− η(x))

[
f(ηx,x+1)− f(η)

]
. (2.28)

A companion equation can be obtained from (2.27) by formally taking the gradient of the solu-
tion. This object naturally lives in the space of distributions and solves the Stochastic Burgers
Equation:

dYt = σ∆Ytdt+ λ∇
[
Y2
t

]
dt+

√
D∇dWt. (2.29)

The weak KPZ conjecture mentioned above can therefore be reformulated as asking to describe
the limit of the fluctuation fields of weakly asymmetric particle systems as a solution of the
Stochastic Burgers Equation.

One issue with this program is that (2.27) is ill-defined if one uses only standard stochastic
analysis tools: the regularity of putative solutions is too low to define properly the square
appearing in the equation. There is in fact no uniqueness of solutions to (2.27), (2.29). A
standard way of going around this difficulty is to consider the Cole-Hopf transform, which turns
(2.27) into a stochastic heat equation. In [12], the authors managed to exhibit a microscopic
Cole-Hopf transform of the WASEP, which they were able to show converges to the Cole-Hopf
transform of (2.27). This also allows to show that the limit fluctuation field satisfies a version
of the stochastic Burgers equation

dYt = ∆Ytdt+∇
[
Y2
t

]
dt+

√
D∇dWt. (2.30)
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2.2 The facilitated exclusion process

2.2.1 Model definitions

In this section, we consider the Facilitated Exclusion Process (FEP). Each of the particles in
this system jumps at rate one to a uniformly chosen nearest neighbor, at the condition that 1)
the target site is empty, and 2) the particle has an occupied neighbor before the jump. The
generator of the process is thus defined as

LFEPf(η) =
∑
x∈Z

η(x)η(x− 1)(1− η(x+ 1))[f(ηx,x+1)− f(η)]

+
∑
x∈Z

η(x)η(x+ 1)(1− η(x− 1))[f(ηx,x−1)− f(η)]. (2.31)

This may look similar to the KCMs described in Chapter 1 (reversing the roles of 0s and 1s), but a
fundamental difference is that there is no reversibility in the FEP – even in a weak sense. Indeed,
it is perfectly possible to perform a jump that cannot be reversed immediately (e.g. 1100→ 1010).

The FEP has been introduced in the physics literature [89] to illustrate a universality class
of absorbing phase transition that does not fall in that of directed percolation. Symmetric or
(totally) asymmetric variations, have also been studied, both in the physics and mathematics
literature [86, 10, 9, 91, 8, 52]. The FEP has multiple absorbing states, namely all configurations
with isolated particles. It also has a conserved field – the density – which should explain the
difference with directed percolation at criticality. One expects that at small densities, the system
should eventually reach an absorbing state (at least locally), while at high densities it should
remain active forever. These two cases should be sharply separated by a critical value of the
density.

So far, all mathematical results on the FEP hold only in dimension 1. To exemplify the diffi-
culty involved in going to higher dimensions, note that it is still not proved that in dimension 2, at
small enough densities, the system eventually freezes (locally). However, in the one-dimensional
setting, there is a special tool that simplifies the study a lot, and has no equivalent in higher
dimension (that we know of). The one-dimensional FEP can indeed be mapped to a zero-range
process, through the following procedure, which is shown in Figure 2.1 on a torus Z/NZ but
could be generalized to other settings. 1) Fix a configuration η ∈ {0, 1}Z/NZ. 2) Number the
empty sites from 1 to k, starting from the first empty site to the right of zero and moving from
left to right. 3) For each i = 1, . . . , k, let ωηi be the number of particles separating the empty
site i from the empty site i + 1 (k + 1 being identified with 1). This yields ωη ∈ NZ/kZ. This
mapping can be extended to follow the FEP dynamics: when a particle jumps in η, consider
that it exchanges its position with a numbered empty site; the jump then results in a jump of a
particle in ωη from a site with at least two particles to a neighboring site. The resulting dynamics
is that of a zero-range process with rates g(k) = 1k≥2.

0
η

3 4 5 1 2

1 2 3 4 5
ωη

Figure 2.1: The mapping to a zero-range process on a segment with periodic boundary condition
with N = 12 sites and k = 5 empty sites. When the jump indicated by an arrow occurs
in the exclusion configuration, it results in the jump indicated by an arrow in the zero-range
configuration.
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With this mapping at hand, it becomes easy to prove that the absorbing phase transition
mentioned above does occur in the one-dimensional FEP, at density 1/2.

Proposition 5. If η ∈ {0, 1}Z/NZ is a configuration with N − k particles, the FEP started from
η

• freezes in finite time if k ≥ N − k;

• remains active forever if k < N − k.

Moreover, if k < N − k, the FEP is an irreducible Markov chain on the set

ENk = {η :
∑

x∈Z/NZ

η(x) = N − k, and ∀x ∈ Z/NZ, η(x) + η(x+ 1) ≥ 1}, (2.32)

and in the symmetric case the uniform measure πNk on ENk is reversible.

In finite volume, this result identifies without ambiguity the active/frozen phases: density
≤ 1/2 leads to a configuration with isolated particles (frozen), while density > 1/2 leads to the
set of configurations with isolated holes (active).

Taking the limit of πNk as N, k →∞ with N/k → 1− ρ ∈ [0, 1
2) gives a limiting distribution

πρ on {0, 1}Z, which has an explicit expression and is reversible for the symmetric FEP dynamics
on Z. The measures πρ, ρ > 1/2 describe the supercritical (active) phase of the infinite volume
FEP, while the frozen phase is just the set

F = {η ∈ {0, 1}Z : ∀x ∈ Z η(x)η(x+ 1) = 0}, (2.33)

in which the density is ≤ 1/2. More precisely, we proved the following result, which is essential
to describe the scaling limit of the FEP.

Theorem 13 ([B6]). Let ν be a translation invariant stationary measure for the symmetric FEP
on Z. Then there exist λ ∈ [0, 1], β a probability measure on (1/2, 1] and µF a probability measure
on F such that

ν = λµF + (1− λ)

∫
( 1

2
,1]
πρdβ(ρ). (2.34)

One can think of this theorem as saying that “the” invariant measure at density ρ > 1/2 is
given by πρ.

2.2.2 A Stefan problem

We now have all the tools to guess the hydrodynamic limit of the symmetric FEP. Let us follow
the same steps as for the exclusion process. Computing Lη(x), we see that

ηtN2(x)− η0(x)−N2

∫ t

0
∆dh(τxηsN2)ds (2.35)

is a martingale, with ∆d the discrete Laplacian and h(η) = η(0)η(1)+η(0)η(−1)−η(−1)η(0)η(1).
As for the SSEP, the fact that we can directly write Lη(x) as a discrete Laplacian (gradient
property; recall the discussion below (2.7)) is very important to us. If we want to take an
average, we see that we need to understand not only the local densities, but also the densities
of pairs/triples of neighboring particles. It is natural to assume that, if the local density around
x is ρ, the configuration around x should have a distribution close to πρ. With that guess, we
obtain that in the hydrodynamic limit, the density should satisfy{

∂tρ = ∆(H(ρ)),

ρ(0, ·) = ρ0,
(2.36)

where H(ρ) = 0 if ρ ≤ 1/2, H(ρ) = πρ(h) = 2ρ−1
ρ if ρ ∈ (1/2, 1].
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t

T

1

1/2

ρ0

ρ(t, ·)

u−(0)
u−(t)

u+(0)

u+(t)

Figure 2.2: A sketch of the evolution described by (2.36). The full line represents the initial
profile. Whereever the density is above 1/2, the dynamics is described by an elliptic diffusion
equation. At the boundary of the {ρ ≥ 1/2} region (here labeled u±), this creates a spill of
mass into the ρ < 1/2 region which results in the displacement of the boundary. The density at
a point in the ρ < 1/2 region remains unchanged until it is reached by the free boundary (full
black line).

This requires some explaining: there is a priori no reason why (2.36) makes sense. Indeed, the
degeneracy in H means that, even starting from a smooth initial condition ρ0, the density profile
will generically create discontinuities (see what happens around the u+ in Figure 2.2). (2.36) is
in fact a free boundary problem. Equations of this kind are used in the literature [96, 85, 4] to
describe the spreading of a liquid phase into a frozen one. In the particular instance of (2.36),
density would stand for enthalpie in the standard interpretation, the liquid phase corresponding
to the zone where ρ > 1/2 and the profile is a solution to a standard elliptic equation, while the
frozen phase corresponds to ρ < 1/2 where the profile does not evolve. It should be intuitively
clear that the liquid phase increases as matter pours into the frozen phase.

A standard way of going around the inherent lack of regularity of a putative solution ρ is to
use the notion of weak solution. Let us work on the torus, since this is the setting of [B6].

Definition 4. A measurable function ρ : [0, T ] × T → [0, 1] is a solution to (2.36) up to time
T ∈ [0,∞] if, for any test function φ ∈ C1,2([0, T ]× T),∫

T
ρ(T, ·)φ(T, ·)−

∫
T
ρ0φ(0, ·) =

∫ T

0

∫
T
ρ(t, ·)∂tφ(t, ·)dt+

∫ T

0

∫
T
ρ(t, ·)∆φ(t, ·)dt. (2.37)

It is a nice feature of (2.36) (which is a consequence of H being a non-decreasing function)
that it has a unique weak solution. However, one would like to describe the solution in terms of
sub- and super-critical phases, at least for simple initial profiles as in Figure 2.2. This requires
a stronger notion of solution. For simplicity, let us restrict the definition to the case where the
supercritical phase in ρ0 is an interval. Then it is convenient to consider that a strong solution
to (2.36) is given by a triple (ρ, u+, u−), where ρ is the density, and u± describe the evolution of
the two interfaces between liquid/frozen phases.

Definition 5. Assume that {x ∈ T : ρ0(x) ≥ 1/2} is an interval. A triple (ρ, u+, u−), where
ρ : R+ × T→ [0, 1] and u± : R+ → T, is a strong solution to (2.36) if
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1. u− (resp. u+) is non-decreasing (resp. non-increasing), with

{x ∈ T : ρ0(x) ≥ 1/2} = [u+(0), u−(0)];

2. there exists τ ∈ R+ ∪ {∞} such that u−(t) = u+(t) iff t ≥ τ , and u± are constant on
[τ,∞); the time τ is called the merging time;

3. H ◦ ρ is Lipschitz;

4. for any t ∈ R+, if u ∈ (u−(t), u+(t)), then ρt(u) = ρ̃0(u);

5. if
{
t ≤ τ and u ∈ (u+(t), u−(t))

}
or if t > τ , then

ρt(u) > 1
2 , and ∂tρt(u) = ∂2

uH(ρt(u));

6. if t ∈ (0, τ), then

u′±(t) = −4∂uρt(u±(t)±)
1
2 − ρ0(u±(t))

.

For sufficiently nice initial profiles, such a solution will indeed exist (and by uniqueness
correspond to the weak solution).

Proposition 6. Assume ρ0 : T → [0, 1] is in C2(T), |ρ−1
0 ({1/2})| = 2 and ρ′(x) 6= 0 whenever

ρ(x) = 1/2.
Then there exists a strong solution (ρ, u−, u+) to the Stefan problem (2.36).

Note that the hypotheses above are by no means minimal. We could certainly allow for more
interfaces (but this would make the notations even more cumbersome). Also, the regularity of
ρ0 matters mostly at the interface points and can be relaxed elsewhere. Finally, the situation is
in fact simpler if instead of a non-zero derivative at the interface points we have a discontinuity
(without the discontinuity, u′± diverges as t→ 0, and thus the definition of solution requires an
extra argument).

A proof of the above fact is given in [B6], but essentially follows from arguments present in [85,
4]. The case of initial profiles with a discontinuity at the boundary of the supercritical region is
treated via a fixed point argument in the space of plausible candidates for the interface trajectories
u±. The continuous case is deducted from this by sandwiching the initial configuration between
two profiles with a jump.

2.2.3 Hydrodynamic limit and local convergence to the active/frozen phase

Now that we understand better the natural candidate for the hydrodynamic limit of the FEP, it
remains to give a proper statement of convergence.

Theorem 14. [B5, B6] Let ρ0 : T→ [0, 1] be a measurable initial profile. For any t > 0, δ > 0
and φ : T→ R smooth, we have (recall (2.2))

PµN

∣∣∣∣∣∣ 1

N

∑
x∈TN

ηtN2(x)φ(x/N)−
∫
T
ρtφ

∣∣∣∣∣∣ > δ

 −→
N→∞

0. (2.38)

In [B5], we prove this result in the case ρ0 > 1/2. In this regime, the non-ellipticity of
the equation (2.36) is in fact not relevant: on the macroscopic side, the equation we deal with
behaves like a nice elliptic equation. The difficulty appears in the microscopic regime. We use
the standard entropy method as described in Section 2.1.1. This requires technical work to show
decorrelation properties of the stationary measures πρ and adapt the method to non-product
grand-canonical measures (πρ replacing να). But the most important obstacle is the fact that
our initial distribution is a priori not absolutely continuous w.r.t. any grand-canonical measure:
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the supremum taken over densities f in e.g. (2.14) has no relevance here. Therefore, we need as
a preliminary result to establish that in subdiffusive time (in fact, poly-log), the system reaches
the active set of configurations EN := ∪k<N/2ENk (recall (2.32)); this is Theorem 15 below. The
subdiffusivity of this time is important because it means that during this preliminary phase,
the initial density profile does not have time to evolve. It is then possible to follow the steps
sketched in Section 2.1.1. In particular, we show that any limit law is invariant under allowed
jumps; given the irreducibility properties of the sets ENk , this tells us that understanding the πNk
is enough to conclude.

Theorem 15. [B5] Assume ρ0 > 1/2. Then

PµN
(
η(logN)8 ∈ EN

)
−→
N→∞

1. (2.39)

To prove this result, we work with the zero-range process associated with the FEP, because
we rely a lot on monotonicity properties. Recall that in the zero-range world, the critical density
becomes 1.

On the one hand we show that with high probability, the initial configuration is regular, in
the sense that in mesoscopic boxes the density is at least slightly above 1, and the particles are
not too concentrated toward the right boundary. This is a rather technical proof, but since we
work with product initial measures it is tractable. For more general initial measures, this would
need to be proved anew.

Then we start from a given configuration η0 whose zero-range image satisfies the above
requirements, and show that (2.39) holds with µN replaced by η0. The principle of the proof is
the following: fix x. By waiting a long enough time T , we make sure that with high probability
each particle initially present in {x + 1, ..., x + `} will either have encountered an empty site in
the box {x+ 1, ..., x+ `}, and gotten stuck there forever; or have left the box {x+ 1, ..., x+ `} at
some point. At most ` particles fall into the first case, therefore, if the box initially contains at
least (1+ δ)` particles, δ` particles or more will have left the box at least once before T . In order
for the site x to remain empty up until T , all of these particles must have left through the other
boundary x + `. This means that particles in {x + 1, ..., x + `} have performed an abnormally
large number of steps to the right.

In order to make the above sketch rigorous, we use a chain of couplings between, successively,
our original zero-range process, a zero-range with the same rates but in finite volume, a rate
one zero-range process, and finally independent simple random walks. In the end, we reduce the
proof to standard estimates on simple random walks.

In our second work [B6], we really wanted to address the formation of interfaces. This meant
giving up on the entropy method and relying instead on the study of Young measures, as used
by Funaki in [48]. The entropy method is not suited in our context, because of the inherent
reducibility of the inactive phase. The chosen strategy bypasses the need to work with Dirichlet
forms, and relies instead on being able to prove that any stationary, translation invariant measure
for the infinite volume dynamics satisfies a replacement lemma, in the sense that for any such ν,

ν

(∣∣∣∣∣ 1

2`+ 1

∑̀
x=−`

h ◦ τx(η)−H(η`(x))

∣∣∣∣∣
)
−→
`→∞

0, (2.40)

where η`(x) := 1
2`+1

∑`
y=−` η(x+ y). This is fortunately implied by Theorem 13. In fact, under

µF , all terms inside the expectation are essentially 0. On the other hand, the decorrelation
properties of the measures πρ imply (2.40) with ν replaced by νρ. That allows us to extend the
statement of Theorem 14 to general initial profiles. It is unclear to me whether it is feasible to
show (2.40) without first identifying all possible translation invariant stationary measures.

One drawback of the result in Theorem 14 is that we do not say much about the microscopic
behavior of the system in terms of active/frozen phase, as it approaches its limit (where the
two phases are well identified e.g. under the conditions of Proposition 6). In fact, it turns out
that, on a time scale much shorter than the diffusive one, and for ρ0 such as in Proposition 6,
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the microscopic system first separates into an active and frozen phase (and remains thus split
forever). When this happens, the local densities have not had time to evolve, and only on the
longer diffusive time scale do they start to follow the Stefan problem (2.36). In particular, it
makes sense to speak of microscopic interfaces and we can then complement Theorem 14 with
the statement that micro– and macroscopic interfaces match.

Let us define the set of configurations which are (microscopically) split into an active and
frozen regions.

PN :=

η ∈ {0, 1}TN : ∃a, b ∈ TN ,

{
∀x ∈ [a, b] η(x) + η(x+ 1) ≥ 1 and
∀x ∈ (b, a) η(x)η(x+ 1) = 0

 . (2.41)

Note that this is a closed set for the dynamics: ηt ∈ PN ⇒ ηt+s ∈ PN for any s > 0.

Theorem 16. [B6] Assume that ρ0 : T → [0, 1] is in C2(T), |ρ−1
0 ({1/2})| = 2 and ρ′(x) 6= 0

whenever ρ(x) = 1/2.

1. PµN (ηN−1/4 ∈ PN ) −→
N→∞

1.

On this event, let us define for t > 0, uN− (t) (resp. uN+ (t)) as the largest b (resp. smallest a)
for which ηtN2 satisfies the conditions in (2.41). On the complement of this event, u±(t)
may be defined arbitrarily.

2. For any t ∈ (0, τ ] ∩ R+ (recall that τ is the merging time defined in Definition 5), for any
ε > 0

PµN
(
|uN± (t)− u±(t)| ≥ ε

)
−→
N→∞

0. (2.42)

The proof of the first point is where the core work lies. It relies on the same type of arguments
as Theorem 15, but the estimates are more delicate around the interfaces. We did not aim for
optimal bounds, and in particular the (logN)8 and N−1/4 appearing above have no significant
meaning.

The second point of Theorem 16 is in fact an easy consequence of the first, and Theorem 14.

2.2.4 Open problems

All the results above rely crucially on the mapping with the zero-range process, especially through
Theorems 13, 15 and 16 (first point). This is a significant problem when one tries to study the
system in higher dimension.

There are several ways one could define a multidimensional version of the FEP. Perhaps the
most natural is to consider that particles jump at rate one to empty neighbors, provided they
have a neighbor. Already the question of guessing the limit equation is not trivial, since it
requires knowing the infinite volume stationary measures. So far we do not have a guess for a
multidimensional analog of the measures πρ. In some sense, they should be uniformly distributed
on configurations such that no particle is isolated, and empty sites have either 0 or more than 2
neighbors.

In dimension 1, the function H appearing in (2.36) vanishes for ρ < 1/2, which leads to
the free boundary problem we discussed. This is ultimately a consequence of the fact that
configurations with at most half sites occupied by particles eventually freeze. In higher dimension,
it is intuitively clear that for densities small enough, this should also be true. However, even
this simple statement currently does not have a proof in infinite volume. In finite volume, it is
clear that configurations with density < 1/2 eventually freeze, but simulations2 indicate that this
takes an exponentially long time for densities between 1/3 and 1/2 (compared with polynomial
for densities less than 1/3). This is usually indicative that in infinite volume the system remains

2Kindly communicated by Clément Erignoux, Marielle Simon and Alexandre Roget.
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active at those densities. Our current conjecture is therefore that H(ρ) should be 0 (resp. > 0)
for ρ < 1/3 (resp. > 1/3).

A different kind of question concerns the fluctuations in the FEP in the weakly asymmetric
regime. We expect that in the bulk of the active region, the fluctuations should be similar to
those of the exclusion process, i.e. described by the KPZ equation on the real line. On the
other hand, we could also study the fluctuations around the active/inactive interface, where the
situation should be different. In an ongoing project with Guillaume Barraquand and Marielle
Simon, we aim to show that, in the case of a step initial condition (η(x) = 1 iff x ≤ 0), the
fluctuations can be described by the KPZ equation on the half-line with Dirichlet boundary
condition and δ′0 initial condition.

2.3 The porous medium model

The second model we consider in this chapter is an example of KCLG, already mentioned in
Section 1.1.2: the porous medium model (PMM) in dimension 1.

2.3.1 Definition and hydrodynamic limit

In the simplest version, x and x+ 1 exchange their contents at rate η(x− 1) + η(x+ 2). We will
also consider a more general version, which requires at least m − 1 neighboring particles for a
jump to occur. Fix an integer m ≥ 2. The jump rates of the m–PMM are defined as

cmx,x+1(η) =

m∑
k=1

∏
j∈{k−m,...,k}\{0,1}

η(x+ j) (2.43)

We recover the simple version in the case m = 2.
The generator of the PMM is then simply

LmPMMf(η) =
∑
x∈TN

cmx,x+1(η)
[
f(ηx,x+1)− f(η)

]
. (2.44)

(2.43) may seem like a rather specific and convoluted way of requiring “at leastm−1 particles”
in the neighborhood of {x, x+1}. The reason for this particular choice is that it gives a gradient
model: LmPMMη(x) can be rewritten as a discrete Laplacian of (a translation of)

hm(η) =

m∑
k=1

k−1∏
j=k−m

η(j)−
m−1∑
k=1

∏
j∈{k−m,...,k}\{0}

η(j). (2.45)

In the simple m = 2 case (dropping the superscript m), this just gives h(η) = η(0)η(1) +
η(0)η(−1)− η(−1)η(1).

Now to guess the hydrodynamic limit of the PMM, we just have to understand its invariant
measures. It is easy to check that the Bernoulli product measures µp are reversible w.r.t. the
PMM dynamics (recall that it is a general property of KCMs – see Section 1.1.3). Since µρ(hm) =
ρm, a natural guess is therefore that the hydrodynamic limit is described by

∂tρ = ∆(ρm). (2.46)

This is known as the Porous Medium Equation (PME), which in turn gives its name to the
PMM. As the name indicates, it was introduced to model the flow of an ideal gas through a
porous medium [102]. Mathematically, it provides another example of a free boundary problem:
the positivity region spreads with finite speed, contrary to what happens for the heat equation.
In fact, the boundary between the {ρ > 0} and {ρ = 0} regions may even remain static for a
non-zero period of time before starting to move. This depends on the pressure applied on the
boundary by the mass inside the {ρ > 0} region. When such a boundary exists, generically
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u+(0) = u+(t)u−(0)u−(t)

ρ0

ρ(t, ·)

Figure 2.3: A sketch of the evolution described by the PME (2.46). u−, u+ mark the boundaries
of the {ρ > 0} region.

the solution will not be differentiable: the derivative is not continuous at the interface (see
Figure 2.3).

The convergence of the PMM to the PME in the diffusive limit was proved in [53]. Recall
that µNt denotes the law of the process started from µN at time tN2.

Theorem 17. [53] Assume that there exists δ ∈ (0, 1/2) s.t. ρ0 : T→ [δ, 1−δ], and ρ0 ∈ C2+δ(T).
Then,

H(µN |νNρ0(·)) = o(N), =⇒ H(µNt |νNρ(t,·)) = o(N), (2.47)

where ρ is the solution to (2.46) with initial condition ρ(0, ·) = ρ0.

The hypotheses on ρ0 ensure that (2.46) has a unique classical solution. Requiring that ρ0 be
bounded away from 0 is a necessity in the context of the relative entropy technique: if ρ0 vanishes
on an interval, the finite speed propagation property of the PME means ρ(t, ·) also vanishes on
an interval for t small enough. The theorem in [53] is only stated and proved in the case m = 2,
but the proof extends without difficulty to the more general case.

2.3.2 Fluctuations around the equilibrium

The results of this section appear in [B7]. The goal is to understand the fluctuation field (2.24) for
weakly asymmetric versions of the PMM, in which particles (when allowed) jump right (resp. left)
with rate 1 + N−γ (resp. 1 − N−γ) for some positive γ ≥ 1/2. We denote by LS = LmPMM the
symmetric part of the generator (with rates 1) and LA the antisymmetric part:

LAf(η) = N−γ
∑
x∈Z

cmx,x+1 [η(x)(1− η(x+ 1))− η(x+ 1)(1− η(x))]
[
f(ηx,x+1)− f(η)

]
. (2.48)

The starting point of the study is again the fact that

YNt (H)− YN0 (H)− INt (H)−BN
t (H) (2.49)

is a martingale, with INt =
∫ t

0 N
2LSYNs (H)ds and BN

t (H) =
∫ t

0 N
2LAYNs (H)ds. The integral

terms can be computed, and it turns out that for γ ≤ 3/2 and ρ 6= m
m+1 , the antisymmetric term

is of order N3/2−γ while the symmetric term remains of order 1, as does the martingale. In fact,
in this situation, the leading behavior of the fluctuation field is a transport phenomenon: if one
accelerates the process by N2−γ rather than N2, the limit solves a transport equation

dYt = F ′(ρ)∇Ytdt, with F (ρ) = 2mρm−1ρ(1− ρ). (2.50)

Note that D(ρ) = mρm−1 is the diffusion coefficient appearing in the hydrodynamic limit equa-
tion (the PME) and ρ(1 − ρ) = νρ((η(0) − ρ)2) : χ(ρ), so that F (ρ) = 2D(ρ)χ(ρ). In order to
retain the fluctuating behavior, we can either impose ρ = m

m+1 , or modify the definition of the
fluctuation field to follow the transport wave. From now on, our definition of the fluctuation
field will be

YNt (H) =
1√
N

∑
x∈Z

H

(
x−N2−γF ′(ρ)

N

)
(ηsN2(x)− ρ) . (2.51)
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Theorem 18. [B7]

1. If γ > 1/2, the fluctuation field converges to the Ornstein-Uhlenbeck (OU) process solution
of

dYt = D(ρ)∆Ytdt+
√
D(ρ)χ(ρ)∇dWt. (2.52)

2. If γ = 1/2, the fluctuation field converges to the (unique) energy solution of the Stochastic
Burgers Equation (SBE)

dYt = D(ρ)∆Yt + F ′′(ρ)∇(Y2
t )dt+

√
D(ρ)χ(ρ)∇dWt. (2.53)

In order to understand this result, we need 1) to give a precise definition of the notions of
solutions to the SPDEs appearing in the theorem; 2) to dive further into (2.49) to understand
where the different terms of the SPDEs arise at the microscopic level. I leave the issue of tightness
out of the discussion.

Notions of solutions Let us start with the Ornstein-Uhlenbeck process. A solution to (2.52) is
a process such that for all t, Yt is a space white noise (in S ′(R)) with covariances E[Yt(H)Yt(G)] =
1
2χ(ρ)

∫
RHG, and

Yt(H)− Y0(H)−D(ρ)

∫ t

0
Ys(∆H)ds (2.54)

is a continuous martingale with quadratic variation tD(ρ)χ(ρ)
∫
R(∇H)2. It is well known [71]

that there exists a unique such solution.
For the Stochastic Burgers Equation (SBE), we need to be careful: the naive extension of the

above notion leads to substracting the quadratic term in the martingale, but it is not clear what
Y2
t should be. We will use the notion of energy solutions, which involves an extra assumption used

to control the quadratic term (point 2 in Definition 6). This notion has the double advantage
that it provides uniqueness [57] and that the extra assumption has a microscopic counterpart
which can be checked for a number of microscopic systems [54] (including the PMM, as we show
in [B7]).

Definition 6. A process {Yt ; t ∈ [0, T ]} in C([0, T ],S ′(R)) is a stationary energy solution of
(2.29) if

1. for each t ∈ [0, T ], Yt is a S ′(R)-valued white noise with variance χ(ρ);

2. there exists a positive constant κ such that for any H ∈ S(R) and 0 < δ < ε < 1

E
[(
Bεs,t(H)− Bδs,t(H)

)2] ≤ κε(t− s)‖∇H‖22, (2.55)

where

Bεs,t(H) :=

∫ t

s

∫
R

(
Yr ∗ ιε(x)

)2 ∇H(x) dx dr

and ιε(x) is an approximation of the identity;

3. for H ∈ S(R),

Yt(H)− Y0(H)− 1
2

∫ t

0
Ys(D(ρ)∆H) ds+ 1

2F
′′(ρ)Bt(H)

is a Brownian motion of variance D(ρ)χ(ρ)
∫
R(∇H)2, where Bt(H) := limε→0 Bε0,t(H), the

limit being in L2;

4. the reversed process {YT−t ; t ∈ [0, T ]} satisfies (3).

Theorem 19 ([57]). There exists a unique stationary energy solution of (2.29).
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Analysis of (2.49) First of all, it is not hard (though tedious to compute) to show that the
quadratic variation of the martingale converges to tD(ρ)χ(ρ)

∫
R(∇H)2. It remains to analyse

the integral terms.
For simplicity, let us fix m = 2 and ρ = 2/3 (so that the corrective term N2−γF ′(ρ) in (2.51)

vanishes). We get the following expressions for the integral terms:

INt (H) =

∫ t

0

1√
N

∑
x∈Z

(τxh(ηsN2)− ρ2)∆NH(x/N)ds, (2.56)

BN
t (H) = −

∫ t

0

N1−γ
√
N

∑
x∈Z

τxf(ηsN2)∇NH(x/N)ds, (2.57)

where f is a finite sum of local functions, each taking one of the forms

C(ρ)η̄(y), C(ρ)η̄(x)η̄(x+ y) or C(ρ)η̄(x)η(x+ y)η(x+ z), (2.58)

where η̄(x) = η(x)− ρ.
In fact, one can rewrite

τxh(η)− ρ2 = 2ρη̄(x) + η̄(x)η̄(x+ 1) + η̄(x)η̄(x− 1)− η̄(x− 1)η̄(x+ 1). (2.59)

The contribution to (2.56) resulting from the first term is 2ρ
∫ t

0 YNt (∆NH)ds – this will become
the Laplacian term in the SBE. The contributions to (2.57) coming from the degree one terms
in (2.58) vanish in the limit because3 of our choice of ρ = 2/3 (alternatively because we used the
corrected expression (2.51) for the fluctuation field). Three types of terms remain:

• terms of the form
∫ t

0
1√
N

∑
x∈Z ∆NH(x/N)η̄(x+ y)η̄(x+ z) with y 6= z,

• terms of the form
∫ t

0
N1−γ
√
N

∑
x∈Z∇NH(x/N)η̄(x+ y)η̄(x+ z) with y 6= z,

• terms of the form
∫ t

0
N1−γ
√
N

∑
x∈Z∇NH(x/N)η̄(x)η̄(x+ y)η̄(x+ z) with 0, y, z pairwise dis-

tinct.

It is not too hard (see Section 6 in [B7]) to show that the first and third kinds of terms do not
contribute in the limit. On the other hand, the second kind will give rise to the non-linearity in
the SBE when γ = 1/2 and has to be handled with special care. This is where the main result
of [B7] comes in.

Theorem 20 ([B7] Second order Boltzmann-Gibbs principle for degree two polynomial func-
tions). Fix v : Z→ R (possibly depending on N) such that ‖v‖22,N := N−1

∑
x∈Z v

2(x) is bounded.
Then for all y ∈ Z, ` sufficiently large,

ENρ

(∫ t

0

∑
x∈Z

v(x)

{
η̄sN2(x)η̄sN2(x+ y)−

(
~η `sN2(x)

)2
+
χ(ρ)

`

})2
 ≤ Ct( `

N
+
tN

`2

)
‖v‖22,N ,

(2.60)
where ~η `(x) = 1

`

∑x+`
y=x+1 η̄(x). In particular, choosing ` = εN , the left-hand side vanishes as

N →∞ then ε→ 0.

This type of result was first proved in [54] for models with a sharp bound on the spectral
gap and rates bounded above and below by a positive constant. It was later extended to other
settings [55, 44, 56], though never with degenerate rates. The proof is similar in spirit to the
one-block/two-block estimates used in the entropy method, though more quantitative. Let us
explain what the estimate relies on.

For instance, let us try replacing η̄(x)η̄(x + y) by η̄(x)
(
η̄(x+ y)− ~η `0(x)

)
. In the original

proof, the error is estimated by O(`30/N
2). `20/N

2 is the inverse of the spectral gap of the
3The proof is merely an integration by parts and using Cauchy-Schwarz inequality.
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dynamics restricted to a box of size `0; `0 the number of terms to which a spectral inequality is
applied. Making a replacement from scale ` to scale 2` is less costly, because the upper bound
will be divided by a variance of order 1/`2, thus leading to an estimate O(`/N2).

The issue with the PMM is of course that we cannot estimate the spectral gap in this way.
This is mainly due to the existence of blocked configurations, in which no two particles are at
distance less than 2. Fortunately, such configurations are very unlikely under the equilibrium
measures µρ: in an interval of size `, µρ(blocked) ≤ (1 − ρ2)b`/2c. Our strategy relies on this
observation, which we use to condition ηsN2 to be non-blocked in the box where we want to
perform a replacement.

The next crucial observation [53] is that, if a configuration η is non-blocked in an interval
of size `, for x, y in the interval, the PMM dynamics allow to transition from η to ηx,y using at
most C` jumps. This path argument allows us te replace the spectral gap bound and get the
one-block estimate

Proposition 7 ([B7] One-block estimate). Let `0, ` ∈ N and let ϕ : E → R be a mean zero local
function whose support does not intersect the set of points {1, . . . , `}. Let G(x) be the event that
the configuration in {x + ` + 1, . . . , x + ` + `0} is non-blocked. Then for any t > 0, N ∈ N and
y ∈ {1, · · · , `}:

ENρ
[(∫ t

0

∑
x∈Z

v(x) τxϕ(ηsn2)
(
η̄sN2(x+ y)− ~η `sN2(x)

)
1G(x)(ηsn2) ds

)2
]

≤ Ct(`+ `0)2

n
Var(ϕ)‖v‖22,n. (2.61)

The interested reader will note that one needs to be careful with the supports of the functions
involved. This is due to the fact that, in our path argument, we do not want the exchange to
perturb either 1G or τxφ. In turn, this is the main reason why, in Theorem 20, we need to
consider ~η ` rather than η̄ `.

The rest of the proof consists in performing replacements on increasing length scales; during
this process, we need to take special care of taking replacements on appropriate intervals (in
particular, we need some non-intersection properties of the successive intervals that make the
argument more delicate).

2.3.3 Open problems

The statement of the hydrodynamic limit in Theorem 17 is somewhat frustratingly incomplete.
Indeed, the condition that ρ0 takes values in [δ, 1 − δ] means that this result leaves out initial
conditions where the free boundary problem appears. Another result of [53], relying on the
entropy method, is that the hydrodynamic limit holds for any initial profile ρ0, but for a slightly
modified dynamics with generator

Lθ = LPMM +N θ−2LSSEP, (2.62)

for θ ∈ (0, 2). This allows to compensate the lack of good ergodicity properties of the PMM
(recall that there are frozen configurations as soon as there are e.g. less than N/3 particles for
m = 2).

With Clément Cancès, Makiko Sasada and Marielle Simon, we tried to make the relative
entropy work by considering as the reference density an approximation ρN0 of ρ0, taking values
in [δN , 1− δN ] for a well-chosen δN . We did manage to get a one-block estimate of the form∫ T

0

∫
1

N

∑
x∈TN

V`f
N
t dν

N
α dt ≤ 1

γN

∫ T

0
HN (t)dt+ ε, (2.63)

for `,N large enough. It is also true that we can write (2.20), despite the fact that the ap-
proximations of continuous gradients and Laplacians now involve diverging terms. However, the
remaining divergences make the large deviation argument fail.
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On the other hand, the method we used in [B6] gives us hope to prove a result with arbitrary
initial conditions. Using the technique detailed in Appendix A, it is possible to classify all
invariant measures for the PMM. Then the picture is similar as what happens for the FEP: the
frozen as well as the active components all satisfy the replacement lemma. Extending this to
higher dimension is on the other hand a completely open problem.
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Chapter 3

Random walks in dynamic random
environments

3.1 Overview

The study of random walks in random environments (RWRE) constitutes a very wide and active
field of study. Let me approach it through a non-standard route. We have seen our first example
of RWRE in Section 1.2.2, when we studied the motion of a tracer in a KCM. There, we were
mostly interested in the physically meaningful quantity that is the diffusion constant, and we only
skimmed briefly through the means of obtaining limit theorems for the tracer. This is however
a mathematical manuscript and it is worth taking a closer look at the features that allow us to
state a law of large numbers (LLN) and an invariance principle for the tracer. This will also lead
us naturally to more general problems of random walks in (dynamic) random environment.

We are working in the following setting. We have a Markov process (ηt, Xt)t≥0, where (ηt)t≥0

is itself a Markov process (the environment) on {0, 1}Zd with generator Lenv. The environment

is stationary, i.e. ηt
(d)
= η0 for all t ≥ 0. Let us call µ the stationary measure. (Xt)t≥0 on the

other hand is a (a priori non-Markovian) process on Zd, which jumps to x+ y at rate r(y, τxηt)
at time t when it is in position x. The collection of rates r depend on the second coordinate only
through a fixed neighborhood of the origin1. We could define the process (ηt, Xt)t≥0 through its
generator

Lf(η,X) = Lenvf(·, X)(η) +
∑
y∈Zd

r(y, τXη) [f(η,X + y)− f(η, x)] . (3.1)

A more convenient way of approaching the problem is to look at the process seen from the particle,
namely (ωt)t≥0 := (τXtηt)t≥0. This has the nice feature that it is again a Markov process with
generator

Lf(ω) = Lenvf(ω) +
∑
y∈Zd

r(y, ω)[f(τyω)− f(ω)]. (3.2)

Moreover, this process generically contains all the information on (ηt, Xt)t≥0. In particular, one
extremely useful fact is that the following quantity is a martingale

Xt −
∫ t

0
j(ωs)ds, (3.3)

where j(ω) :=
∑

y∈Zd yr(y, ω) is the instantaneous drift of a particle sitting at the origin in
environment ω. In order to obtain limit theorems for (Xt)t≥0, it is therefore (almost) enough to
establish them for the additive functional

∫ t
0 j(ωs)ds.

1In Section 1.2.2, we had r(y, ·) ≡ 0 for y /∈ {±ei, i = 1, . . . , d} and r(±ei, ω) = (1− ω(0))(1− ω(±ei)).
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3.1.1 Reversible case

In the setting of Section 1.2.2, the process η is reversible with respect to some probability measure
µ on {0, 1}Zd , and the rates r are chosen in such a way that the process seen from the particle
(ωt)t≥0 shares that property. In particular, the integral term in (3.3) is an additive functional of
a reversible process. Additionally, it can be checked easily that this process is ergodic.

Random walks in random conductances [18] also fit in this framework – with some caveats.
In that case, the environment is given by (ηt(e))e∈Ed , a Markov process over edges (rather than
vertices), and the random walk jumps over an edge e at time t with rate ηt(e). Since the total
jump rate can depend on the current vertex, this is usually called the variable speed random
walk. In order to avoid explosion, assume that e.g. η is bounded. Let us also assume that
the conductances are reversible w.r.t. some probability measure µ, that µ is invariant under
space shifts and ergodic. Then the process seen from the (variable speed) particle has the same
properties. Constant speed random walks, in which the jump rate from x to y at time t is given
by ηt({x, y})/

∑
z∼x ηt({x, z}), can also be considered, but the reversible measure for the process

seen from the particle is no longer equal to µ in general.

Law of Large Numbers

In both cases above, (ωt)t≥0 is both stationary and ergodic. With these two features, the er-
godic theorem applied to the additive functional

∫ t
0 j(ωs)ds immediately implies the law of large

numbers.

Annealed invariance principle

Once again, we would like to show a CLT or invariance principle for
∫ t

0 j(ωs)ds. The reversibility
of ω allows to use powerful spectral tools [70, 37, 95, 73, 80].

As a warm-up, imagine for a second that we can find a function g, say in L2(µ), s.t. j = Lg.
Then we can write∫ t

0
j(ωs)ds =

[∫ t

0
Lg(ωs)ds− g(ωt) + g(ω0)

]
︸ ︷︷ ︸

Mt martingale

+ [g(ωt)− g(ω0)]︸ ︷︷ ︸
Rt

. (3.4)

Rt being bounded in L2 will go to 0 when divided by
√
t; it remains to apply one of the numerous

invariance principle results for martingales [26] and we are essentially done.
In general this is too strong a condition. It can however be efficiently relaxed by considering

gλ a solution to
j = (−L+ λ)gλ

instead of the Poisson equation. Then one can hope that the corresponding martingale and rest
Mλ
t , R

λ
t converge as λ→ 0 to quantities that satisfy the same conditions as above.

A celebrated result of Kipnis and Varadhan [70] provides an optimal condition for this con-
vergence and

∫ t
0 j(ωs)ds to satisfy an invariance principle: that∫ ∞

0
µ(jetLj)dt <∞. (3.5)

In [37], De Masi, Ferrari, Goldstein and Wick noticed that in our context, (Xt)t≥0 is antisymmet-
ric under time reversal, while

∫ t
0 j(ωs)ds is symmetric, and that allows to satisfy automatically

the condition (see [94, Section II.6.2] for a short proof). [37, 95] also derive a variational formula
for the limiting diffusion matrix. Altogether, this leads us in particular to Proposition 2.

Quenched invariance principle

A lot of effort has been recently dedicated to establishing quenched invariance principles for
random walks in random conductances (see e.g. [3, 2, 19]). The techniques used to build and



3.1. OVERVIEW 57

control the corrector are quite different from what is presented above, and exposing them in
more details would take us too far for the purposes of this manuscript.

3.1.2 Stationary case

When (ωs)s is only stationary, the same arguments that prove the LLN in the reversible case
apply. For the CLT or invariance principle however, it is no longer obvious that condition (3.5)
is sufficient. In general, one needs additional conditions to control the convergence of gλ and
Lgλ, e.g. a (graded) sector condition. This has been used for instance to establish ([75], after a
long list of contributions) that in doubly stochastic random walks, it is enough to have j ∈ H−1,
i.e.

sup{2 < j, ϕ > −µ(ϕ(−L)ϕ)} <∞.

Another sufficient condition is that L has positive spectral gap or is a perturbation of a
normal operator [73, Sections 2.7.2, 2.7.5]. In [B1], we show that a LLN and CLT hold also for
cases in which L is a perturbation of a process with positive spectral gap (also see [74]). This
result is discussed in greater length in Section 3.2.

3.1.3 Mixing environments

In fact, most RWRE are irremediably far from stationarity. This deserves a comment: for
bounded environments, the existence of invariant measures for the process seen from the particle
is guaranteed by compactness, so it may seem we can circle back to the stationary case even in a
very general setting. However, in most cases, uniqueness of the invariant measure and absolute
continuity are either hard to establish or plainly do not hold. This means that we cannot easily
transfer results that would hold starting from an invariant measure to the setting in which the
random walk is dropped at an arbitrary position in a stationary environment. In this context, it
is hard to identify under which criterion LLN and invariance principles should hold.

Let us start by noting that it is simply not true in general that RWRE obey LLN and CLT.
A prominent counter-example is the one-dimensional nearest-neighbor random walk in static
i.i.d. environment. Depending on the distribution of the environment, the random walk can
be recurrent with fluctuations of order (log n)2 [93], transient with zero speed and/or converge
to a stable law... [69, 39]. These exotic behaviors are highly related to the presence of traps,
i.e. regions in which the environment is organized in such a way that the random walk needs
an unusually long time to exit them. The setting best understood for random walks in static
random environments is the one where the environment is assumed to be i.i.d., and such that the
random walk has a priori a ballistic behavior in a given direction [97] (see (3.18)). This ensures
that the RW exits traps efficiently and keeps discovering fresh environment.

It can be expected that in a dynamic environment, local traps should dissolve and their
effect on the long time behavior of the random walk should be less radical than changing its
order of magnitude (see e.g. [64]). A statement to that effect would of course require identifying
the mixing properties of the environment (on which the dissolution of traps depends), and even
more to the point: the mixing properties of the environment seen from the particle [7, 87].

Let me make a simple comment here. The dynamic case may look more complex and more
general than the static one. However, it is always possible to understand time as an additional
space direction, and to view a d–dimensional random walk in dynamic random environment
as a (d + 1)–dimensional random walk in static environment whose last coordinates evolves
deterministically (and in particular this RW naturally satisfies a ballisticity condition). The
interest of the dynamic point of view therefore is not to generalize the static case. Rather, it
offers a setting in which it is natural to formulate conditions on the mixing properties of the
environment that are weaker than the i.i.d. hypothesis, but still strong enough that the (time–
)ballisticity ensures e.g. the dissolution of traps. For instance, a popular choice is to define the
environment as an interacting particle system.
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Prominent works in the field have focused on environments in which correlations decay uni-
formly, e.g. (η is always assumed to be stationary):

sup
A,B
|P((ηu)u≥t+s ∈ B|(ηu)u≤t ∈ A)− P(η ∈ B)| −→

s→∞
0,

where the supremum is taken over local events B and (almost) all possible events A ([36, 7, 15]).
While such a condition may cover a wide range of applications, it also fails in many cases, such
as conservative interacting particle systems or KCMs. With my coauthors, we tried to improve
available results in both these directions.

For conservative systems, we work with a special choice of environment that offers a lot of
possibilities for hands-on analysis. In [B8, B10], (ηt)t≥0 is given by a Poisson cloud of independent
particles performing simple random walks on Z. We work in the low- and high-density regimes.
In our settings, the random walker has an a-priori drift, say to the right, which implies that as
it moves forward, it meets new particles. Intuitively, this drift is important because the mixing
properties of the environment along a tilted line are stronger than on a straight line. In fact
in this case, the knowledge we have of the environment is precise enough that we can turn this
information into the construction of regeneration times for the trajectory of the random walker.
See Section 3.3 for more details.

In [B9] on the other hand, we looked for a statement in the spirit of “if the environment
mixes sufficiently fast, the random walker satisfies a LLN”. The two goalposts we reached were
1) the minimal mixing that we require is only polynomial (to compare with [B1] where it is
exponential), 2) our mixing condition only involves a decay of covariances and in particular
requires no uniformity. This result is detailed in Section 3.4.

3.2 Close-to-stationary case

This section describes the contents of [B1, B2], written in collaboration with Luca Avena and
Alessandra Faggionato.

3.2.1 Motivating example

In Section 1.2.2, we studied the motion of a tracer through Kinetically Constrained Models, to
which the results mentioned in Section 3.1.1 apply. A natural variation of the experience consists
in pulling the tracer in a given direction, e.g. through a magnetic or chemical field. This setting
has been considered in [65], along with a related problem, in which the tracer takes up the place
of a particle in the environment. The authors of [65] show numerically that the resulting speed
of the tracer is monotone w.r.t. the force applied in the first case, non-monotone in the second.
The latter phenomenon is interpreted as a signature of heterogeneity in the surrounding system:
non-monotonicity is a well-documented feature in the presence of traps [47, 11]. It is interesting
however that it seems to occur only when the tracer participates in the trap.

Mathematically however, it is hard to say anything at first, since it is not even obvious that
the speed of the tracer is a well-defined quantity (i.e. a LLN holds). Let us take a closer look at
the setting (recall the notations of Section 3.1). Lenv is the generator of a KCSM with positive
spectral gap (e.g. the East or FA-1f model, see Chapter 1).

r(y, ω) = (1− ω(0))(1− ω(y))r̃ε(y),

with r̃ε(y) = 0 if y /∈ {±e1, . . . ,±ed}, r̃ε(e1) = 2
1+e−ε , r̃ε(−e1) = e−εrε(e1), r̃ε(y) = 1 if

y ∈ {±e2, . . . ,±ed}. In words, when it is allowed to move, the tracer has a drift in direction e1,
which becomes stronger as the parameter ε increases.

It is very natural to believe that the tracer should satisfy a law of large numbers for any ε,
and that the limit speed should be proportional to ε for small ε (Einstein relation). The results
of [B1] allow to show LLN, CLT and an approximate Einstein relation for small enough ε2, in
the regime of densities where the spectral gap is positive (see Section 1.2.1.

2Note that the later result [B9] allows to prove LLN for any ε, but only in dimension d = 1.
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3.2.2 Description of the hypotheses

Let us describe more precisely the main hypotheses we make. As usual, they are twofold: hy-
potheses on the environment, and on the random walker.

Environment The environment (with generator Lenv) should be a Feller process that is
stationary w.r.t. a translation invariant measure µ. More crucially, it should satisfy a Poincaré
inequality: there exists γ > 0 such that for all f ∈ D(Lenv) with µ(f) = 0,

γµ(f2) ≤ −µ(fLenvf). (3.6)

Note that this implies in particular exponential decay of correlations: for bounded test functions
f1, f2,

Eµ
[
f1

(
(ηt)t∈[0,T ]

)
f2 ((ηt)t≥T+T ′)

]
≤ Ce−cT ′ . (3.7)

Random walker We assume that the rates describing the random walker jumps r(y, η)
admit the following decomposition

r = r0 + r̂. (3.8)

In addition to technical conditions, we ask the two following crucial properties

1. the process seen from the particle with jump rates given by r0 (a.k.a. unperturbed process) is
stationary w.r.t. µ (it has generator Lenv +L0, where L0f(η) =

∑
y r0(y, η)[f(τyη)−f(η)]);

2. the operator norm of L̂f(η) :=
∑

y r̂(y, η)[f(τyη)− f(η)] satisfies ε̂ := ‖L̂‖ < γ.

In particular, the generator L of the environment seen from the particle is a perturbation of
an operator with positive spectral gap.

The example of Section 3.2.1 fits in this framework, provided ε is small enough w.r.t. the
spectral gap of the environment KCM. Another example that works well is the so-called ε–random
walk, which jumps to the right (resp. left) with rate 1 + ε (resp. 1 − ε) when it is in a position
occupied by a particle, and vice-versa when it is on an empty site. In this case, the rates r0 are
just those of a simple random walk that does not feel the environment.

3.2.3 Main results

Some of the results are rather technical in nature, so let me provide a summary. Mainly, we
expand the semi-group associated with L into a series whose terms are bounded by successive
powers of ε̂. This allows us to derive consequences on the environment seen from the particle, and
the trajectory of the random walker itself. Results below may be subject to technical additional
assumptions on the rates.

The expansion involves a series of operators defined recursively. We denote by Sε(·) the semi-
group associated with the law of the environment seen from the random walker (with generator
Lenv +L0 + L̂), S(·) the semigroup of the environment seen from the unperturbed random walker
(with generator Lenv + L0). We define recursively

S(0)
ε (t) = S(t); S(n+1)

ε (t) =

∫ t

0
S(t− s)L̂S(n)

ε (s)ds. (3.9)

Then it is known that the S(n)
ε give a series expansion of Sε in L2(µ), and we show that for

f ∈ L2µ,

‖Sε(t)f −
n∑
k=0

S(n)
ε (t)f‖L2(µ) ≤ (ε/γ)n+1 2γ

γ − ε‖f − µ(f)‖L2(µ). (3.10)



60 CHAPTER 3. RANDOM WALKS IN DYNAMIC RANDOM ENVIRONMENTS

Environment seen from the particle It has a unique stationary measure µ̂ and µ̂, µ are
mutually absolutely continuous. For f ∈ L2(µ), we have the following expansion3 for µ̂(f):

µ̂(f) = µ(f) +
∞∑
k=0

∫ ∞
0

µ
(
L̂S(n)

ε (s)f
)
ds. (3.11)

Additionally, for finite range jump rates and environments with finite speed of propagation,
µ̂ becomes exponentially close to µ far from the origin (see Theorem 3 in [B1] for a proper
statement).

Law of large numbers There exists v ∈ Rd such that

Xt

t
−→
t→∞

v a.s., (3.12)

and v can be written as a series expansion that converges exponentially fast.

Central limit theorem There exists a covariance matrix D such that, under the annealed
law starting from µ̂,

Xt − vt√
t

(3.13)

converges weakly to the Brownian motion with covariance matrix D. Moreover, D is non degen-
erate if e.g. the unperturbed process is reversible and the rates r̂ small enough.

3.2.4 A curious antisymmetry feature

In [B2], we noted an intriguing property of the speed v when the environment and jump rates
satisfy some additional assumptions. Let me just state it for the ε–random walk described at
the end of Section 3.2.2 – more general conditions can be found in [B2, Assumption 3]. Assume
that both the environment and the unperturbed process are reversible w.r.t. µ. Then, for ε small
enough that we can apply the results of Section 3.2.3, we have the relation

v(−ε) = −v(ε). (3.14)

Numerics suggest that this holds for any4 ε, but our proof exploits the series expansion of v
which is only valid for small enough ε. Frustratingly, we do not have a very good explanation
for this phenomenon. The proof consists in showing that terms of even degree in the series
expansion vanish thanks to symmetries induced by reversibility. It is unclear how we could use
these symmetries in the regime where the series expansion blows up.

Let me just conclude this section by recalling that a reformulation of this antisymmetry is
that the asymptotic speed of the ε–random walk is the same in a given reversible environment
and in its image by (spatial) mirror symmetry. When the environment is not invariant under
such mirror symmetry (which is the case e.g. with the East model), it should be clear that the
full trajectories are quite different in the two environments.

3.3 Ballistic walks on random walks

This section describes the contents of [B8, B10], written in collaboration with Marcelo Hilàrio,
Renato dos Santos, Vladas Sidoravicius and Augusto Teixeira and in direct continuation of their
work [62]. The environment we consider is a Poisson cloud of independent simple random walks.
This has two features of interest for us. On the one hand, it is conservative and consequently has

3Note that the spaces matter here: the fact that this expansion is valid only for f ∈ L2(µ) (not L2(µ̂))
complicates everything. An illustration of this issue is that we did not manage to get a Poincaré inequality for
Sε in L2(µε): we could only show ‖Sε(t)− µ̂(f)‖L2(µ̂) ≤ Ce−ct‖f − µ(f)‖∞.

4Recall that we now know v(ε) exists for all ε in dimension 1 through the results of [B9].
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poor mixing properties, in the sense e.g. that covariance between occupation variables at a given
site decays only as 1/

√
t in time. On the other hand, it is a very well understood system, in which

it is possible to follow very precisely the propagation of information. We work in perturbative
cases (either high or low densities of the Poisson cloud) under assumptions such that in the
reference case (0 or infinite density), the random walker has a non-zero drift. This will allow
us to boost the mixing properties of the environment, by looking to forget information along a
tilted space-time line rather than a vertical one.

3.3.1 Settings and assumptions

Let me describe the setting more precisely. In both [B8, B10], at time 0 we place (independently
on each site of Zd) a number of particles chosen with distribution P(ρ). At later times, each
of these particles performs independently a discrete time simple random walk on Zd. Note that
⊗x∈ZdP(ρ) is reversible for this dynamics. The above definition is in fact imprecise, and we will
need to distinguish the lazy case from the non-lazy. In the non-lazy version of the environment,
at each time step every particle in the environment performs a jump chosen uniformly from
{±ei, i = 1, . . . , d}. In the lazy version, each particle has a positive probability to remain in
place during each time step.

Now for the walker. Each jump is sampled from a distribution that depends on the current
number of particles on the site it occupies:

Pη(Xn+1 = x+ y|Xn = x) = p(η(x), y), (3.15)

where Pη denotes the quenched law of the random walker (Xn)n∈N, for each k ∈ N, y ∈ Zd,
p(k, y) ≥ 0 and

∑
y∈Zd p(k, y) ≤ 1. We always require that the possible jumps are finite range,

as well as a drift assumption that depends on the density regime we are after.

High density [62, B8]
A simplified version of the main assumption is that for k large enough,∑

y∈Zd
y · e1 p(k, y) ≥ v• > 0. (3.16)

This means that on sites occupied by a large number of particles, our random walker has a
positive drift in the first coordinate. For high densities ρ, we expect that this will be the most
frequent situation.

In [62], the setting was further restricted to dimension 1, with nearest-neighbor jumps for
the random walker, and p(k, ·) = p(1, ·) for k ≥ 1.

Low density [B10]
Here we take a perturbative approach around ρ = 0 rather than ρ =∞. In this setting, we are

only able to work in one dimension. For simplicity, we consider p(k, ·) = p(1, ·) for all k ≥ 1, and
nearest-neighbor jumps. We denote p• = p(1, 1) = 1− p(1,−1) and p◦ = p(0, 1) = 1− p(0,−1).
Our drift assumption is modified accordingly, to

v◦ := 2p◦ − 1 > 0. (3.17)

This means that in the enpty environment, the random walker is a biased random walk with
drift to the right. When the density ρ is small, we expect that the random walker will spend
most of its time on empty sites, which should give it a drift to the right.

In the non-lazy environment, this effect may however be countered by the strength of the
drift v• := 2p• − 1 < 0, if it is close to −1. Indeed, in the limit case p• = 0, the walker can
never move to the right of a particle it has met. As a result, it remains to the left of an infection
cluster, which propagates to the left with non-zero speed.



62 CHAPTER 3. RANDOM WALKS IN DYNAMIC RANDOM ENVIRONMENTS

3.3.2 Results

Our results essentially state that in a small region of parameters close to the limit cases, the
leading behavior of the walker is similar to the one it has in the limit case. Notice however the
change in behavior in the neighborhood of ρ = 0, p• = 0 depending on the (non)-laziness of the
environment particles (see Figure 3.1).

Theorem 21. The random walker satisfies a LLN (3.12) and CLT (3.13) in the following cases:

1. under Assumption (3.16), for ρ high enough, with v · e1 > 0;

2. under Assumption (3.17), if p• > 0 (permeable environment), for ρ small enough, with
v > 0;

3. in a non-lazy environment, if p◦ > 0, for p• small enough, with v < 0.

Lazy environment Non-lazy environment

0 01 1p• p•

ρ ρ

v > 0

v < 0

Figure 3.1: Phase diagrams around the ρ = 0, p• = 0 parameters, corresponding to lazy and
non-lazy particles (p◦ > 1/2).

In each case, a key step is to establish that the random walker (or its opposite when the
dominating drift is to the left) satisfies a ballisticity condition.

Theorem 22. Assume one of the following conditions:

1. Assumption (3.16) and ρ high enough;

2. Assumption (3.17), the environment is lazy or p• > 0 (permeable environment), and ρ
small enough;

3. in a non-lazy environment, p• small enough.

Then a ballisticity condition is satisfied, i.e.

P (sgn(ṽ)Xn · e1 < nṽ − L) ≤ Ce−c(logL)γ , (3.18)

with ṽ > 0 in the first two cases, ṽ < 0 in the third case; γ ∈ (1, 3/2).

The ballisticity condition (3.18) is reminiscent of Sznitman’s (T’) condition [97], widely used
in the study of random walks in static random environments. In [62, B8, B10], it is established
through a renormalization procedure which I detail further in the upcoming Section 3.3.3. Note
that in general, the ṽ we obtain need not be the actual speed of the random walker, but merely
a lower bound.

This kind of condition turns out to be a crucial first step to establish LLN and CLT for the
random walker. Indeed, with no clear martingale property, the best way to get CLT is to show
that the increments of the random walk have good mixing properties. In turn, these mixing prop-
erties should be inherited from those of the environment. But in our environment of symmetric
random walks, vertical (i.e. in time) decorrelations decay rather slowly. The ballisticity condition
allows in principle to use the decorrelations of the environment between space-time regions that
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Xt

time

Ti

x = ṽt

Figure 3.2: The regeneration times Ti are built in such a way that the trajectory of the random
walker remains inside the double-sided cone with slope ṽ. Moreover, the clouds of environment
particles (represented by dashed lines) that intersect the upper and lower parts of the cone
respectively never intersect.

are well separated both in time and space. This means that with high probability the particle
trajectories intersecting them are disjoint, and dramatically reduces their interdependence.

In practice however, we are not well-equipped to transfer these decorrelation properties di-
rectly to the environment seen from the random walk. Instead we rely on the delicate procedure
of building regeneration times for the random walker. This requires constructing (random) times
Ti such that the particle trajectories crossed by the random walker before and after Ti are dis-
joint, and controlling the tail of the their distribution. This construction is very similar to the
work my coauthors carried in [62] so I do not detail it further. The additional ellipticity require-
ments on p•, p◦ (that appear in Theorem 21 but not Theorem 22) come from the needs of this
construction.

3.3.3 Renormalization strategies

The general strategy used to establish the ballisticity condition (3.18) is similar in [62, B8, B10],
but each setting leads to technical issues that have to be solved. Let me briefly describe the
strategy in the setting of [62] (one dimension, high density), and then explain what adjustments
we need to make in the other cases.

The basis of the proof is a multiscale argument. Assume we have fixed a sequence of scales
(Lk)k∈N, diverging to infinity. In practice, we will also choose this sequence so that Lk+1/Lk
diverges, so the increase is very fast. The idea is to look at

pk := P(XLk > Lkṽk), (3.19)

for an appropriate sequence vk −→
k→∞

ṽ, and show a recursive inequality of the kind

pk+1 ≤ Nkp
2
k + εk, (3.20)

where Nk is an entropic factor and εk an error term. In spirit, this follows from the fact that,
in order to ‘run fast” between times 0 and Lk+1, the random walker has to “run fast” during at
least two time steps of length Lk, separated by a time at least Lk. The meaning of “run fast” is
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Lk+1

x = ṽkt

Xtx = ṽk+1t

Lk

Figure 3.3: Schematic of the renormalization procedure: on the event XLk+1
≥ ṽk+1Lk+1, we

can find three sub-boxes (and therefore two that are separated by a time length at least Lk) of
side length Lk in which the trajectory has a slope larger than ṽk.

given by the choice of the sequence (ṽk)k. This part of the argument is deterministic and requires
tuning (ṽk)k in terms of (Lk)k. We need that (Lk)k diverges fast enough so that ṽk → ṽ > 0.

As such though, this observation is not quite enough to obtain (3.20); we actually need to
use a modified version of pk, which I do not detail for simplicity. Suffice to say, it does allow to
get (3.20), with Nk of order (Lk+1/Lk)

d+1 (counting essentially the number of space-time boxes
of side Lk needed to pave a box of side Lk+1), and the error εk is Nk multiplied by an upper
bound on the covariance between two events separated by time Lk.

Things get a bit subtle at this point, because as mentioned above, our environment does
not have good mixing properties, and if we just use the 1/

√
Lk decay of correlations, it seems

hopeless to use (3.20). The trick is to allow ourselves to consider that the two events involved
in the recursion actually look at versions of the system with slightly different densities. This
trick, called sprinkling, effectively replaces the 1/

√
Lk by a stretched exponential in Lk and

dramatically reduces the error εk. In particular, it becomes true that for any γ < 3/2, and k
large enough

pk ≤ e−(logLk)γ ⇒ pk+1 ≤ e−(logLk+1)γ . (3.21)

That ensures a very quick decay of (pk)k, provided this bound is satisfied for some k0 large
enough. The cost of using sprinkling is that it becomes essential that the events we consider in
the definition of pk be increasing (seen as measurable functions on the environment state space
NZd×N).

The last ingredient needed is then a triggering lemma, stating that we can find such a k0. In
the setting of [62] this is simply done by tuning ρ so that on the scale k0 at which (3.21) becomes
true, with overwhelming probability a box of side Lk0 is completely filled.

The three sets of Assumptions in Theorem 22 require different adjustments. Let us look at
each of them.

1. In the multidimensional, non-nearest-neighbor, high-density case, the issue is that the event
defining pk is no longer monotone. Indeed, monotonicity in the one-dimensional nearest-
neighbor case comes from the fact that two trajectories have to meet in order to cross, so
that if X0 ≤ X ′0 and X ′ sees more particles than X, the trajectories X,X ′ can be built in
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such a way that X ≤ X ′. This is intrinsically no longer true in higher dimension, or for
random walkers taking non-nearest-neighbor jumps.
What we do in [B8] is give a general construction of events whose probability satisfy
(3.20) if they happen to be monotone. Then we show that for the RWRE, we can choose
the complement of these events as requiring that any eligible trajectory for the random
walker has to spend most of its time on sites occupied by many particles. This condition
is increasing, so (3.20) is satisfied. The triggering lemma easily follows by taking the
density high enough, so we have a very fast decay of the probability that there exists a
bad trajectory, that does not spend enough time on crowded sites. In particular, with
overwhelming probability the actual trajectory has a drift in the direction e1 most of the
time, and this implies ballisticity.

2. In the one-dimensional, nearest-neighbor, lazy, low-density case, the difficulty lies in the
triggering lemma. In fact, in order to use sprinkling, we need some room to adjust the
density. This gives a lower bound on ρk (the density seen at scale Lk) of order L−1/16

k ,
below which we are not able to establish (3.20). If we wanted to do the triggering as in the
high density case, we would need to take the density small enough that a box of side Lk
is empty, meaning ρk � L−1

k for k large, which is incompatible with our first condition. A
big part of [B10] is therefore dedicated to showing that for any L, at density L−1/16,

P(XL < L15/16) ≤ Ce−c(logL)2
. (3.22)

This triggering lemma relies heavily on the monotonicity mentioned above, which is only
valid in one dimension and for nearest-neighbor random walks. It uses the fact that with
positive probability, every time the random walker meets a particle, it may jump as if it
had not seen it (this is what we call permeability).

3. In the non-lazy one-dimensional environment with small p•, the argument is perturbative
around the p• = 0 case, so we first need to understand how the latter behaves. The main
property we use is: if at some time the random walker is left of a particle5, this remains
true at any later time. So consider the set of particles initially sitting on Z+. The infection
cluster we mentioned above grows by incorporating every particle it meets along the way.
The technology developed in [B8] allows us to show that the infection front (the leftmost
particle) will spend a positive portion of its time in a situation where it has a drift to the
left. In turn, this allows us to establish the ballisticity property (3.18) with negative speed
for this front (and therefore for the random walker with p• = 0). This improves slightly
the previously available bounds on the speed of propagation of an infection cluster.
Turning back to the problem for small p•, the recursive inequality is not difficult to es-
tablish. The triggering lemma is proved by noticing that for fixed L, the left hand-side of
(3.18) is a continuous function of p•.

3.4 Fast-mixing environments

This section describes the contents of [B9], written in collaboration with Marcelo Hilário and
Augusto Teixeira. We work with a dynamical environment with polynomial mixing (with high
enough exponent), in dimension 1. The goal is to obtain a law of large numbers for a random
walker in this type of environment, when the notion of polynomial mixing is taken in the weak
sense of correlations. Applications include Markovian environments with positive spectral gap
(e.g. KCMs) or the (backward) contact process6. Though we are restricted to dimension 1 and
nearest-neighbor jumps for the random walker, our setting covers situations where (contrary to
the other sections) the random walker does not need to evolve “on top of” the environment (see
e.g. Section 3.4.2).

5In fact, everything in the rest of this paragraph should be restricted to the sub-lattice of sites which have the
same parity as the position of the random walker.

6A nice feature of our assumptions is that they are not sensitive to time-reversal.
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Figure 3.4: The mixing hypothesis on the environment implies that the covariance between events
A1, A2 (measurable w.r.t. the environment restricted to B1, B2 respectively) decays as a power
of r, when B1, B2 are vertically separated as shown in the picture.

3.4.1 Hypotheses and main result

We consider a dynamical environment in dimension 1 + 1 (ηt(x))x∈Z,t∈R+ , with values in a
countable state space S (mostly, S = {0, 1} or N). We assume that (ηt)t is a càdlàg process
that is also stationary and translation invariant. Contrary to the other works presented in this
manuscript, we do not need (ηt)t to be a Markov process. Let P be the law of (ηt)t.

The main assumption we make on the environment is a decorrelation property.

Definition 7 (Decoupling inequality). P satisfies a decoupling inequality with exponent α if the
following holds: for all r ≥ 1, all boxes B1, B2 with side lengths less than 5r and time-distance
larger than r, for any functions f1, f2 measurable w.r.t. the environment restricted to B1, B2

respectively,
Cov(f1, f2) ≤ Cr−α. (3.23)

The constant 5 in the definition is a bit arbitrary; it is chosen so that it covers without
difficulty the examples we have in mind. This assumption is rather weak, though we will need
to take α larger enough in order to use it.

The strongest assumptions we need concern the random walker. We define it by setting a
collection of possible jumps times T = (T xi )i∈N,x∈Z. The main example we have in mind is choos-
ing the (T xi )i as independent Poisson point processes, also independent from the environment,
in which case we recover the standard setting described in the other sections. But we may also
allow for instance the T xi to be times at which the environment itself updates.

The jumps of the random walker are determined by the environment, the collection T , a
collection U = (Uxi )i∈N,x∈Z of iid U [0, 1] variables independent from everything else, through a
function

g : S{−`,...,`} × [0, 1]→ {−1, 0, 1}. (3.24)

In words, each possible jump time T xi carries extra randomness encoded in Uxi . When the random
walker attempts to jump, g looks at the environment in a final interval around its current position
and the extra randomness and outputs a jump.

Fix a starting point (x0, t0) ∈ Z × R+. The random walker trajectory (X
(x0,t0)
t )t≥t0 started

from (x0, t0) is constructed as follows:

• X
(x0,t0)
t0

= x0.

• For T ≥ t0, if X
(x0,t0)
T = X, let I = min{i : TXi ≥ T}. For t ∈ [T, TXI ), set X(x0,t0)

t = X,
and

X
(x0,t0)

TXI
= g

(
ηT ′(X − `), . . . , ηT ′(X + `);UXI

)
. (3.25)
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When (x0, t0) = (0, 0), the superscript will be omitted from the notation.
When the T xi are independent Poisson point processes independent from the environment,

this framework allows to recover the standard setting described in the previous sections.
Let us now list the assumptions we require on T . The main one is that the environment

enriched with T (and U) should still be stationary, translation invariant, and satisfy a decoupling
inequality. We also need that T has finite speed of propagation properties.

Definition 8. 1. An allowed path is a possible trajectory for the random walker, i.e. with
nearest-neighbor jumps such that jumps from x occur only at times in {T xi , i ∈ N}.

2. The speed of an allowed path (γt)t∈[0,T ] is (γT − γ0)/T . Define

BT (v) := {∃ an allowed path of length T starting from [0, T )× {0}] with speed ≥ v}
(3.26)

B̃T (v) := {∃ an allowed path of length T starting from [0, T )× {0}] with speed ≤ v}.
(3.27)

3. T has the finite speed of propagation property (FSP) if7

(a) For all v > 1, lim infT→∞ P(BT (v)) = 0 and lim infT→∞ P(B̃T (−v)) = 0.

(b) P(BT (2) ∪ B̃T (−2)) ≤ Ce−cT .

4. For all x ∈ Z, almost surely

{T xi , i ∈ N} ∩ {T xi , i ∈ N} = ∅. (3.28)

It should be clear that the constants 1 and 2 appearing in the FSP property do not play
a special role; they are chosen so that, when T is a collection of iid PPP(1), FSP is satisfied.
(3.28) may look anecdotical and is certainly satisfied for a wide range of natural choices for T ;
it is however crucial to our strategy (see Section 3.4.3).

We are now ready to state the main result of [B9].

Theorem 23. Assume that P satisfies the decoupling inequality with exponent α > 8, and T has
the FSP property and (3.28). Then there exists v ∈ [−1, 1] such that

Xt

t
−→
t→∞

v P–a.s. (3.29)

Moreover, for every ε > 0, for t large enough,

P
(∣∣∣∣Xt

t
− v
∣∣∣∣ ≥ ε) ≤ t−α/4. (3.30)

It is a priori difficult to extract information on the value of v from our proofs (see Section 3.4.3
to understand why). In particular, in general we cannot give its sign. However, in the special
case where g takes its values in {0, 1} (so that clearly v ≥ 0), it is possible to give a criterion
implying the positivity of v.

Theorem 24. Assume that P satisfies the decoupling inequality with exponent α > 8.5, T has
the FSP property, (3.28) and P(X1 ≥ 1) > 0. Then v > 0.

It is natural to ask whether the threshold on the exponents present in Theorems 23 and 24
are optimal. The answer is no: they are chosen to satisfy a number of conditions appearing in the
several multiscale arguments involved in the proof, and the additional aesthetic requirement of
being easy to remember. It is true however that our proofs cannot generalize to decoupling expo-
nents much below 8 (see [63] for a result with the same flavor in a well-known environment with

7The second condition should in fact be a bit different for technical reasons.
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Figure 3.5: A simulation of the ergodic environment defined in [B9] in which a random walker
may not satisfy a LLN. Black and white rectangles are deposited like a superposition of Poisson
processes at increasing scales. Points in the plane untouched by this deposition process are left
gray. The random walker has a drift to the right in black regions, to the left in white regions.
Inside a big black/white region, it will have a positive/negative speed; since both happen with
positive probability, this rules out the possibility of a LLN.

smaller α). It is still unclear just how mixing an environment should be for the random walker to
satisfy a LLN; would the conclusion in Theorem 23 still hold if we just knew Cov(f1, f2) −→

r→∞
0

for f1, f2 as in Definition 7?
In [B9], we provide an example of a random walker that does not satisfy a LLN. The en-

vironment is chosen stationary, translation invariant, ergodic with respect to space-time shifts,
and in fact satisfies Cov(f1, f2) −→

r→∞
0 for f1, f2 with support in boxes vertically separated by r

but of side length less than rβ for some β ∈ (0, 1). I do not attempt to describe it here, just see
Figure 3.5 for an inspirational picture.

3.4.2 Applications

Let us give some settings in which Theorem 23 applies.

The (backward) supercritical contact process The contact process is a standard interact-
ing particle systems decribing the spread of an infection (which we already met in Section 1.3.2.2).
Each infected site recovers at rate 1 and infects its neighbors at rate λ. In dimension 1, the process
has generator

Lcontactf(η) =
∑
x∈Z

[η(x) + (1− η(x))(η(x− 1) + η(x+ 1))] [f(ηx)− f(η)] . (3.31)

It is well known that this process exhibits a phase transition: there exists λc such that, for
λ ≤ λc the process started from a unique infection converges to the empty state almost surely,
while for λ > λc, with positive probability the infection survives. In the latter case, the process
started from the all-infected state converges to the so-called upper-invariant measure νλ, which
by construction is stationary and translation-invariant.

The backward contact process is merely the time-reversal of the contact process. It appears
naturally as a model for genealogies of populations.

Due to monotonicity properties (the process started with more initial infections has more
infections at time t), it is not hard to show that the supercritical contact process satisfies our
decoupling inequality. In particular, Theorem 23 applies in this context.
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Lemma 2. For λ > λc, the contact process started from νλ satisfies a decoupling inequality with
any exponent α > 0.

While there are several strong results for RWRE on a supercritical contact process [14, 38, 82],
the backward contact process is generally much harder to handle [16, 17]. For our hypotheses
however, time-reversal is transparent, and Theorem 23 applies immediately to the backward
process as well.

Positive spectral gap An important class of environments also covered by our results is the
family of Markov processes with positive spectral gap8. The spectral gap is the inverse of the
relaxation time appearing in Definition 3.

Lemma 3. If η is a càdlàg strongly continuous Markov process stationary w.r.t. ν, with positive
spectral gap in L2(ν), it satisfies a decoupling inequality with any exponent α > 0.

It is not hard to deduce this property from (1.8). This allows to apply our results in particular
to the following processes:

• independent spin flip dynamics on Z;

• Glauber dynamics for the Ising model on Z;

• one-dimensional KCMs in the supercritical regime.

The latter case provides an example where it is useful to consider more general families of
update times T than merely independent PPP. In the beginning of Section 1.3.1.2, I mentioned a
notion very useful in the study of the East model: the distinguished zero. Let us define it within
the framework of this section. The allowed jump times T are given by the Poisson clocks used in
the graphical construction of the East process described below Definition 1. The function g only
looks at the configuration to the right of the current position: g(η|{−1,0,1};u) = 1−η(1), meaning
the distinguished zero jumps to the right at the time of an update at its current position iff the site
on its right is empty. By construction, if η0(0) = 0, ηt(Xt) = 0 and moreover η|{0,...,Xt−1} ∼ µp
regardless of the initial distribution. This property makes the distinguished zero a very useful
tool to study the non-equilibrium dynamics of the East model.

In order to apply our results, we need the environment to be stationary, which seems to
contradict the purpuse described above. However, the East model has the additional property
that it is oriented, implying for instance that the trajectory of the distinguished zero does not
depend on the initial distribution on Z− = {. . . ,−2,−1, 0}. A consequence of our results is
therefore the following.

Proposition 8. Consider the East process started from any distribution such that η0(0) = 0 and
(η0)|N∗ ∼ µp. The distinguished zero trajectory satisfies a LLN with positive speed.

A similar argument along with a simple modification of our proofs also allows to recover the
LLN for the front in the East process (recall Section 1.3.2) in the special case where (η0)|N∗ ∼ µp
(or a distribution absolutely continuous w.r.t. µp).

Independent renewal chains This is an example in which the covariance decay is sub-
exponential (contrary to the examples above).

Let us fix a sequence (an)n∈N of positive real numbers satisfying

∀n 0 < an ≤ Ce− log2 n, and
∑
n

an = 1. (3.32)

The environment we consider is given by independent copies of the stationary renewal Markov
chain with transition probabilities given by the an, i.e. the process with generator

Lf(n) =

{
f(n− 1)− f(n) if n > 0,∑

k>0 ak (f(k)− f(0)) if n = 0.
(3.33)

8As far as I know, it is still an open question whether the contact process has positive spectral gap.
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Lemma 4 ([62]). The environment defined above satisfies a decoupling inequality with any ex-
ponent α > 0.

3.4.3 Strategy

Let me now describe the strategy of proof behind Theorem 23.
The first step is to identify upper and lower speeds v+, v−. We want v+ to be such that

the random walker has very small probability to exceed speed v+, but at the same time has
a non-vanishing probability of attaining speeds close to v+ (and similarly for v−). In the final
argument we want to use these two properties to show that in fact v+ and v− coincide.

The idea is that v+ and v− are chosen so that the random walker has a good chance of
attaining speeds close to both of these values over sufficiently long time scales. On the other
hand, the probability that it runs faster than v+ + ε (and also slower than v−− ε) vanishes fast.
Assume by contradiction that v+ > v−. By the fact that the random walker cannot run faster
than v+, the moments when its speed stays close to v− should delay it sufficiently to prevent it
from attaining a speed close to v+ over long time scales. This would give rise to a contradiction
implying that v− = v+.

The proof is not so straightforward however, since our basic properties on v+, v− do not rule
out that, by time H, the random walker moves faster than v+ + εH (or slower than v− − εH)
for some well-chosen εH . The main part of the proof will use multiscale arguments to make our
naive guess work.

Definition of v+, v− Let us define the events9 that the random walker has speed at least (resp.
at most) v on scale H.

AH(v) := {∃x ∈ [0, H) s.t. X(x,0)
H − x ≥ vH}, (3.34)

ÃH := {∃x ∈ [0, H) s.t. X(x,0)
H − x ≤ vH}. (3.35)

The corresponding probabilities are denoted pH(v) = P(AH(v)), p̃H(v) = P(ÃH(v)). We can
now define the upper and lower speeds v+, v−.

v+ := inf{v ∈ R : lim inf
H→∞

pH(v) = 0}, (3.36)

v− := sup{v ∈ R : lim inf
H→∞

p̃H(v) = 0}. (3.37)

The finite speed propagation property clearly implies v+ ≤ 1, v− ≥ −1. This definition gives
us for free the second property we wanted our upper/lower speeds to have (with non-vanishing
probability, the random walker attains speeds close to those values). The first one remains
to be shown: the definition only says that the upper/lower spees cannot be exceeded along a
subsequence. The desired property is the first substantial result in [B9].

Proposition 9. Assume that P satisfies the decoupling inequality with exponent α > 5, and T
has the FSP property and (3.28). Then for any ε > 0, for all H > 0

pH(v+ + ε) ≤ C(ε)H−α/4 and p̃H(v− − ε) ≤ C(ε)H−α/4. (3.38)

The argument is close to the one described in Section 3.3.3, with a little twist. We fix a
sequence (Lk)k such that Lk+1 � L5/4

k and a zooming parameter h ∈ R∗+ to be chosen later. We
consider here the sequence pk,h = phLk(vk), where vk is chosen so that

pk+1,h ≤ C(Lk+1/Lk)
4
(
p2
k,h + c(hLk)

−α) , (3.39)

where the second term in parenthesis comes from the decoupling inequality. This implies that
uniformly in h ≥ 1, if α > 5, pk,h ≤ L

−α/2
k implies pk+1,h ≤ L

−α/2
k+1 . The triggering step consists

9In fact, we use a slighlty more involved definition to handle discretization effects.
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in finding h large enough so that pk0,h ≤ L
−α/2
k0

, using the definition of v+. This gives us our
first intermediate result: there exists h ≥ 1 such that for all k ≥ k0,

pk,h ≤ L−α/2k . (3.40)

To conclude the proof of Proposition 9, it remains to use an interpolation argument that I do
not detail here.

Setting traps We want to argue that v+ = v− by contradiction. Assuming δ := (v+−v−)/4 >
0, we attempt to prove that the random walk spends too much time having speeds in [v−, v−+δ]
to be able to reach speeds in [v+ − δ, v+]. To this end, we identify traps in which the random
walker may fall, resulting in a delay.

The construction of these traps relies heavily on our hypothesis that the random walker only
performs nearest-neighbor jumps, and that we are in dimension 1. Indeed, with our construction,
that and (3.28) imply

x ≤ x′ =⇒ X(x,t)
s ≤ X(x′,t)

s for all s ≥ 0. (3.41)

This would no longer be true with longer range jumps, or in higher dimensions (not even
coordinate-wise). This implies that if a trajectory started from (x, t) has speed close to v−, it
will slow down trajectories going through points slightly to the left of (x, t).

Definition 9. The point (x, t) is H–trapped if there exists y ∈ [x+ δH, x+ 2δH] such that

X
(y,t)
H − y ≤ (v− + δ)H. (3.42)

(3.41) implies that, if (x, t) is H–trapped, then for all y ∈ [x, x+ δH],

X
(y,t)
H − y ≤ (v+ − δ)H, (3.43)

so that a trap at (x, t) causes a delay in any trajectory crossing [x, x+ δH] at time t.
A simple consequence of our definition of v− (along with invariance under space-time trans-

lations) is that traps occur with positive probability, uniformly over large scales.

Lemma 5. There exists c > 0 such that, for H large enough, for all (x, t) ∈ Z× R+,

P((x, t) is H–trapped) ≥ c. (3.44)

One could think of the set ofH–trapped points as a percolation-type environment of obstacles.
Every time the random walker passes next to such an obstacle it will be delayed for a time H.
Furthermore, if the probability that a point is trapped could be made very high, then every
allowed path would have to approach these obstacles at time scales smaller than H and we would
be done. However, we only know that this probability is positive and it could, in principle, be
very small. Therefore, the random walker could always avoid these trapped points, or it could
spend only a negligible fraction of the time next to them.

Our next step is to boost the probability of meeting a trap by extending the vision range of
the random walker.

Definition 10. The point (x, t) is (H, r)–threatened if10 there exists j ∈ {0, . . . , r− 1} such that
(x+ jHv+, t+ jH) is trapped.

Threatened points have both properties we hoped for when we set traps: they induce a delay
in trajectories that meet them, and they occur with high probability, making their encounter
inevitable.

Lemma 6. 1. If (x, t) is (H, r)–threatened, either
10Technically, we use a slightly different definition, involving a sublattice that I do not describe here.
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(x, t) + joH(v+, 1)

(x, t)

(x, t) + rH(v+, 1)
X

(x,t)
rH

y′

Figure 3.6: The point (x, t) is (H, r)-threatened, since (x, t) + joH(v+, 1) is H-trapped (by the
trajectory started at y′). This results in a delay for X(x,t)

rH .

• X(x,t) has a speed larger than v+ + δ/(2r) during one of the [jH, (j + 1)H] time
intervals;

• or the trajectory X(x,t) is delayed:

X(x,t) − x ≤
(
v+ − δ/(2r)

)
rH. (3.45)

2. If P satisfies a decoupling inequality with exponent α > 1, T has the FSP property and
(3.28), there exists c > 0 such that for H large enough, for any r ≥ 1,

P((x, t) is (H, r)–threatened) ≥ 1− cr−α. (3.46)

By Proposition 9, having speed larger than v+ + δ/(2r) is very unlikely, so that with high
probability it is the delay scenario that occurs. The first part of Lemma 6 is a deterministic
proof that follows simply from our definitions. The second part on the other hand is proved
through a renormalization scheme in two steps. We first show that the probability to not be
(H, r)–threatened decays to 0 (at this stage, the rate of decay is not important). For this part,
the triggering is merely done by choosing the decay appropriately. We then use this intermediate
result as a triggering argument in a renormalization scheme providing the right rate of decay.

Note that at this point we still only need α > 5. The next step (perhaps the most involved)
consists in showing that with high probability, every allowed path spends a positive proportion
of its time (in fact, larger than 1/2) next to threatened points. It is at this stage that we need
to restrict our conditions to α ≥ 8. Let me not detail this step which gets rather technical.

In order to conclude the proof, it remains to argue that the accumulation of delays induced
by the density of threatened points implies that there exists η > 0 and a sequence Hk →∞ such
that

pHk(v+ − η) −→
k→∞

0. (3.47)

This contradicts the definition of v+ and concludes the proof.

3.4.4 Open problems

As I hinted above, the conditions α > 8 or 8.5 in Theorems 23 and 24 are not meaningful
thresholds for the behavior of the random walker. The same proofs would in fact work a bit
below these values, and we could get a deviation estimate (see (3.30)) with another exponent
than α/4. However, additional arguments would be required to reach lower values of α, e.g.
α = 2, which is the relevant value for many conservative particle systems. For instance, in
[63], the authors perform a study similar to that in [B9], but with the environment given by a
Simple Symmetric Exclusion Process. The extra arguments involve the use of lateral decoupling
(i.e., decoupling at large spatial distances), monotonicity and sprinkling to get the law of large
numbers for all values of the density (except maybe two). It is unclear whether there exist
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environments satisfying the decoupling inequality with some α > 0 and random walks on them
that do not satisfy a law of large numbers.

A major restriction in [B9] is that we can only deal with one-dimensional nearest-neighbor
random walks. These assumptions (even the second one alone) do not seem easy to lift (but keep
an eye on Julien Allasia’s thesis).

Finally, a natural follow-up question, even in the simple setting of [B9], is whether a CLT
holds as well as a LLN. As we have seen in the previous sections, when the environment is
sufficiently well-known, it is sometimes possible to design regeneration arguments. This is what
the authors do in [63] to get a CLT when the speed in the law of large numbers is non-zero. It
would be nice however to find a way to use our multiscale arguments to prove something at the
level of fluctuations.
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Appendix A

Invariant measures for the
one-dimensional FA-1f model

This note is a reformulation (with extra detail) of [84], transposed to the case of the FA-1f
model in dimension 1. In the original version, cx(η) = 1 − η(x − 1) + 1 − η(x + 1), instead of
cx(η) = 1 − η(x − 1)η(x + 1) for FA-1f, but the same proof is valid. Since this paper does not
seem well-known in the KCM community, I revisit it here. The notations are those of Chapter 1.
Let us abbreviate

rx(η) := p(1− η(x) + qη(x). (A.1)

Theorem A1. [84] For the FA-1f model in dimension 1 with parameter p, every invariant
measure is a linear combination of µp and δ1.

Proof. Let Λ b Z, ν a probability measure on Ω, νt the distribution of the FA-1f process started
from distribution ν. For σ ∈ ΩΛ, νt(σ) denotes νt({η ∈ Ω : η|Λ = σ}) and 1σ(η) = 1{η|Λ=σ}.
The idea is to consider the finite volume entropy

HΛ(νt) :=
∑
σ∈ΩΛ

νt(σ) log

[
νt(σ)

µp(σ)

]
. (A.2)

This is only possible if νt(σ) > 0 for any σ ∈ ΩΛ. Therefore, we need a first lemma guarantee-
ing that this holds if ν is invariant. Let Λn := [−n, n] ∩ Z and δ1,n the configuration identically
equal to 1 on Λn.

Lemma A1. If ν is invariant, for any n ∈ N∗, if ν(δ1,n) < 1, for all σ ∈ ΩΛn, ν(σ) > 0.

Note that the second condition is necessary, since δ1 is invariant.

Proof of Lemma A1. This follows by standard arguments from the irreducibility of the dynamics
on ΩΛn \ {δ1,n}. Indeed, by invariance of ν,∑

x∈Λn

[ν(cxrx1σx)− ν(cxrx1σ)] = 0. (A.3)

Assume that there exists σ ∈ ΩΛn \ {δ1,n} such that ν(σ) = 0. Then the terms coming with a
minus sign are zero for this choice of σ. Therefore, for all x ∈ Λn, 0 = ν(cxrx1σx) ≥ c1Λn,x(σ)(p∧
q)ν(σx). Therefore, ν(σx) = 0 for all x ∈ Λn neighboring a zero in σ. In the same way, we reach
the conclusion that for all σ′ ∈ ΩΛn \ {δ1,n} accessible by spin flips allowed by the constraints,
ν(σ′) = 0. But every configuration with at least a zero is accessible, and therefore this contradicts
ν(δ1,n) < 1.

It remains to eliminate the case ν(δ1,n) = 0. Let us apply the previous result to Λn+1. If
ν(δ1,n+1) < 1 (which certainly holds if ν(δ1,n) = 0), the configuration with one zero at n+ 1 and
ones on Λn ∪ {−n} has positive probability. This forbids ν(δ1,n) = 0.

75
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Let us go back to the proof of Theorem A1. If ν is invariant and HΛ(ν) well-defined, clearly
d
dtHΛ(νt) ≡ 0. On the other hand,

d

dt

∑
σ∈ΩΛ

νt(σ) log νt(σ)


|t=0

=
∑
σ∈ΩΛ

(1 + log ν(σ))ν(L1σ) =
∑
σ∈ΩΛ

log (ν(σ)) ν(L1σ), (A.4)

d

dt

∑
σ∈ΩΛ

νt(σ) logµp(σ)


|t=0

=
∑
σ∈ΩΛ

log(µp(σ))ν(L1σ), (A.5)

where the second equality in the first line follows from
∑

σ∈ΩΛ
1σ = 1. Let us now choose Λ = Λn

and define, for x ∈ Λn, σ ∈ ΩΛn ,

Γn(x, σ) =

∫
Ω
dν(η)c(x, η)rx(η)1σ(η). (A.6)

Notice that
Γn(x, σ) =

∑
ζ∈Ωn+1,ζ|Λn=σ

Γn+1(x, ζ). (A.7)

From (A.4), (A.5), we conclude that for any n ∈ N∗,

0 =
d

dt
HΛn(νt)|t=0 =

∑
σ∈ΩΛn

log

(
ν(σ)

µp(σ)

) ∑
x∈Λn

[Γn(x, σx)− Γn(x, σ)] . (A.8)

The key lemma that we will show is the following.

Lemma A2. If ν is invariant, for all n ∈ N∗, σ ∈ ΩΛn, x ∈ Λn,

Γn(x, σ) = Γn(x, σx). (A.9)

Proof of Lemma A2. If ν(δ1,n+1) = 1, the result is clear. Otherwise, we can apply Lemma A1
and (A.8) holds. Notice that the right-hand side of (A.8) can be symmetrized into

1

2

∑
x∈Λn

∑
σ∈ΩΛn

[
log

(
µp(σ

x)

µp(σ)

)
− log

(
ν(σx)

ν(σ)

)]
[Γn(x, σx)− Γn(x, σ)] . (A.10)

Let us split this sum into In +Bn, with

In :=
1

2

n−1∑
x=−n+1

∑
σ∈ΩΛn

[
log

(
µp(σ

x)

µp(σ)

)
− log

(
ν(σx)

ν(σ)

)]
[Γn(x, σx)− Γn(x, σ)] , (A.11)

and Bn containing the boundary terms. Since the rates are reversible w.r.t. µp, and In contains
only terms in the bulk, it can be rewritten as

In = −1

2

n−1∑
x=−n+1

∑
σ∈ΩΛn

log

(
ν(σx)rx(σx)

ν(σ)rx(σ)

)
[Γn(x, σx)− Γn(x, σ)] (A.12)

= −1

2

n−1∑
x=−n+1

∑
σ∈ΩΛn

log

(
Γn(x, σx)

Γn(x, σ)

)
[Γn(x, σx)− Γn(x, σ)] . (A.13)

Let us define Φ : (u, v) 7→ log(u/v)(v − u), and notice that it is convex, subadditive and non-
negative. In particular, In ≤ 0. Moreover, letting

αn(x) :=
∑

σ∈ΩΛn

log

(
Γn(x, σx)

Γn(x, σ)

)
[Γn(x, σx)− Γn(x, σ)] , (A.14)
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we check easily that (αn(x))n≥x+1 is non-decreasing (by subadditivity of Φ and (A.7)). Conse-
quently, if In → 0 as n→∞, αn(x) = 0 for all n ≥ |x|+ 1.

Let us now turn to Bn = −In and show that it converges to 0. Using(A.7), we can rewrite

2Bn =
∑

σ∈ΩΛn

∑
ζ∈ΩΛn+1

,ζ|Λn=σ

[
log

(
µp(σ

−n)

µp(σ)

)
− log

(
ν(σ−n)

ν(σ)

)] [
Γn+1(−n, ζ−n)− Γn+1(−n, ζ)

]
+
∑

σ∈ΩΛn

∑
ζ∈ΩΛn+1

[
log

(
µp(σ

n)

µp(σ)

)
− log

(
ν(σn)

ν(σ)

)]
[Γn+1(n, ζn)− Γn+1(n, ζ)] .

(A.15)

First, we can bound the terms involving µp by

∑
σ∈ΩΛn+1

log

(
µp(σ

±n)

µp(σ)

)[
Γn+1(±n, ζ±n)− Γn+1(±n, ζ)

]
≤ 2 log

(
p ∨ q
p ∧ q

) ∑
σ∈ΩΛn+1

∣∣Γn+1(±n, ζ±n)− Γn+1(±n, ζ)
∣∣ . (A.16)

We will then split the sum in (A.15) according to the value of ν(σ±n)
ν(σ) . If ν(σ±n)

ν(σ) ∈ [M,M ′] with

M ′ ≥M ≥ 1, we can bound− log
(
ν(σ±n)
ν(σ)

)
[Γn+1(±n, ζ±n)− Γn+1(±n, ζ)] by 0 if Γn+1(±n, ζ±n) ≥

Γn+1(±n, ζ), and log(M ′)Γn+1(±n, ζ) ≤ log(M ′)(p ∨ q)ν(ζ) else. Summing over ζ such that
ζ|Λn = σ, we get in that case∑
ζ|Λn=σ

− log

(
ν(σ±n)

ν(σ)

)[
Γn+1(±n, ζ±n)− Γn+1(±n, ζ)

]
≤ log(M ′)(p∨q)ν(σ) ≤ log(M ′)(p ∨ q)

M
ν(σ±n).

Similarly, if ν(σ±n)
ν(σ) ∈ [δ′, δ] with 0 < δ′ < δ < 1,

− log

(
ν(σ±n)

ν(σ)

)[
Γn+1(±n, ζ±n)− Γn+1(±n, ζ)

]
≤ − log(δ′)(p ∨ q)δν(σ). (A.17)

Let us now fix M > 1 and define Mk = Mek, δk = M−1e−k. Using the above bound, and∑
ζ∈ΩΛn+1

Γn+1(·, ζ) ≤ 1,

we can bound

2Bn ≤
(

logM + log

(
p ∨ q
p ∧ q

)) ∑
ζ∈ΩΛn+1

|Γn+1(n, ζn)− Γn+1(n, ζ)|

+

(
logM + log

(
p ∨ q
p ∧ q

)) ∑
ζ∈ΩΛn+1

∣∣Γn+1(−n, ζ−n)− Γn+1(−n, ζ)
∣∣

+ 2
∑
k≥0

(logM + k + 1)e−k/M (A.18)

<∞. (A.19)

By monotonicity of the (αn(x))n, In is non-increasing and Bn is therefore non-decreasing. We
conclude that limn→∞Bn exists, and also limn→∞ In = −1

2 limn→∞
∑n−1

x=−n+1 αn(x). Since 0 ≤
αn+1(±n) ≤ In − In+1, this implies αn+1(±n) vanishes as n→∞.

Let us now show that [76, Lemma IV.5.8]∑
σ∈ΩΛn+1

∣∣Γn+1(±n, σ±n)− Γn+1(±n, σ)
∣∣ ≤√2αn+1(±n). (A.20)
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By (A.18), this will conclude the proof. Let

M =
∑

ζ∈ΩΛn+1

Γn+1(±n, ζ±n) ∨ Γn+1(±n, ζ), (A.21)

m =
∑

ζ∈ΩΛn+1

Γn+1(±n, ζ±n) ∧ Γn+1(±n, ζ). (A.22)

The square of the left-hand side of (A.20) can be reformulated and estimated

[ ∑
ζ∈ΩΛn+1

∣∣Γn+1(±n, ζ±n)− Γn+1(±n, ζ)
∣∣ ]2

= (M −m)2 ≤ (M −m)M log
M

m
≤MΦ(M,m)

≤ 2
∑

ζ∈ΩΛn+1

Φ
(

Γn+1(±n, ζ±n) ∨ Γn+1(±n, ζ),Γn+1(±n, ζ±n) ∧ Γn+1(±n, ζ)
)

= 2αn+1(±n).

(A.23)

Let us now conclude the proof of Theorem A1, by showing that an invariant measure ν
satisfying (A.9) is of the form λδ1 + (1 − λ)µp for some λ ∈ [0, 1]. ν(δ1,n) is non-increasing in
n, so it has a limit in [0, 1]; let us call it λ. A consequence of (A.9) is that, for any σ ∈ Λn,
x ∈ Λn−1, if cx(σ) > 0, then

ν(σx) = ν(σ)
rx(σ)

rx(σx)
.

In particular, since it is possible to connect any σ ∈ ΩΛn \ {δ1,n} to (say) δ0,n through allowed
spin flips, for any such σ,

ν(σ) = ν(δ0,n)

(
p

q

)|σ|
,

where |σ| = ∑x∈Λn
σ(x). ν(σ) can therefore be expressed in terms of ν(δ1,n):

ν(σ) =

(
p

q

)|σ| q2n+1

1− p2n+1
(1− ν(δ1,n)). (A.24)

Now fix m ∈ N∗, ζ ∈ ΩΛm . Denote by 0 · ζ · 0 the configuration equal to ζ on Λm and 0 on
−m− 1,m+ 1 (and similarly 1 · ζ · 0, 0 · ζ · 1, 1 · ζ · 1).

ν(ζ) = ν(0 · ζ · 0) + ν(1 · ζ · 0) + ν(0 · ζ · 1) + ν(1 · ζ · 1) (A.25)

=

(
p

q

)|ζ| [
1 + 2

p

q
+
p2

q2

]
q2m+3

1− p2m+3
(1− ν(δ1,m+1)) (A.26)

=

(
p

q

)|ζ| q2m+1

1− p2m+3
(1− ν(δ1,m+1)). (A.27)

Iterating this, we get that for all n ≥ m,

ν(ζ) =

(
p

q

)|ζ| q2m+1

1− p2n+1
(1− ν(δ1,n)), (A.28)

which fixes the value of ν(ζ) at µp(ζ)(1− λ) since ν(δ1,n) converges to Λ as n→∞.
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Stochastic dynamics with degenerate rates
Kinetically constrained models; hydrodynamic limits; random walks in random environment

Abstract: The works presented here concern several examples of stochastic models on discrete lattices.
Their common feature is that some transitions are forbidden, which makes them lose properties like
monotonicity or ellipticity. This makes their study more challenging.
In the first chapter we consider the equilibrium/non-equilibrium relaxation of Kinetically Constrained
Models (KCM). At equilibrium, we use Poincaré inequalities or variational formulas to study quantities
that characterize the speed of the dynamics: relaxation time or a tracer diffusion coefficient. For non-
equilibrium dynamics, results are sparser. In this chapter we study the propagation of a one-dimensional
front in the FA-1f model.
In the second chapter, we show hydrodynamic limits for conservative interacting particle systems with
constraints. We study the facilitated exclusion process and the porous medium model. In the first case, we
show that the hydrodynamic limit is given by a Stefan problem; in the second we describe the equilibrium
fluctuations of the weakly asymmetric version of the model.
The last chapter concerns random walks in dynamic random environment. The results presented there
aim to study environments which – like the KCM – have rather weak mixing properties, and obtain law of
large numbers or CLT. The elected tools range from perturbation theory of operators to renormalisation
techniques.

Keywords: Kinetically constrained models; hydrodynamic limits; random walks in random environment



Dynamiques aléatoires avec taux dégénérés
Systèmes de particules avec contraintes cinétiques, limites hydrodynamiques,
marches aléatoires en milieu aléatoire

Résumé: Les travaux présentés dans ce manuscrit s’intéressent à différents exemples de modèles stochas-
tiques sur réseau discret, dont le point commun est que l’interdiction de certaines transitions rend leur
étude plus difficile en faisant perdre des propriétés de monotonie ou d’ellipticité.
La première classe de modèles considérée est celle des systèmes de particules avec contraintes cinétiques
(KCM), dont on étudie la relaxation à l’équilibre et hors équilibre. Dans le premier cas, des outils du
type inégalités de Poincaré ou formules variationnelles permettent d’étudier des quantités caractérisant la
vitesse de la dynamique, comme le temps de relaxation ou le coefficient de diffusion d’un traceur. Dans
le cas hors équilibre, les résultats sont plus rares. On étudie dans ce chapitre la propagation d’un front
unidimensionnel dans le modèle FA-1f.
Le deuxième chapitre s’intéresse à des résultats de type limite hydrodynamique pour des systèmes de
particules conservatifs avec contraintes. On étudie le modèle d’exclusion facilité ainsi que le modèle des
milieux poreux. Pour le premier, on montre que la limite hydrodynamique est donnée par un problème
de Stefan, et on décrit les fluctuations à l’équilibre du deuxième dans sa version faiblement asymétrique.
Le dernier chapitre porte sur des marches aléatoires en milieu aléatoire dynamique. Les travaux présentés
visent à étudier des environnements ayant – comme les KCM – de faibles propriétés de mélanges, pour
obtenir loi des grands nombres ou TCL. Les outils proposés vont de la perturbation d’opérateurs à des
techniques de renormalisation.

Mots clés: Systèmes de particules avec contraintes cinétiques, limites hydrodynamiques, marches aléa-
toires en milieu aléatoire

Image en couverture : Simulation du processus d’exclusion facilité.
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