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Toy models for glassy systems

I Ingredients
I Facilitation/geometric constraints
I No interaction at equilibrium

I Can we observe...?
I Diverging relaxation times
I Dynamical heterogeneities
I Breakdown of the Stokes-Einstein relation
I Etc.

Figure : L. Berthier, Physics 4, 42 (2011)
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The models
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General description

I Continuous time stochastic processes on {0, 1}Z
d

.

I Transitions = creation/destruction of particles.

I Transition allowed at x only if a local constraint of the type �there are
enough zeros around x� is satis�ed.

I Density parameter p ∈ (0, 1).

Examples of constraints:

I East model (d = 1): the East neighbour should be empty.

I FA-1f∗ model: there should be at least one empty neighbour.

∗Fredrickson-Andersen one-spin facilitated model
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Graphical construction (East model, density p)

t

I Initial con�guration η ∈ {0, 1}Z.

I Each site x waits an exponential
mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

∼ E(1)

∼ E(1)

I Initial con�guration η ∈ {0, 1}Z.
I Each site x waits an exponential

mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

I Initial con�guration η ∈ {0, 1}Z.
I Each site x waits an exponential

mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

q

I Initial con�guration η ∈ {0, 1}Z.
I Each site x waits an exponential

mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

q

I Initial con�guration η ∈ {0, 1}Z.
I Each site x waits an exponential

mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

I Initial con�guration η ∈ {0, 1}Z.
I Each site x waits an exponential

mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

I Initial con�guration η ∈ {0, 1}Z.
I Each site x waits an exponential

mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

q

I Initial con�guration η ∈ {0, 1}Z.
I Each site x waits an exponential

mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

I Initial con�guration η ∈ {0, 1}Z.
I Each site x waits an exponential

mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

I Initial con�guration η ∈ {0, 1}Z.
I Each site x waits an exponential

mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

I Initial con�guration η ∈ {0, 1}Z.
I Each site x waits an exponential

mean 1 time.

I Then if the constraint is satis�ed,
x is refreshed to 1 with probability
p and 0 w.p. q = 1− p.

I If the constraint is not satis�ed,
nothing happens.

O. Blondel KCSM



Graphical construction (East model, density p)

t

p
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East at di�erent densities

p = 0.6p = 0.5

p = 0.7 p = 0.8

Simulations by Arturo L. Zamorategui.
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FA-1f

p = 0.8

Simulation by Arturo L. Zamorategui.
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Equilibrium

I Let µ = B(p)⊗Z
d

. µ is reversible for KCSM dynamics and is called the
equilibrium measure.

I Exponential return to equilibrium for East and FA-1f [Aldous-Diaconis '02]

Varµ(Pt f ) ≤ Varµ(f )e−2t/τ with τ <∞.

�The correlation between η and η(t) decreases like e−2t/τ when the initial

con�guration η has law µ�. τ is the relaxation time (inverse of the spectral gap).

� Non-attractive processes: η ≤ σ 6=⇒ η(t) ≤ σ(t).

≤

≤
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Non equilibrium
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What if η ∼ µ′, µ′ 6= µ?

N.B.: If η ≡ 1, at any time η(t) ≡ 1 =⇒ no uniform relaxation property.

Better question: given a model, for which density and which initial distribution
does the system relax to equilibrium, and at what speed?

Answer for East: [Cancrini-Martinelli-Schonmann-Toninelli '10]
If η has in�nitely many zeros on the right half-line, for all p ∈ (0, 1)

|Eη [f (η(t))]− µ(f )| ≤ Ce−ct for any local function f .

N.B.: This condition is optimal, since if η has a right-most zero z , for all t > 0
η(t) remains entirely occupied on the right of z .

Fundamental tool: the distinguished zero.
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Out-of-equilibrium relaxation for FA-1f

[B.-Cancrini-Martinelli-Roberto-Toninelli '13, Markov Proc. Relat. Fields]

Theorem
Consider the FA-1f model on Zd with density p. Let µ′ be a probability measure

on Ω. Assume

1. p < 1/2

2. sup
x∈Zd

µ′
(
θd(x,{zeros of η})

)
<∞ for some θ > 1

Then for any local function f there is a constant 0 < c <∞ such that

|Eµ′ [f (η(t))]− µ(f )| ≤ c‖f ‖∞
{

e−t/c if d = 1

e
−
(

t

c log t

)1/d

if d > 1
(1)
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Bubbles and front
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Front progression in the East model

I Start from any con�guration with
left-most zero at 0.

I Let the East dynamics run for time
t.

Xt position of the front (i.e. the left-
most zero) at time t.
θη(t) con�guration seen from the front
at time t.

Questions

I Xt

t
−→
t→∞

v < 0?

I What does the front see? Invariant measure for (θη(t))
t≥0? Convergence

of (θη(t))
t≥0?
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I µ is not invariant for (θη(t))
t≥0.

I Dynamics non attractive =⇒ no subadditive argument.
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Central argument

Far from the front, θη(t) is almost distributed as µ.

t
Xt

η

L M

∼ ν
η
t;L,M

Theorem (B., SPA '13)

I If L + M ≤ Ct

‖νη
t;L,M − µ‖TV ≤ e−εL

I If L + M > Ct and η has �enough

zeros"

‖νη
t;L,M − µ‖TV ≤ e−ε(L∧t)
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Theorem (B., SPA '13 )

I There exists v < 0 such that for every initial η as above

Xt

t
−→
t→∞

v in probability.

I The process seen from the front has a unique invariant measure ν and

θη(t) =⇒ ν in distribution.

Main argument: use the previous result to construct a coupling between the
processes started from η, σ.

Perspectives: CLT, large deviations, generalization to non-oriented models.
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At low temperature
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Questions

I Can we give a simpler description of the dynamics when q → 0?

I Characteristic quantities of the system degenerate when q → 0. How fast?
What are the mechanisms involved?
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Relaxation time and di�usion

I Relaxation time
Recall that

Varµ(Pt f ) ≤ Varµ(f )e−2t/τ with τ <∞,

τ is the relaxation time of the system.

I Di�usion coe�cient
Add a probe/tracer (pollen) to the system (liquid) at equilibrium. It
di�uses with di�usion coe�cient D depending on the system.

I Stokes-Einstein relation
In simple liquids,

D ≈ τ−1.
In glassy systems,

D ≈ τ−ξ with ξ < 1.

For our models?
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Di�usion coe�cient

Setting of [Jung-Garrahan-Chandler '04].

I Environment: East of FA-1f at equilibrium (initial con�guration ∼ µ).
I Add a tracer at the origin.

I Simple random walk, but jumps only between empty sites.
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Convergence to Brownian motion

[Kipnis-Varadhan '86, De Masi-Ferrari-Goldstein-Wick '89, Spohn '90]

Proposition
If Xt is the position of the tracer at time t

lim
ε→0

εXε−2t =
√
2DBt ,

where Bt is a standard Brownian motion and the di�usion matrix D is given by

u.Du =
1

2
inf
f

∑
y∈Zd

µ
(
cy (η)((1− q)(1− ηy ) + qηy ) [f (η

y )− f (η)]2
)

+
d∑

i=1

∑
α=±1

µ
(
(1− η0)(1− ηαei ) [αui + f (ηαei+·)− f (η)]2

)
> 0

where u ∈ Rd and the in�mum is taken over local functions f on Ω.
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FA-1f at low temperature

I Relaxation time [Cancrini-Martinelli-Roberto-Toninelli '08]

C−1q−3 ≤ τ ≤ Cq−3 for d = 1

C−1q−2 ≤ τ ≤ Cq−2 log(1/q) for d = 2

C−1q−(1+2/d) ≤ τ ≤ Cq−2 for d ≥ 3

Conjecture: τ ∼ q−2 for d ≥ 3.

I Di�usion coe�cient
I Prediction of [JGC '04] D ∼ q2 in all dimensions.

=⇒ ξ = 2/3 if d = 1, ξ = 1 else.
I Results of [B. '13]. In all dimensions

cq
2 ≤ D ≤ Cq

2,

and analogous result for other non-cooperative models (with a di�erent,
explicit exponent).
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East at low temperature

I Relaxation time [AD '02, CMRT '08]

cδ exp

(
log(1/q)2

2 log 2− δ

)
≤ τ ≤ exp

(
log(1/q)2

2 log 2 + δ

)
.

I Di�usion coe�cient
I Prediction of [JGC '04] D ≈ τ−0.73.

=⇒ ξ ≈ 0.73.
I Results of [B. '13].

cq
2τ−1 ≤ D ≤ Cq

−ατ−1 =⇒ log(D)

log(τ−1)
→ 1.
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=⇒ ξ ≈ 0.73.

I Results of [B. '13].

cq
2τ−1 ≤ D ≤ Cq

−ατ−1 =⇒ log(D)

log(τ−1)
→ 1.
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Open questions

I Weaker decoupling between D and τ−1 in the East model (for instance
D ≈ q−ατ−1, α > 0)?

I Other KCSM with Stokes-Einstein violation?

I Di�usion when τ = +∞?
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Other perspectives

I Tracer with drift (work in progress, with Luca Avena and Alessandra
Faggionato).

I Simpler description of FA-1f at low temperature?
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Thank you for your attention!
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Subadditivity for the contact process.

×: infected, �: healthy.
×→� at rate 1
�→× at rate proportional to the number of infected neighbours.
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