Kinetically constrained particle systems on a lattice

Oriane Blondel

LPMA - Paris 7; ENS Paris

December 3rd, 2013

Au commencement était le Verre...

O. Blondel KCSM

Amorphous solid

Liquid water

Toy models for glassy systems

Toy models for glassy systems

- Ingredients
 - Facilitation/geometric constraints
 - No interaction at equilibrium

Toy models for glassy systems

- Ingredients
 - Facilitation/geometric constraints
 - No interaction at equilibrium
- Can we observe...?
 - Diverging relaxation times
 - Dynamical heterogeneities
 - Breakdown of the Stokes-Einstein relation
 - ► Etc.

Figure : L. Berthier, Physics 4, 42 (2011)

O. Blondel	KCSM
------------	------

The models

- Continuous time stochastic processes on $\{0,1\}^{\mathbb{Z}^d}$.
- Transitions = creation/destruction of particles.
- Transition allowed at x only if a local constraint of the type "there are enough zeros around x" is satisfied.
- Density parameter $p \in (0,1)$

- Continuous time stochastic processes on $\{0,1\}^{\mathbb{Z}^d}$.
- Transitions = creation/destruction of particles.
- Transition allowed at x only if a local constraint of the type "there are enough zeros around x" is satisfied.
- Density parameter $p \in (0,1)$.

Examples of constraints:

- East model (d = 1): the East neighbour should be empty.
- ► FA-1f* model: there should be at least one empty neighbour.

*Fredrickson-Andersen one-spin facilitated model

t t

• Initial configuration $\eta \in \{0,1\}^{\mathbb{Z}}$.

- Initial configuration $\eta \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.

- Initial configuration $\eta \in \{0, 1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.
- ► Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. q = 1 − p.

- Initial configuration $\eta \in \{0, 1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.
- ► Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. q = 1 - p.

- Initial configuration $\eta \in \{0, 1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.
- ► Then *if* the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. q = 1 - p.
- If the constraint is not satisfied, nothing happens.

- Initial configuration $\eta \in \{0, 1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.
- ► Then *if* the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. q = 1 - p.
- If the constraint is not satisfied, nothing happens.

- Initial configuration $\eta \in \{0, 1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.
- ► Then *if* the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. q = 1 - p.
- If the constraint is not satisfied, nothing happens.

- Initial configuration $\eta \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.
- ► Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. q = 1 − p.
- If the constraint is not satisfied, nothing happens.

- Initial configuration $\eta \in \{0, 1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.
- ► Then *if* the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. q = 1 - p.
- If the constraint is not satisfied, nothing happens.

- Initial configuration $\eta \in \{0, 1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.
- ► Then *if* the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. q = 1 - p.
- If the constraint is not satisfied, nothing happens.

- Initial configuration $\eta \in \{0, 1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.
- ► Then *if* the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. q = 1 - p.
- If the constraint is not satisfied, nothing happens.

- Initial configuration $\eta \in \{0,1\}^{\mathbb{Z}}$.
- Each site x waits an exponential mean 1 time.
- ► Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. q = 1 - p.
- If the constraint is not satisfied, nothing happens.

East at different densities

Simulations by Arturo L. Zamorategui.

p = 0.8

Simulation by Arturo L. Zamorategui.

Equilibrium

• Let $\mu = \mathcal{B}(p)^{\otimes \mathbb{Z}^d}$. μ is reversible for KCSM dynamics and is called the *equilibrium measure*.

Equilibrium

▶ Let $\mu = \mathcal{B}(p)^{\otimes \mathbb{Z}^d}$. μ is reversible for KCSM dynamics and is called the *equilibrium measure*.

Exponential return to equilibrium for East and FA-1f [Aldous-Diaconis '02]

$$Var_{\mu}(P_tf) \leq Var_{\mu}(f)e^{-2t/ au}$$
 with $au < \infty$.

"The correlation between η and $\eta(t)$ decreases like $e^{-2t/\tau}$ when the initial configuration η has law μ ". τ is the relaxation time (inverse of the spectral gap).

Equilibrium

▶ Let $\mu = \mathcal{B}(p)^{\otimes \mathbb{Z}^d}$. μ is reversible for KCSM dynamics and is called the *equilibrium measure*.

Exponential return to equilibrium for East and FA-1f [Aldous-Diaconis '02]

$$Var_{\mu}({\sf P}_t f) \leq Var_{\mu}(f)e^{-2t/ au} \quad ext{with} \quad au < \infty.$$

"The correlation between η and $\eta(t)$ decreases like $e^{-2t/\tau}$ when the initial configuration η has law μ ". τ is the relaxation time (inverse of the spectral gap).

Non-attractive processes: $\eta \leq \sigma \Rightarrow \eta(t) \leq \sigma(t)$.

$$\begin{array}{c} \bigcirc \bigcirc & \leq & \bigcirc \bigcirc \\ \bullet \bigcirc & \neq & \bigcirc \bigcirc \\ \end{array}$$

Non equilibrium

What if $\eta \sim \mu'$, $\mu' \neq \mu$?

What if $\eta \sim \mu'$, $\mu' \neq \mu$?

N.B.: If $\eta\equiv 1$, at any time $\eta(t)\equiv 1$ \Longrightarrow no uniform relaxation property.

N.B.: If $\eta \equiv 1$, at any time $\eta(t) \equiv 1 \implies$ no uniform relaxation property.

Better question: given a model, for which density and which initial distribution does the system relax to equilibrium, and at what speed?

N.B.: If $\eta \equiv 1$, at any time $\eta(t) \equiv 1 \Longrightarrow$ no uniform relaxation property.

Better question: given a model, for which density and which initial distribution does the system relax to equilibrium, and at what speed?

Answer for East: [Cancrini-Martinelli-Schonmann-Toninelli '10] If η has infinitely many zeros on the right half-line, for all $p \in (0, 1)$

 $|\mathbb{E}_{\eta}\left[f(\eta(t))\right] - \mu(f)| \leq Ce^{-ct}$ for any local function f.

N.B.: This condition is optimal, since if η has a right-most zero z, for all t > 0 $\eta(t)$ remains entirely occupied on the right of z.

Fundamental tool: the distinguished zero.

[B.-Cancrini-Martinelli-Roberto-Toninelli '13, Markov Proc. Relat. Fields]

Theorem

Consider the FA-1f model on \mathbb{Z}^d with density p. Let μ' be a probability measure on Ω . Assume

- 1. p < 1/2
- 2. $\sup_{x \in \mathbb{Z}^d} \mu' \left(\theta^{d(x, \{\text{zeros of } \eta\})} \right) < \infty \text{ for some } \theta > 1$

Then for any local function f there is a constant $0 < c < \infty$ such that

$$|\mathbb{E}_{\mu'}[f(\eta(t))] - \mu(f)| \le c ||f||_{\infty} \begin{cases} e^{-t/c} & \text{if } d = 1\\ e^{-\left(\frac{t}{c \log t}\right)^{1/d}} & \text{if } d > 1 \end{cases}$$
(1)

Bubbles and front

Front progression in the East model

_**----**

- Start from any configuration with left-most zero at 0.
- Let the East dynamics run for time t.

- Start from any configuration with left-most zero at 0.
- Let the East dynamics run for time t.

- Start from any configuration with left-most zero at 0.
- Let the East dynamics run for time t.

- Start from any configuration with left-most zero at 0.
- Let the East dynamics run for time t.

 X_t position of the front (*i.e.* the left-most zero) at time t.

 $heta\eta(t)$ configuration seen from the front at time t.

- Start from any configuration with left-most zero at 0.
- Let the East dynamics run for time t.

 X_t position of the front (*i.e.* the left-most zero) at time t.

 $heta\eta(t)$ configuration seen from the front at time t.

Questions

$$\quad \stackrel{X_t}{t} \xrightarrow[t \to \infty]{} v < 0?$$

What does the front see? Invariant measure for (θη(t))_{t≥0}? Convergence of (θη(t))_{t≥0}?

• μ is not invariant for $(\theta \eta(t))_{t>0}$.

- μ is not invariant for $(\theta \eta(t))_{t>0}$.
- Dynamics non attractive \implies no subadditive argument.

Central argument

Far from the front, $\theta\eta(t)$ is almost distributed as μ .

Central argument

Far from the front, $\theta\eta(t)$ is almost distributed as μ .

Theorem (B., SPA '13)

• There exists v < 0 such that for every initial η as above

$$\frac{X_t}{t} \underset{t \to \infty}{\longrightarrow} v \qquad \text{in probability.}$$

• The process seen from the front has a unique invariant measure ν and

$$\theta\eta(t) \Longrightarrow \nu$$
 in distribution.

Theorem (B., SPA '13)

• There exists v < 0 such that for every initial η as above

$$\frac{X_t}{t} \underset{t \to \infty}{\longrightarrow} v \qquad \text{in probability.}$$

• The process seen from the front has a unique invariant measure ν and

$$\theta\eta(t) \Longrightarrow \nu$$
 in distribution.

Main argument: use the previous result to construct a coupling between the processes started from η, σ .

Theorem (B., SPA '13)

• There exists v < 0 such that for every initial η as above

$$\frac{X_t}{t} \underset{t \to \infty}{\longrightarrow} v \qquad \text{in probability.}$$

• The process seen from the front has a unique invariant measure ν and

$$\theta\eta(t) \Longrightarrow \nu$$
 in distribution.

Main argument: use the previous result to construct a coupling between the processes started from η, σ .

Perspectives: CLT, large deviations, generalization to non-oriented models.

At low temperature

- Can we give a simpler description of the dynamics when $q \rightarrow 0$?
- ► Characteristic quantities of the system degenerate when q → 0. How fast? What are the mechanisms involved?

 Relaxation time Recall that

$$Var_{\mu}(P_t f) \leq Var_{\mu}(f)e^{-2t/\tau}$$
 with $\tau < \infty$,

au is the relaxation time of the system.

 Relaxation time Recall that

$$Var_{\mu}(P_t f) \leq Var_{\mu}(f)e^{-2t/\tau}$$
 with $\tau < \infty$,

 τ is the relaxation time of the system.

Diffusion coefficient

Add a probe/tracer (*pollen*) to the system (*liquid*) at equilibrium. It diffuses with diffusion coefficient D depending on the system.

 Relaxation time Recall that

$$Var_{\mu}(P_t f) \leq Var_{\mu}(f)e^{-2t/\tau}$$
 with $\tau < \infty$,

 τ is the relaxation time of the system.

Diffusion coefficient

Add a probe/tracer (*pollen*) to the system (*liquid*) at equilibrium. It diffuses with diffusion coefficient D depending on the system.

 Stokes-Einstein relation In simple liquids,

$$D \approx \tau^{-1}$$
.

 Relaxation time Recall that

$$Var_{\mu}(P_t f) \leq Var_{\mu}(f)e^{-2t/\tau}$$
 with $\tau < \infty$,

au is the relaxation time of the system.

Diffusion coefficient

Add a probe/tracer (*pollen*) to the system (*liquid*) at equilibrium. It diffuses with diffusion coefficient D depending on the system.

 Stokes-Einstein relation In simple liquids,

$$D \approx \tau^{-1}$$
.

In glassy systems,

$$D \approx \tau^{-\xi}$$
 with $\xi < 1$.

 Relaxation time Recall that

$$Var_{\mu}(P_t f) \leq Var_{\mu}(f)e^{-2t/\tau}$$
 with $\tau < \infty$,

au is the relaxation time of the system.

Diffusion coefficient

Add a probe/tracer (*pollen*) to the system (*liquid*) at equilibrium. It diffuses with diffusion coefficient D depending on the system.

 Stokes-Einstein relation In simple liquids,

$$D \approx \tau^{-1}$$
.

In glassy systems,

$$D \approx \tau^{-\xi}$$
 with $\xi < 1$.

For our models?

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.

[Kipnis-Varadhan '86, De Masi-Ferrari-Goldstein-Wick '89, Spohn '90] Proposition

If X_t is the position of the tracer at time t

$$\lim_{\epsilon \to 0} \epsilon X_{\epsilon^{-2}t} = \sqrt{2D}B_t,$$

where B_t is a standard Brownian motion and the diffusion matrix D is given by

$$u.Du = \frac{1}{2} \inf_{f} \left\{ \sum_{y \in \mathbb{Z}^{d}} \mu \left(c_{y}(\eta) ((1-q)(1-\eta_{y}) + q\eta_{y}) \left[f(\eta^{y}) - f(\eta) \right]^{2} \right) + \sum_{i=1}^{d} \sum_{\alpha = \pm 1} \mu \left((1-\eta_{0})(1-\eta_{\alpha e_{i}}) \left[\alpha u_{i} + f(\eta_{\alpha e_{i}+\cdot}) - f(\eta) \right]^{2} \right) \right\}$$

where $u \in \mathbb{R}^d$ and the infimum is taken over local functions f on Ω .

FA-1f at low temperature

Relaxation time [Cancrini-Martinelli-Roberto-Toninelli '08]

$$egin{array}{rcl} C^{-1}q^{-3} &\leq & au &\leq Cq^{-3} & {
m for} \ d=1 \ C^{-1}q^{-2} &\leq & au &\leq Cq^{-2}\log(1/q) & {
m for} \ d=2 \ C^{-1}q^{-(1+2/d)} &\leq & au &\leq Cq^{-2} & {
m for} \ d\geq 3 \end{array}$$

Conjecture: $au \sim q^{-2}$ for $d \geq 3$.

FA-1f at low temperature

Relaxation time [Cancrini-Martinelli-Roberto-Toninelli '08]

Conjecture: $au \sim q^{-2}$ for $d \geq 3$.

- Diffusion coefficient
 - ▶ Prediction of [JGC '04] $D \sim q^2$ in all dimensions. ⇒ $\xi = 2/3$ if d = 1, $\xi = 1$ else.

FA-1f at low temperature

Relaxation time [Cancrini-Martinelli-Roberto-Toninelli '08]

Conjecture: $au \sim q^{-2}$ for $d \geq 3$.

- Diffusion coefficient
 - ▶ Prediction of [JGC '04] $D \sim q^2$ in all dimensions. ⇒ $\xi = 2/3$ if $d = 1, \xi = 1$ else.
 - $\implies \xi = 2/3$ if d = 1, $\xi = 1$ else.
 - Results of [B. '13]. In all dimensions

$$cq^2 \leq D \leq Cq^2$$
,

and analogous result for other non-cooperative models (with a different, explicit exponent).

East at low temperature

Relaxation time [AD '02, CMRT '08]

$$c_{\delta} \exp\left(rac{\log(1/q)^2}{2\log 2 - \delta}
ight) \leq au \leq \exp\left(rac{\log(1/q)^2}{2\log 2 + \delta}
ight).$$

East at low temperature

Relaxation time [AD '02, CMRT '08]

$$c_{\delta} \exp\left(rac{\log(1/q)^2}{2\log 2 - \delta}
ight) \leq au \leq \exp\left(rac{\log(1/q)^2}{2\log 2 + \delta}
ight)$$

- Diffusion coefficient
 - ► Prediction of [JGC '04] $D \approx \tau^{-0.73}$. $\implies \xi \approx 0.73$.

East at low temperature

Relaxation time [AD '02, CMRT '08]

$$c_\delta \exp\left(rac{\log(1/q)^2}{2\log 2 - \delta}
ight) \leq au \leq \exp\left(rac{\log(1/q)^2}{2\log 2 + \delta}
ight).$$

- Diffusion coefficient
 - Prediction of [JGC '04] $D \approx \tau^{-0.73}$.
 - $\Longrightarrow \xi \approx 0.73.$
 - Results of [B. '13].

$$cq^2\tau^{-1} \leq D \leq Cq^{-\alpha}\tau^{-1} \implies \frac{\log(D)}{\log(\tau^{-1})} \to 1.$$

► Weaker decoupling between D and τ^{-1} in the East model (for instance $D \approx q^{-\alpha} \tau^{-1}$, $\alpha > 0$)?

- ▶ Weaker decoupling between D and τ^{-1} in the East model (for instance $D \approx q^{-\alpha} \tau^{-1}$, $\alpha > 0$)?
- Other KCSM with Stokes-Einstein violation?

- ► Weaker decoupling between D and τ^{-1} in the East model (for instance $D \approx q^{-\alpha} \tau^{-1}$, $\alpha > 0$)?
- Other KCSM with Stokes-Einstein violation?
- Diffusion when $\tau = +\infty$?

 Tracer with drift (work in progress, with Luca Avena and Alessandra Faggionato).
- Tracer with drift (work in progress, with Luca Avena and Alessandra Faggionato).
- Simpler description of FA-1f at low temperature?

Thank you for your attention!

O. Blondel KCSM

Subadditivity for the contact process.

- $\times:$ infected, $\Box:$ healthy.
 - $\times {\rightarrow} \Box \quad \text{ at rate } 1$
 - $\Box \rightarrow \times$ at rate proportional to the number of infected neighbours.

