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Abstract – We study the motion of a tracer particle injected in facilitated models which are used
to model supercooled liquids in the vicinity of the glass transition. We consider the East model,
FA1f model and a more general class of non-cooperative models. For East previous works had
identified a fractional violation of the Stokes-Einstein relation with a decoupling between diffusion
and viscosity of the form D ∼ τ−ξ with ξ ∼ 0.73. We present rigorous results proving that instead
log(D)/ log(τ) ∼ −1 for very large time-scales. Our result does not exclude the occurrence of
SE breakdown, albeit non fractional. Indeed we believe that this violation occurs and our result
suggests D ∼ τ−11/qα, where q is the density of excitations
For FA1f we prove fractional Stokes Einstein in dimension 1, and D ∼ τ−1 in dimension 2 and
higher, confirming previous works. Our results extend to a larger class of non-cooperative models.

Introduction. – A microscopic understanding of the
liquid/glass transition and of the glassy state of matter re-
mains a challenge for condensed matter physicists (see [1,2]
for recent surveys). In the last years many experimental
and theoretical works have been devoted to understanding
the spatially heterogeneous relaxation which occurs when
temperature is lowered towards the glass transition [3–15].
In this regime dynamics slows down and relaxation is char-
acterized by the occurrence of correlated regions of high
and low mobility whose typical size grows when temper-
ature decreases. One of the most striking experimental
consequences of dynamical heterogeneities is the violation
of Stokes-Einstein relation, namely the decoupling of self-
diffusion coefficient (D) and viscosity (η). In high temper-
ature homogeneous liquids, self-diffusion and viscosity are
related by the Stokes-Einstein relation Dη/T ∼ const [16].
Instead in supercooled fragile liquids the self-diffusion co-
efficient does not decrease as fast as the viscosity increases
and Dη increases by 2-3 orders of magnitude approaching
the glass transition [3–8]. A good fit of several experimen-
tal data is D ∼ η−ξ with ξ < 1 an exponent depending on
the specific liquid. Such a violation is instead absent or
much weaker in strong liquids, consistently with the idea
that the decoupling is related to heterogeneities which are

indeed more important for more fragile liquids. A natu-
ral explanation of this effect is that different observables
probe differently the underlying broad distribution of re-
laxation times [9]: D is dominated by the more mobile
particles, while η probes the time scale needed for every
particle to move.

Different theories of the glass transition have been tested
by measuring their capability to predict Stokes-Einstein
breakdown. In particular, several works [17–20] have anal-
ysed the self-diffusion coefficient of a probe particle in-
jected in a facilitated (or kinetically constrained) model.

Kinetically constrained models and Stokes-
Einstein violation. – In the setting of Kinetically Con-
strained Models, supercooled liquids are modeled by a
coarse-grained mobility field evolving with a Markovian
stochastic dynamics with simple thermodynamic proper-
ties and non-trivial kinetic constraints. More precisely,
facilitated models are lattice models described by config-
urations {ni}, ni = 0, 1, with ni = 1 if the lattice site i
is active and ni = 0 if i is inactive. Active and inactive
sites essentially correspond to coarse grained unjammed
and jammed regions, respectively. Active sites are also
called defects. The dynamics is described by the following
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transition rates

ni = 0
qci−→ ni = 1 (1)

ni = 1
pci−→ ni = 0, (2)

where ci encodes the model dependent constraints and is
zero or one depending on the local configuration around
i, q = 1/(1 + exp(1/T̃ )), p = 1 − q and T̃ is a reduced
temperature. Since ci does not depend on the configu-
ration on i, the dynamics satisfies detailed balance w.r.t.
the product measure that gives weight q to active sites
and p to inactive sites, which is therefore an equilibrium
distribution. Two very popular models are the one-spin
facilitated model, FA1f [21], and the East model [22]. For
FA1f, ci = 1 iff site i has at least an active nearest neigh-
bour, while for East in one dimension ci = 1 iff the right
neighbour of i is active (namely ci = ni+1). The injec-
tion of a probe particle into these models is performed as
follows [17, 18]. Initially the lattice configuration is dis-
tributed with the equilibrium product measure and the
probe particle is at the origin. Then one lets the lattice
configuration (the environment) evolve according to the
facilitated model dynamics while the probe is allowed to
jump only between active sites, namely

X−→X ± eα at rate nXnX±eα (3)

where X is the position of the probe, α = 1, ..., d is one of
the d directions and eα is the unit vector in this direction.
Then the self-diffusion matrix D is defined as usual by

eα.2Deα = lim
t→∞

〈
(Xt · eα)

2
〉

t
.

A numerical analysis for the FA1f model leads in [17,18]
to the conclusion that D ∼ q2 in any dimension. Previous
numerical [2] and renormalisation group analysis [23] sug-
gested τ = 1/q2+ε(d) with ε(1) = 1, ε(2) ' 0.3, ε(3) ' 0.1
and ε(d ≥ 4) ' 0. These estimates led [17, 18] to the
conclusion that Stokes-Einstein relation is violated with
ξ ' 2/3, 2/2.3, 2/2.1 for FA1f in d = 1, 2, 3 and is not vi-
olated in higher dimensions. In [?] the scaling of τ was
deduced via an exact mapping into a model of annihi-
lating random walks with spontaneous creation from the
vacuum A + A ↔ 0, leading instead to ε(d ≥ 2) = 0.
This finding is supported by the mathematical results in
[24] which confirm ε(2) = 0 and yield ε(3) ≤ 0. In con-
sequence the result for the diffusion coefficient in [17, 18]
was reinterpreted [25] by saying that ξ = 2/3 in d = 1
while no violation occurs in d ≥ 2. This is consistent with
the idea that FA1f is a non cooperative model dominated
by the diffusion of active sites and it is a model for strong
rather than for fragile liquids. Instead for the East model
the analysis in [17, 18] leads to D = τ−ξ with ξ ' 0.73, a
result which is expected to hold also in higher dimensions.
The exponent is consistent with the one observed exper-
imentally and numerically in fragile glass-forming liquids
[7], [26], [27].

Here we report recent rigorous mathematical results for
the East and FA1f models and for more general non-
cooperative models (details can be found in [28]). For
the one dimensional East model we prove that there exist
constants α,c1, c2 > 0 such that

c1q
2τ−1 ≤ D ≤ c2q−ατ−1 (4)

which yields at leading order

log(D)

log(τ)
= −1 + o(1), (5)

where o(1) is a term that vanishes at low temperature,
since τ diverges faster than polynomial as q → 0. Thus
we establish that a fractional Stokes-Einstein relation can-
not hold, in contrast with the predictions in [17, 18]. The
numerical results in the latter works clearly show that a
SE violation occurs. Our result (4) does not exclude the
occurrence of a SE violation, albeit non fractional. In
particular a (weaker than fractional) violation compatible
with our result and with our heuristic is Dτ ∼ 1/qα. We
provide a heuristic for our result, which is related to the
estimate of the energy barriers that the probe has to over-
come in order to cross the typical distance between two
active sites at equilibrium. In fact, the probe typically
can do no better to exploit the underlying fluctuation of
the East model than jump a distance 1/q in time τ . We
also provide our understanding of which are the problems
in the analysis performed in previous works. Then we con-
sider non-cooperative models and we prove, in agreement
with [17], that in any dimension for FA1f it holds

cq2 ≤ D ≤ c′q2, (6)

with c, c′ constants independent on q. We also prove

cqk+1 ≤ D ≤ c′qk+1 (7)

for a more general model in which k (instead of one) active
sites are required in the vicinity of the to-be-updated site.
We provide a heuristic both for the diffusion coefficient
and the relaxation time which leads to a fractional Stokes-
Einstein for d = 1 and to D ∼ τ−1 for d ≥ 2. In partic-
ular our heuristics clearly explain the scaling τ = 1/q2 in
d ≥ 2 for the FA1f model. Note that (6) together with
the results in [24] imply that for FA1f in d ≥ 3 it holds
Dτ ≤ const: any form of decoupling cannot hold in this
case (while a logarithmic decoupling may occur in d = 2).
Finally we obtain for any choice of the kinetic constraints
a variational formula for the diffusion matrix, which we
will present and discuss at the end in order to avoid tech-
nicalities at this stage. As a consequence we obtain for
any facilitated model

q2τ−1 ≤ eα.Deα ≤ q2. (8)

East model. – The relaxation time of the East model
has an exponential inverse temperature squared (EITS)
form. Namely, up to polynomial corrections,

τ ∼ eln(1/q)2/2 ln 2. (9)
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The form τ ∼ ecst/T
2

was first given in [29] with cst =
1/ ln 2, which was derived via energy barrier considera-
tions. This value of the constant was proved to be wrong
by a factor 1/2 in [30]. Indeed, taking into account an
entropy factor which was missing in the previous works
(see also [31] for a more extended explanation) and us-
ing the lower bound of [32], in [30] it was proven instead
that cst = 1/2 ln 2. This scaling can be explained through
combinatorics arguments. Consider a configuration of only
inactive sites on a typical equilibrium length 1/q, with a
fixed active site at the right boundary. Recall that, due
to the orientation of the constraint, the left-most site can
only become active if all sites on its right became active
before it. It was proven in [29, 33] that before the left-
most site can become active, the system needs to visit
configurations with at least ln(1/q)/ ln 2 active sites. The
equilibrium probability of such a configuration is less than
e− ln(1/q)2/ ln 2 when q → 0, which accounts for the EITS
form. Moreover, the set of configurations attainable using
at most n = ln(1/q)/ ln 2 active sites simultaneously has a

cardinality of order 2(n2)n! ≈ eln(1/q)2/2 ln 2 [33], so that the
entropy factor changes the constant in the EITS form by a
factor 2 and yields (9). This fast divergence of τ makes it
very difficult to approach zero temperature through simu-
lations and allows to neglect polynomial terms in q when
an estimate involves τ . The above discussion actually ex-
plains the scale of the persistence time rather than the
relaxation time. However, for the East model these char-
acteristic times coincide [34]. Let us provide the heuristics
behind our result (4) which establishes that also diffusion
occurs on this time scale at leading order. In the initial
configuration, the first active site (ia) on the right of the
probe particle is typically at distance ∼ 1/q. Before the
tracer can move its first step to the right it needs at least to
wait for its right neighbour to become active. This occurs
thanks to the fact that sites are activated from right to
left starting from ia and thus requires a time proportional
to the persistence time. Note that the arrival of the exci-
tation sent from ia does not influence the configuration on
the right of ia. In particular once the probe has arrived
at ia it has typically to face again the same energy bar-
rier. In summary, for each distance of 1/q the probe covers
towards the right we need a time at least τ and this, to-
gether with the symmetry of the motion of the probe and
the fact that any polynomial in q is negligible with respect
to τ , yields (5). Note that our result (4) allows a weaker
violation of the Stokes Einstein relation: Dτ can diverge
when q → 0 as a polynomial in 1/q and our heuristics sug-
gest that the power of this polynomial should be at most
two. Indeed, recent and more extended simulations [35]
are compatible with Dτ ∼ 1/qα with α ∼ 1.6.

We believe that the discrepancy between our result and
the findings D ∼ τ−ξ with ξ ∼ 0.73 in [17, 18] is due the
difficulty to approach zero temperature in simulations. In
particular, among the diffusion coefficient data reported
on Fig.3 of [17], on all data except the last one the value

of 1/T is such that 1/q2 > eln(1/q)
2/2 ln 2. Thus these data,

even though very accurate and asymptotic in time, are not
sufficiently in the low temperature regime and do not allow
to capture the asymptotic form of D vs τ−1 when q → 0.1

The presumed fractional decoupling for East was consid-
ered (see e.g. [2], [36]) to be a consequence of the fluctua-
tions in the dynamic. More precisely it was explained by
the fact that, even if the first move is governed by the per-
sistence time, then the probe is supposed to move faster
since the typical time for the next events was considered
to be the (shorter) mean time between changes of mobil-
ity for a given site (exchange time). To use the expression
of [36], the probe should surf on excitation lines and thus
move faster than the typical relaxation time. Due to the
directed nature of the constraint, the excitation line can-
not expand to the right of the site where it has originated,
therefore the probe can perform this fast surfing only up
to a distance 1/q: the persistence time remains the leading
order in the diffusion time scale while fluctuations should
give rise to a polynomial violation of Stokes-Einstein.

FA1f and other non cooperative models. – We
turn now to non-cooperative models, and more specifically
to the k-defects model which we define as follows: ci = 1
if and only if there are at least k defects at distance at
most k around i. Note that for k = 1, we recover the FA1f
model and that any k-defects model is non-cooperative: if
the initial system contains k active neighbours, any site
can be activated through allowed transitions. Also, at low
q we expect dynamics to be dominated by the diffusion
of the group of k defects, which occurs at rate q because
in order to shift of one step the group of vacancies we
need to create an additional vacancy in the direction of
the move (and then remove one vacancy of the group in
the opposite direction). As stated in (7), we prove in all
dimensions D ∼ qk+1, which agrees with the numerical
results in [17] for FA1f (k = 1). The heuristics behind (7)
is the following. Consider a box of size q−k centred on the
probe particle. Typically at equilibrium there is one group
of k active sites inside this box, so that the proportion of
time during which the probe particle is on such a group
is qk. During that portion of time, the probe particle
diffuses at the same rate as this group of k active sites
which, as already explained, is q. In the end, the diffusion
coefficient of the probe particle is of order qk × q = qk+1.
Concerning the relaxation time we expect τ ∼ 1/q2k+1 in
one dimension and τ ∼ 1/qk+1 in d ≥ 2. This, together
with (7), implies that a fractional violation of the Stokes
Einstein relation does not occur in d ≥ 2 and occurs in d =

1After extended and fruitful discussions, the authors of [17, 18],
performed new and much more extended numerical simulations [35].
In the numerically accessible range, their data are still compatible
with the fractional violation which is excluded by our asymptotic
result. In view of our findings, a new fit with a weaker polynomial
violation Dτ ' 1/qα was performed. This form is also compati-
ble with the numerical data. This confirms that in the low density
regime the analysis of numerical simulations is very delicate due to
the extremely slow dynamics.
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1. In d = 1 the result for τ should come from the fact that
relaxation requires the group of k-vacancies to overcome
the typical distance 1/qk among two subsequent groups by
diffusing at rate q. In d ≥ 2 around each group of k-defects
there is typically a ball of radius r = 1/qk/d without any
such group. Relaxation requires that a fraction of the
sites of the ball is covered by the active group which is
essentially a random walker with rate q. Classic results
on random walks [37, 38] imply that this requires a time
(up to log corrections) rd times the inverse of the diffusion
rate of the walker, which indeed yields τ ∼ 1/qk+1.

Before sketching the ideas that allow us to prove (7) rig-
orously, we wish to present our variational formula for the
diffusion matrix, which is valid for any choice of the con-
straints and in particular yields (8). Denote by ηi(t) the
state of site Xt + i at time t, i.e. η(t) is the configuration
seen from the probe particle at time t. In particular, the
state of the system at the position of the tracer at time t
is given by η0(t). We call jα the current of the probe in
the direction α = 1, ..., d, namely

jα(η) = η0 (ηeα − η−eα) . (10)

Finally, we denote by L the Liouvillian operator associated
to the master equation for the dynamics i.e. L is the opera-
tor such that ∂t〈f(η(t))〉 = −〈Lf(η(t))〉, where 〈·〉 denotes
the mean over trajectories and over the initial configura-
tion distributed with the equilibrium measure. This is the
adjoint of the operator W governing the master equation:
∂t|P 〉 = −W|P 〉. We use this operator to express the typ-
ical value of f at time t as 〈f(η(t))〉 = 〈e−Ltf〉. Note that
L = Lenv + Ljump, where Lenv is the Liouvillian opera-
tor for the evolution of the environment (the facilitated
model without the probe), and Ljump describes the evo-
lution caused by the jumps of the probe particle. Using
standard methods [39] we compute the limit of the rescaled
position of the probe particle in terms of the current and
get the following result for eα.2Deα [28]

∑
y=±eα

〈
η0η±eβ

〉
− lim
t→∞

1

t

〈(∫ t

0

jα(η(s))ds

)2
〉
, (11)

where 〈·〉 has the same meaning as above. In
(11), the first term is just 2q2 and the second one
is −

∫∞
0
〈jα(η(0))jα(η(s))〉, which is −2

∫∞
0

〈
jαe
−tLjα

〉
in the above formulation and can be rewritten as
2
〈
jαL−1jα

〉
= −2 inff {2µ(jαf)− 〈fLf〉}. Then some

computations (see [28] for details) yield the following vari-
ational formula for eα.2Deα:

inf
f

{
2 〈fLenvf〉+

∑
y=±eα

〈
η0ηy [yα + f(τyη)− f(η)]

2
〉}

,

(12)
where 〈·〉 denotes the mean w.r.t. the equilibrium measure
and τyη is η translated by the vector y.

We are now ready to sketch the ideas that allow us
to prove (7). To establish D ≥ cqk+1, we show that

D ≥ cqk+1D, where D is the diffusion coefficient of a
k-dependent auxiliary dynamics which we describe in the
case k = 1 (FA1f) in dimension one. Take an initial con-
figuration at equilibrium, with the probe at the origin, an
active site at the origin and at least an active site among its
neighbours. Then define the auxiliary dynamics as follows.
The probe particle can jump to a neighbouring active site
with rate 1, and the two neighbours of the probe particle
can swap: if one of them is active and the other inactive,
they exchange their activity state with rate 1. Note that
with these rules the probe particle is always on an active
site and has always an active neighbour. In particular, we
can show that the diffusion coefficient for this auxiliary
dynamics D is positive and does not depend on q (see also
[39]). Then we need to establish D ≥ cq2D to conclude.
This is possible because we can compare the formula (12)
with its analogue for D, the diffusion coefficient in the aux-
iliary dynamics. In fact, the crucial ingredient is that it is
possible to reconstruct any possible move in the auxiliary
dynamics using a finite number of moves allowed by the
FA1f dynamics (see Fig. 1). As a consequence, the first
term in (12) can be compared with the analogous in the
variational formula for the diffusion coefficient of the auxil-
iary dynamics. The important thing in this reconstruction
is that intermediate steps involve no extra active site and
therefore no extra factor q comes out of this comparison.
The term q2 comes from the cost of imposing an active
site at the origin and on one of its neighbours in the equi-
librium configuration. The extension to other values of k
and higher dimensions are detailed in [28].

In order to show D ≤ Cqk+1, we look for an observable
f that captures the order of the diffusion when plugged
in the variational formula (12). We treat the case α = 1.
In a configuration at equilibrium, consider the connected
cluster of active sites containing the origin. This is the
cluster that the probe could span if the environment re-
mained frozen (see Fig. 2). Given a configuration η, we
choose f(η) to be the smallest non-negative coordinate z
such that this cluster is contained in the half-space on the
left of z, and we let f(η) = 0 if the origin is inactive (see
Fig. 2 for an example). The calculations in [28] show that
the test function f captures indeed the correct behaviour
of the diffusion matrix.

Conclusion. – In summary, we proved that for the
East model in dimension one the self-diffusion coefficient
of a probe particle is such that log(D)/ log(τ) ∼ −1 in
the low temperature regime (q → 0), at variance with
previous results claiming a fractional Stokes-Einstein re-
lation of the form D ∼ τ−ξ with ξ < 1. Our result does
not exclude the occurrence of SE breakdown, albeit non
fractional. Indeed numerical simulations clearly show that
violation occurs and our heuristics suggests D ∼ τ−11/qα.
We also establish a variational formula for D which is valid
for any kinetically constrained spin model in the ergodic
regime. For FA1f model and more generally “k-defects”
models, a detailed study of this variational formula al-
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Fig. 1: Active (inactive) sites are in white (black) and the probe
is marked by a cross. On the left, a configuration at equilibrium
with the probe at the origin, an active site at the origin and an
active site on the left of the probe. On the right, the swapped
configuration (the swap materialized by the upper arrow is the
only transition allowed in the auxiliary dynamics, apart from
the jumps of the probe). It is possible to reconstruct this swap
(i.e. go from the configuration on the left to the one on the
right), using only flips allowed by FA1f and without adding
extra active sites. Indeed one can start by creating an inactive
site on the active neighbour of the probe (middle configuration)
and then reach the final configuration by creating an active site
on the other neighbour (both moves are allowed by FA1f rates
thanks to the active site on which the probe sits).

lowed us to prove the exact order of the diffusion coeffi-
cient: D ∼ qk+1. This, together with the heuristics we
provide for the scaling of the relaxation time, implies a
fractional breakdown of the Stokes-Einstein relation only
in dimension one.

In [18] higher dimensional generalisations of the East
model have been considered and a fractional Stokes-
Einstein with ξ ∼ 0.7 − 0.8 weakly dimensionally depen-
dent has been observed. Since the relaxation time is again
larger than any polynomial in 1/q and the distance of the
active sites is 1/q1/d, again a decoupling cannot occur as a
consequence of the difference between persistence and ex-
change times and we expect no fractional violation either.
Recent rigorous results [40] moreover show that persis-
tence and relaxation times are of the same order in infi-
nite volume dynamics. However, the authors also evidence
highly non-trivial behaviour of these characteristic times
in finite volume (in particular an anisotropy phenomenon);
extending our mathematical proof to higher dimensions
would require a deep understanding of the subtle energy-
entropy competition studied in [40].

In the future, we also wish to investigate other cooper-
ative models such as Fredrickson-Andersen two spin facil-
itated model (FA2f) [21] or the spiral model [41]. In this
case the event which triggers the moves of the probe could
be more cooperative and it could modify the configuration
up to a distance larger than a polynomial in 1/q. Thus
the fractional violation of Stokes Einstein observed in su-
percooled liquids could be reproduced by these kinetically
constrained models.

Acknowledgements. – We acknowledge very useful
discussions with G.Biroli and T.Bodineau and thank V.
Lecomte for comments on a draft version. We also wish to
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f(η)− 1

Fig. 2: Here the origin is crossed. The connected cluster of
active sites we consider to define our test function f is hatched,
its maximal extension to the right is marked by a dashed line.
We read f(η) = 4.
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