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Spin systems on a graph G

G = (V ,E ) is a finite graph with maximum degree ∆.

A spin system on G is a Gibbs measure µ on Ω = [q]V ,
[q] = {1, . . . , q} for some q ∈ N, associated with some interaction
along the edges of G .
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A spin system on G is a Gibbs measure µ on Ω = [q]V ,
[q] = {1, . . . , q} for some q ∈ N, associated with some interaction
along the edges of G .

Some examples of spin systems on G :

Potts Model: µ(σ) = exp (βM(σ))
Z(G ,β) , M(σ) =

∑

xy∈E 1(σx = σy )

Here q > 2. When q = 2 it is known as the Ising Model.
When β > 0 the Potts model is called ferromagnetic.

q-Colorings: µ(σ) =
1(σ∈ΩG ,q)

|ΩG ,q|
, ΩG ,q = {proper q-colorings of G}

Hard-core gas: µ(σ) = λ|σ|1(σ∈I)
Z(G ,λ) , I = {independent sets of G}

(λ > 0, q = 2, σx = 2 if x is empty and σx = 1 if x is occupied).



Gibbs samplers
Notation: µτ

Λ is the conditional distribution µ(·|σΛc = τ),
Λ ⊂ V and τ is called a boundary condition or a pinning. For
f : Ω 7→ R we write µΛf for the conditional expectation

µΛf : Ω 7→ R , µΛf (σ) := µσΛc

Λ [f ]
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∑

Λ⊂V
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Mixing Time and Entropy
For a Markov chain with transition P and stationary distribution µ:

Tmix(P) := inf

{

t ∈ N : max
σ∈Ω

‖P t(σ, ·) − µ‖TV 6 1/4
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The entropy of f : Ω 7→ R+ w.r.t. µ or µΛ is defined by
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where µ∗ = minσ µ(σ). The entropy contraction above is a
discrete time analog of the Modified log-Sobolev inequality

D(f , log f ) > δ Ent(f ).

All our upper bounds on the mixing time will follow from the
entropy contraction. Note: log log(1/µ∗) = O(log n) , n = |V |.



Entropy factorization
We say that µ satisfies the Block Factorization (BF) of entropy
with constant C if for all f : Ω 7→ R+, and for all weights α,

γ(α)Entf 6 C
∑

Λ⊂V αΛ µ[EntΛf ],

where γ(α) = minx∈V
∑

Λ∋x αΛ.



Entropy factorization
We say that µ satisfies the Block Factorization (BF) of entropy
with constant C if for all f : Ω 7→ R+, and for all weights α,

γ(α)Entf 6 C
∑

Λ⊂V αΛ µ[EntΛf ],

where γ(α) = minx∈V
∑

Λ∋x αΛ. Some remarks:
1) if µ is a product measure then BF holds with C = 1 (follows
from Shearer inequality for Shannon entropy).



Entropy factorization
We say that µ satisfies the Block Factorization (BF) of entropy
with constant C if for all f : Ω 7→ R+, and for all weights α,

γ(α)Entf 6 C
∑

Λ⊂V αΛ µ[EntΛf ],

where γ(α) = minx∈V
∑

Λ∋x αΛ. Some remarks:
1) if µ is a product measure then BF holds with C = 1 (follows
from Shearer inequality for Shannon entropy).
2) if αΛ = 1

|V |1(|Λ| = 1): Approximate Tensorization (AT)

Entf 6 C
∑

x∈V µ[Entx f ].

Equivalent to log-Sobolev inequality for Glauber dynamics.
If G ⊂ Z

d : known under Strong Spatial Mixing (SSM) assumption
from Stroock-Zegarlinski ’92; Martinelli, Olivieri ’94; Cesi ’01. For
generic graph G AT is known for small enough |β|: C,Menz,Tetali
’14; Marton ’14; Bauerschmidt, Bodineau ’19, or under negative
dependence assumptions: Cryan,Guo,Mousa ’19; Hermon,Salez ’19.
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Consequence of BF for mixing times

Lemma
If BF holds with constant C, then for all weights α,

Ent(Pαf ) 6 (1− δ)Ent(f ) , δ = γ(α)/C .

In particular, Tmix(P) = O(γ(α)−1 log n) .

Indeed, BF means that

∑

Λ αΛµ[EntΛ(f )] >
γ(α)
C

Ent(f ).

By convexity of Ent(·):

Ent(Pαf ) 6
∑

Λ αΛ µ[Ent(µΛ(f ))]

= Ent(f )−
∑

Λ αΛµ[EntΛ(f )] 6 (1− δ)Ent(f ).

Note: the mixing time bound is tight up to O(log n) since the
spectral gap always satisfies λ(Pα) > γ(α). Often optimal mixing
.



Entropy factorization for G ⊂ Z
d

Theorem (CP20)

For G ⊂ Z
d , under SSM , the general BF holds with a constant C

independent of n and the boundary conditions.



Entropy factorization for G ⊂ Z
d

Theorem (CP20)

For G ⊂ Z
d , under SSM , the general BF holds with a constant C

independent of n and the boundary conditions.

1. Reduce to proving a bipartite factorization into even/odd
vertices αE = αO = 1/2 .
2. Use suitable recursive strategy to prove it for even/odd case
(main difficulty: lack of a simple additive structure).



Entropy factorization for G ⊂ Z
d

Theorem (CP20)

For G ⊂ Z
d , under SSM , the general BF holds with a constant C

independent of n and the boundary conditions.

1. Reduce to proving a bipartite factorization into even/odd
vertices αE = αO = 1/2 .
2. Use suitable recursive strategy to prove it for even/odd case
(main difficulty: lack of a simple additive structure).

Theorem (BCPSV20)

For G ⊂ Z
d , under SSM, the Swendsen-Wang dynamics for

ferromagnetic Ising/Potts models has Tmix(PSW) = Θ(log n)



Entropy factorization for G ⊂ Z
d

Theorem (CP20)

For G ⊂ Z
d , under SSM , the general BF holds with a constant C

independent of n and the boundary conditions.

1. Reduce to proving a bipartite factorization into even/odd
vertices αE = αO = 1/2 .
2. Use suitable recursive strategy to prove it for even/odd case
(main difficulty: lack of a simple additive structure).

Theorem (BCPSV20)

For G ⊂ Z
d , under SSM, the Swendsen-Wang dynamics for

ferromagnetic Ising/Potts models has Tmix(PSW) = Θ(log n)

1. Reduce to spin/edge factorization for Edwards-Sokal coupling ν:

Entν(F ) 6 C [ν (Entν(F |spin) + Entν(F |edge))] .

2. Lift the even/odd factorization to spin/edge factorization
3. Lower bound Tmix(PSW) by disagreement percolation estimates.



General graphs: Spectral independence (SI)
[ALO20] introduced SI and used it to prove a poly(n) bound for the
Glauber dynamics of the hard-core gas in the uniqueness regime.

J(x , a; y , b) = µ(σy = b|σx = a)− µ(σy = b) for x 6= y .

J is a X × X matrix, X = V × [q]. By reversibility J has real
eigenvalues λi (J).

Definition
µ is η-spectrally independent if λmax(J) 6 η. (Note: η > 0).
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J(x , a; y , b) = µ(σy = b|σx = a)− µ(σy = b) for x 6= y .

J is a X × X matrix, X = V × [q]. By reversibility J has real
eigenvalues λi (J).

Definition
µ is η-spectrally independent if λmax(J) 6 η. (Note: η > 0).

Theorem (ALO20)

If µ is η-SI for some η = O(1) then the Glauber dynamics has
Tmix = poly(n) .

Main idea: η-SI with η = O(1) enables a powerful recursive
scheme to prove spectral gap for the Glauber dynamics . The
approach is very general and was developed in the more general
setting of simplicial complexes and matroids .
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Theorem (CLV20)

If µ is η-SI for some η = O(1) then the Glauber dynamics has
Tmix = Θ(n log n) .

Two main improvements: [CLV20] use entropy instead of variance
and also use a finer recursion based on entropy factorizations to
conclude a tight bound on entropy tensorization.

Theorem (BCCPSV21)

If µ is η-SI for some η = O(1) then the general BF holds with
constant C = O(1). Therefore, all α-weighted heat bath dynamics
have optimal Tmix = O(γ(α)−1 log n) . Moreover, for
ferromagnetic Ising/Potts, the SW dynamics has Tmix = O(log n) .

We extend [ALO20,CLV20] and prove a multi-partite factorization

Ent(f ) 6 C
∑k

i=1 µ [EntVi
(f )]

where Vi are independent sets with V = ∪k
i=1Vi , and k 6 ∆+ 1.



Some remarks on SI approach
Strength :

• It applies to more general combinatorial structures than spin
systems (simplicial complexes, matroid bases)

• It allows us to prove tight bounds in some cases up to the tree
uniqueness threshold . For instance, for ferro-Ising, our results
on arbitrary block dynamics and SW dynamics hold for all
β < βc (∆) = log( ∆

∆−2 ). Previously known only for Glauber
dynamics from Mossel,Sly’13.

• SI is very flexible : it covers all standard spatial mixing
notions such as Dobrushin-uniqueness condition or SSM, and
can be seen to hold as soon as µ admits some form of positive
curvature , that is the existence of a contractive coupling .
See below for more precise statements

Restrictions:

• our results require bounded degree ∆ = O(1).

• they do not apply to unbounded spins.



Contractive coupling implies Spectral Independence
Hamming distance: dH(σ, σ

′) =
∑

x∈V 1(σx 6= σ′
x) .

W -1 distance: W1(µ, ν) = inf{Eπ[dH(σ, σ
′)] , π ∈ C(µ, ν)} .

A Markov chain P has (Ollivier-Ricci) curvature ρ ∈ (0, 1) if

W1(P(σ, ·),P(σ
′, ·)) 6 (1− ρ)dH(σ, σ

′) , ∀σ, σ′ ∈ Ω

In other words, if there exists a (1− ρ)-contractive coupling.
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′) , ∀σ, σ′ ∈ Ω

In other words, if there exists a (1− ρ)-contractive coupling.

Theorem (BCCPSV21)

If the Glauber dynamics has curvature ρ ∈ (0, 1), then
λmax(J) 6

2
ρn
. In particular, if ρ > ε/n then µ is η-spectrally

independent with η = 2/ε.

The theorem can be considerably extended by allowing other
distances and much more general Markov chains (see below).
But even in the above setting this is quite a strong result:
If Glauber has a contractive coupling then previous theorems show
that all heat bath dynamics as well as SW dynamics have optimal
entropy decay and optimal mixing. [⇒ Peres-Tetali conjecture ?]
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(y ,b) sgn(J(x , a; y , b))1(σy = b).

Since f is 2-Lipschitz: S(x , a) 6 2W1(µ, ν).

Lemma (BCCPSV21)

(Ω, d) finite metric space, µ, ν distr. on Ω, and P ,Q two MCs with
stationary distr. µ, ν resp. If (P , d) has curvature ρ > 0, then

W1,d (µ, ν) ≤
1

ρ
ν [W1,d(P(σ, ·),Q(σ, ·))] .

In our case: W1(P(σ, ·),Q(σ, ·)) ≤ 1
n
, and therefore S(x , a) 6

2
ρn
.

Proof uses Poisson eq. (1− P)h = f − µ[f ],
ν[f ]− µ[f ] = ν[(Q − P)h],
(Q − P)h(σ) 6 L(h)W1,d(P(σ, ·),Q(σ, ·)), L(h) 6 L(f)/ρ.



Extenstions
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A collection P = {Pτ , τ ∈ Ω} of MCs associated with µ is Φ-local
if for any two adjacent pinnings τ, τ ′ and τ ′ = τ ∪ (x , a),
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P is arbitrary provided Pτ has stat. distr. µτ (pinned Gibbs meas.).
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Extenstions

Definition
A collection P = {Pτ , τ ∈ Ω} of MCs associated with µ is Φ-local
if for any two adjacent pinnings τ, τ ′ and τ ′ = τ ∪ (x , a),

W1(Pτ (σ, ·),Pτ ′ (σ, ·)) ≤ Φ.

P is arbitrary provided Pτ has stat. distr. µτ (pinned Gibbs meas.).

Theorem
If P is Φ-local and (P, dH) has curvature ρ > 0, then µ is
η-spectrally independent with η = 2Φ

ρ
.

Proof: very similar to previous theorem. Moreover, it extends to
non-Hamming distance d ≍ dH. This is very useful in applications.



Applications

1. For general spin systems Dobrushin uniqueness implies spectral
independence. (Extending results of Hayes ’06,
Dyer,Goldberg,Jerrum ’09 who proved that DU and related
conditions imply curvature bounds).



Applications

1. For general spin systems Dobrushin uniqueness implies spectral
independence. (Extending results of Hayes ’06,
Dyer,Goldberg,Jerrum ’09 who proved that DU and related
conditions imply curvature bounds).

2. Flip dynamics for q-colorings (Vigoda ’00, Chen, Delcourt,
Moitra, Perarnau, Postle ’19) is contractive w.r.t. some d ≍ dH as
soon as q > (116 − ε0)∆.



Applications

1. For general spin systems Dobrushin uniqueness implies spectral
independence. (Extending results of Hayes ’06,
Dyer,Goldberg,Jerrum ’09 who proved that DU and related
conditions imply curvature bounds).

2. Flip dynamics for q-colorings (Vigoda ’00, Chen, Delcourt,
Moitra, Perarnau, Postle ’19) is contractive w.r.t. some d ≍ dH as
soon as q > (116 − ε0)∆.

3. Hard-core gas has a contractive coupling up to tree uniqueness
threshold (ALO20, CLV20).



Applications

1. For general spin systems Dobrushin uniqueness implies spectral
independence. (Extending results of Hayes ’06,
Dyer,Goldberg,Jerrum ’09 who proved that DU and related
conditions imply curvature bounds).

2. Flip dynamics for q-colorings (Vigoda ’00, Chen, Delcourt,
Moitra, Perarnau, Postle ’19) is contractive w.r.t. some d ≍ dH as
soon as q > (116 − ε0)∆.

3. Hard-core gas has a contractive coupling up to tree uniqueness
threshold (ALO20, CLV20).

4. Ferromagnetic Ising model has a contractive coupling up to tree
uniqueness threshold (Chen,Liu,Vigoda ’20). This extends results
of Mossel,Sly’13.



Applications

1. For general spin systems Dobrushin uniqueness implies spectral
independence. (Extending results of Hayes ’06,
Dyer,Goldberg,Jerrum ’09 who proved that DU and related
conditions imply curvature bounds).

2. Flip dynamics for q-colorings (Vigoda ’00, Chen, Delcourt,
Moitra, Perarnau, Postle ’19) is contractive w.r.t. some d ≍ dH as
soon as q > (116 − ε0)∆.

3. Hard-core gas has a contractive coupling up to tree uniqueness
threshold (ALO20, CLV20).

4. Ferromagnetic Ising model has a contractive coupling up to tree
uniqueness threshold (Chen,Liu,Vigoda ’20). This extends results
of Mossel,Sly’13.

5. Ferromagnetic Potts model has contractive coupling for β < β1
(Bordewich, Greenhill, Patel ’16 use heat bath block dynamics with
bounded block size) where β1 ≈ tree uniqueness as q → ∞.


