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Interfaces in Statistical physics
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Spin dynamics (Ising model)

Eden model (First Passage Percolation)

Random deposition (random tetris)



Global picture
Discrete height functions

e.g Corner Growth Model
(particle systems, dimer model, LPP)
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Height function h: Z¢ x R, — Z. Irreversible Markovian dynamics




Global picture
Discrete height functions

e.g Corner Growth Model
(particle systems, dimer model, LPP)

N
[ 000 [

Height function h: Z¢ x R, — Z. Irreversible Markovian dynamics

@ Invariant measures of gradients?
@ e Law of large numbers / Hydrodynamic limits? < Non-linear PDEs
@ Fluctuations? Universality? < Non-linear SPDEs



Global picture
Invariant measures

When t — +o00, we expect that

Law

(h(x + i, t) = h(x,t))cezd, ic(1,..d} — Tp

where 7, is an irreversible invariant measure and p € R9 is a slope
parameter: 5 [h(x) — h(0)] = p - x.

x — h(x,t)
= p-T

o o0 o ,-5(50)



Speed of Growth

v(p) = 0:Er, [h(x, t)]|,_,

— Er, [h(x,t) — h(0,0)] = p-x+v(p)t




Speed of Growth

v(p) = 0:Er, [h(x, t)]|,_,

— Er, [h(x,t) — h(0,0)] = p-x+v(p)t




Global picture
Hydrodynamic Limits

If %h(LLxJ,O) i up(x) then %h(LLxJ,Lt) =2 u(x, t)

with u the unique viscosity solution of the Hamilton-Jacobi non-linear PDE
Oru(x, t) = v(Vu(x,t))
u(x,0) = up(x)
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Global picture
Hydrodynamic Limits

If %h(LLxJ,O) i up(x) then %h(LLxJ,Lt) =2 u(x, t)

with u the unique viscosity solution of the Hamilton-Jacobi non-linear PDE
Oru(x, t) = v(Vu(x,t))
u(x,0) = up(x)

0.3 — t=0.0
— t=0.5

— t=1.0

!

0.2

0.1

0.0 0.2 0.4 0.6 0.8 1.0

— Formation of shocks < Variational formula when v is convex



Global picture
Fluctuations and characteristic exponents

Universal characteristic exponents:

Roughness exponent «:

Vary (h(x) — h(y)) ~ calx—y**+o

Ix—y|—o0
Growth exponent f3:
Var(h(x, t) — h(x,0)) o o t? + ¢

Dynamical scaling exponent z = &

hssl

at time t, correlation length = /7.



Global picture
Fluctuations and characteristic exponents

Universal characteristic exponents:

Roughness exponent «:

Vary (h(x) — h(y)) ~ calx—y**+o

Ix—y|—o0
Growth exponent f3:
Var(h(x, t) — h(x,0)) o o t? + ¢

Dynamical scaling exponent z = &

hssl

at time t, correlation length = /7.

Conjectured to only depend only on
@ the dimension

@ the symmetries of the model



Global picture
Fluctuations and KPZ equation

Large-scale fluctuations along the characteristic lines of 0;u = v(Vu) are
expected to behave like the Kardar-Parisi-Zhang equation ('86):

ch=vAh+ A (Vh HVh) +VD¢

with H = D?)(v) and ¢ space-time white noise (regularised)
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Behaviour of the solution on large scales?
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Fluctuations and KPZ equation

Large-scale fluctuations along the characteristic lines of 0;u = v(Vu) are
expected to behave like the Kardar-Parisi-Zhang equation ('86):

ch=vAh+ A (Vh HVh) +VD¢
with H = D?)(v) and ¢ space-time white noise (regularised)
Behaviour of the solution on large scales?

| Linear case A = 0:] Edwards-Wilkinson equation

e Stationary states 7,: massless Gaussian Free Field
@ Characteristic exponent:
2—d 2—d
aOEw = T, BEW = 4 ZEW = 2 (diffusive scaling).
Rk: in dimension 2

Varq (h(x) — h(y)) ~  clog|x —y|, Var(h(x,t)) ~ clogt.
Ix—yl|=ro0 oo
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Fluctuations and KPZ equation

Large-scale fluctuations along the characteristic lines of 0;u = v(Vu) are
expected to behave like the Kardar-Parisi-Zhang equation ('86):

ch=vAh+ A (Vh HVh) +VD¢
with H = D?)(v) and ¢ space-time white noise (regularised)
Behaviour of the solution on large scales?

| Linear case A = 0:] Edwards-Wilkinson equation

e Stationary states 7,: massless Gaussian Free Field
@ Characteristic exponent:
2—d 2—d
aOEw = T, BEW = 4 ZEW = 2 (diffusive scaling).
Rk: in dimension 2

Varq (h(x) — h(y)) ~  clog|x —y|, Var(h(x,t)) ~ clogt.
Ix—yl|=ro0 oo

Relevance/Irrelevance of the non-linearity (A > 0) on large scales?




Global picture
Fluctuations and KPZ equation

dth=vAh+ \(Vh HVh) + VD¢
with H = D?(v) and ¢ space-time white noise (regularised)

@ d = 1, the non-linearity is relevant:

232) 7 20
with Tracy-Widow universal limiting distribution Baik-Deift-Johansson '99,

Johansson '00, convergence of a weakly asymetric limit of Corner
Growth model to solution of the KPZ equation Bertini-Giacomin '97

(akpz, BrpPz, ZkPz) = <1 L 3) # (1 L 2) = (ew, Bew, ZEw ),



Global picture
Fluctuations and KPZ equation

dth=vAh+ \(Vh HVh) + VD¢

with H = D?(v) and ¢ space-time white noise (regularised)

@ d = 1, the non-linearity is relevant:

113 11
(akpz, Brpz,zkPz) = <27372> # (2,4,2> = (aew, Bew, ZEw),

with Tracy-Widow universal limiting distribution Baik-Deift-Johansson '99,
Johansson '00, convergence of a weakly asymetric limit of Corner
Growth model to solution of the KPZ equation Bertini-Giacomin '97

e d >3, H=Id, A < \(d), the non-linearity is irrelevant:
W (h(x/e, t/e?) — E[h(x/e, t/?)]) = solution of EW equation
E—

Magnen-Unterberger'17, Gu-Ryzhik-Zeituni'17, Comets-Cosco-Mukherjee'19
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Wolf's conjecture

dth=vAh+ \(Vh HVh) + VD¢
with H = D?(v) and £ space-time white noise (regularised)

e d = 2: Wolf’s conjecture '91: (renormalisation group analysis)
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Wolf's conjecture

dth=vAh+ \(Vh HVh) + VD¢
with H = D?(v) and £ space-time white noise (regularised)

e d = 2: Wolf’s conjecture '91: (renormalisation group analysis)

det(H) > 0 (Isotropic KPZ): det(H) < 0 (Anisotropic KPZ):
akpz = 0.39, Bkpz = 0.24 akpz =0, Bkpz =0
relevance Var(h(x)—h(y))| ¥ c log|x—y]|
x—y|—o0

Var(h(x, t) — h(x,0)) oy c’ logt

irrelevance 7



Global picture
Wolf's conjecture

dth=vAh+ \(Vh HVh) + VD¢
with H = D?(v) and £ space-time white noise (regularised)

e d = 2: Wolf’s conjecture '91: (renormalisation group analysis)

det(H) > 0 (Isotropic KPZ): det(H) < 0 (Anisotropic KPZ):
akpz = 0.39, Bkpz = 0.24 akpz =0, Bkpz =0
relevance Var(h(x)—h(y))| ¥ c log|x—y]|
x—y|—o0

Var(h(x, t) — h(x,0)) ~ c logt
t—o0
irrelevance 7
Cannizzaro-Erhard-Toninelli '20: for H = diag(+1, —1), the correlation length

is of order t1/2 (log t)%/? with conjectural: § = 1/2.
< Relevance of the non-linearity !
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Hydrodynamic limits for the PNG and its generalisations d = 1: Polynuclear Growth model

PolyNuclear Growth Model and dynamic

Layer by layer crystal growth model

h(x,t)




Hydrodynamic limits for the PNG and its generalisations d = 1: Polynuclear Growth model

PolyNuclear Growth Model and dynamic

Layer by layer crystal growth model

h(x,t)

hRxRy > 7Z }
o Lateral expansion at speed 1
—> || -
@ Annihilation H

@ Nucleations given by Poisson Point Process
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Envelope property

e Monotonicity h'(0) < h?(0) = h'(t) < h%(t)
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Envelope property

e Monotonicity h'(0) < h?(0) = h'(t) < h%(t)

h
o Envelope property h(0) = sup{h'(0)} = h(t) = sup{h'(t)}
iel i€l



Hydrodynamic limits for the PNG and its generalisations d = 1: Polynuclear Growth model

Envelope property

o Monotonicity h'(0) < h*(0) = h'(t) < h*(t) .
o Envelope property h(0) = sup{h'(0)} = h(t) = sup{h'(t)}
< Variational formula: il iel

h(X’ t) = )s/:ﬂg{h(y’ ) + hdrop( - t)}

hdI‘Op ( )

A




Hydrodynamic limits for the PNG and its generalisations d = 1: Polynuclear Growth model

Super-additivity

Super-additive ergodic argument (Seppildinen, Rezakhanlou)
1

harop(Lx, Lt) — tg(x/t) g concave
L L—o0

2.0 1

1.51

1.0 A

0.5 1

0.0 A

-1.0 -0.5 0.0 0.5 1.0



Hydrodynamic limits for the PNG and its generalisations d = 1: Polynuclear Growth model

Hydrodynamic limit

o If Th(Lx,0) — up(x) for all x, then
L—o0

%h(Lx, Lt) — ulx,t) := sup {UO(V) Tie (Xﬂ/)}
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Hydrodynamic limit

o If Th(Lx,0) — up(x) for all x, then
L—o0

1 —

—h(Lx, Lt) — u(x,t) :=sup {uo(y) +tg (”)}
L L—o0 yeR t

Moreover, u(x,t) is the Hopf-Lax formula for the viscosity solution of

Oru(x,t) = —g*(Vu(x, t)) g" concave conjugate of g
u(x,0) = uo(x)



Hydrodynamic limits for the PNG and its generalisations d = 1: Polynuclear Growth model

Hydrodynamic limit

o If Th(Lx,0) — up(x) for all x, then
L—o0

1 _

—h(Lx, Lt) . u(x, t) := sup {uo(y) +tg (”)}
L L—o0 yeR t

Moreover, u(x,t) is the Hopf-Lax formula for the viscosity solution of

Oru(x,t) = —g*(Vu(x, t)) g" concave conjugate of g
u(x,0) = uo(x)

o Compatibility with affine profiles and stationary growth

— —g"(p) = V(p) = V4 +p?
— ) = () () =2VI— 2



Hydrodynamic limits for the PNG and its generalisations d = 1: Polynuclear Growth model

Comments about the PNG:

@ Link with the longest-increasing subsequence of a random permutation
(Ulam's problem '61), Hammersley process '72 and Random polymers
t

/.

@ Determinantal structure with Bessel Kernel

e Fluctuations scales like t'/3 and converge to a Tracy Widom
distribution (different geometries: Droplet, Flat, Equilibrium)
(Baik-Deift-Johansson '99, Baik-Rains '00, 01')

o Convergence of multi-point fluctuations (x — t=1/3h(t, xt?/3)) to Airy
processes (Pré'hofer—Spohn '02, Ferrari '04)
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Hydrodynamic limits for the PNG and its generalisations d > 2: Isotropic case

B-shaped PNG model

Terraces of shape B, unit ball of a norm in RY (Prshofer '03)

R

Image of Michael Prahofer
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B-shaped PNG model

Terraces of shape B, unit ball of a norm in RY (Prshofer '03)

@ Envelope property 4+ Super-additivity
— existence of Hydrodynamic Limits
Hopf-Lax formula and convex speed
— Isotropic KPZ

@ v(p) not explicit but for B euclidian ball
or simplex ( Seppilsinen '07), v(p) explicit
up to a multiplicative constant

Image of Michael Prahofer



Hydrodynamic limits for the PNG and its generalisations d > 2: Isotropic case

B-shaped PNG model

Terraces of shape B, unit ball of a norm in RY (Prshofer '03)

@ Envelope property 4+ Super-additivity
— existence of Hydrodynamic Limits
Hopf-Lax formula and convex speed
— Isotropic KPZ

@ v(p) not explicit but for B euclidian ball
or simplex ( Seppilsinen '07), v(p) explicit
up to a multiplicative constant

@ Other Isotropic examples: Ballistic
deposition, Corner Growth Model and
generalisations ( Seppiliinen, Rezakhanlou)

Image of Michael Prahofer
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Hydrodynamic limits for the PNG and its generalisations d = 2: Anisotropic Gates-Westcott model

The Gates-Westcott model

Layer by layer Crystal Growth (Gates-Westcott '95)

h:RxZxRy —+Z
@ Infinite collection of non-intersecting level lines that follow the PNG
dynamic with nucleation deleted if two lines intersect
@ < Non-trivial interactions



Hydrodynamic limits for the PNG and its generalisations d = 2: Anisotropic Gates-Westcott model

Stationary states and previous results

Prahofer-Spohn '97 found invariant measures 7, with slope
p=(p1,p2) € R x (—1,0) (case p1 = 0 treated by Gates-Westcott '95).



Hydrodynamic limits for the PNG and its generalisations d = 2: Anisotropic Gates-Westcott model

Stationary states and previous results

Prahofer-Spohn '97 found invariant measures 7, with slope
p=(p1,p2) € R x (—1,0) (case p1 = 0 treated by Gates-Westcott '95).

Using fermionic Fock space tools:

@ computed the speed

1 .
v(p) = ;\/ﬂpf + 4sin(mpy)

det(D?)(v)) <0 for every p

— Anisotropic class

Vary, (h(x) — h(y)) ~ clog|x — y|

< typical from Gaussian Free Field and Edward-Wilkinson universality
class



Hydrodynamic limits for the PNG and its generalisations d = 2: Anisotropic Gates-Westcott model

Hydrodynamic limit and upper bound on fluctuations

Theorem 1 (L. '19)

1
If forall R >0, sup —h(Lx, LL}’JaO)—UO(X,Y)‘ — 0
Ixoy)lI<r I L Lo

with ug € C(R?), then, for all T,R >0,

1 a.s
sup —h(Lx, |Ly], Lt) — u(x,y,t)] — O
Iy)lI<Rotelo, T | L Lo
Oru = v(Vu
with u unique viscosity solution of ‘ (Vu) and
U(', ) 0) = Uuo ,

v(p) = %\/ﬂzpi + 4sin’(mp2)




Hydrodynamic limits for the PNG and its generalisations = d = 2: Anisotropic Gates-Westcott model

Hydrodynamic limit and upper bound on fluctuations

Theorem 1 (L. '19)

1
If forall R >0, sup —h(Lx, LL}’JaO)—UO(X,Y)‘ — 0
o)<k I L Lo

with ug € C(R?), then, for all T,R >0,

1 a.s
sup —h(Lx, |Ly], Lt) — u(x,y,t)] — O
Cox)I<R,t€[0,T] L—o0
Oru = v(Vu
with u unique viscosity solution of ‘ (Vu) and
U( ) 70) = Uuo ,

v(p) = %\/ﬂzpi + 4sin’(mp2)

Theorem 2 (L. '19)

Vp € R x (-1,0), Varg, (h(x,y,t)—h(x,y,0)) = (Iogt)
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Hydrodynamic limit for the Borodin-Ferrari dynamic

The Borodin-Ferrari dynamic

Long-jump version of the Corner Growth model

T

z
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The Borodin-Ferrari dynamic

Long-jump version of the Corner Growth model

Height function h: Z> xR, — Z
@ "Integrable" droplet initial condition: limit shape and central limit
theorem on scale /log t Borodin-Ferrari '08



Hydrodynamic limit for the Borodin-Ferrari dynamic

The Borodin-Ferrari dynamic

Long-jump version of the Corner Growth model

Height function h: Z> xR, — Z
@ "Integrable" droplet initial condition: limit shape and central limit
theorem on scale /log t Borodin-Ferrari '08
(partial) determinental correlations away from characteristic lines...
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The Borodin-Ferrari dynamic

@ Invariant measures 7, <+ weighted measures on dimer configurations
(with dimer densities p1, p2 and 1 — p; — p2) and GFF fluctuations
Toninelli '17
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The Borodin-Ferrari dynamic

@ Invariant measures 7, <+ weighted measures on dimer configurations
(with dimer densities p1, p2 and 1 — p; — p2) and GFF fluctuations
Toninelli '17 and speed function Chhita-Ferrari '17:

1 sin(mp1) sin(mpz)

o sin(m(p1 + p2))

v(p) = (det(Di(v)) < 0)
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The Borodin-Ferrari dynamic

@ Invariant measures 7, <+ weighted measures on dimer configurations
(with dimer densities p1, p2 and 1 — p; — p2) and GFF fluctuations
Toninelli '17 and speed function Chhita-Ferrari '17:

1 sin(mp1) sin(mpz)

o sin(m(p1 + p2))

v(p) = (det(Di(v)) < 0)

o Var, (h(x,t)) = tO (log t) Toninelli '17 (quite general arguments)

— 00



Hydrodynamic limit for the Borodin-Ferrari dynamic

The Borodin-Ferrari dynamic

@ Invariant measures 7, <+ weighted measures on dimer configurations
(with dimer densities p1, p2 and 1 — p; — p2) and GFF fluctuations
Toninelli '17 and speed function Chhita-Ferrari '17:

__ Lsin(mpy)sin(mp2) et(D2(v
v(p) =~ R USRI (de(D(v)) < 0)

o Var, (h(x,t)) = tO (log t) Toninelli '17 (quite general arguments)
—00
@ Hydrodynamic limit for smooth initial profile up to the time of shocks
or for convex initial profile Legras-Toninelli '17.



Hydrodynamic limit for the Borodin-Ferrari dynamic

Hydrodynamic limit

Theorem 3 (L.-Toninelli '20)

Technical condition: initial microscopic slopes p1 + po stay uniformly away
from 1.

If for all R > 0, sup
Ix[I<R

then, for all T,R > 0,

2 h(1Lx],0) — wo(x)

— 0, with ug € C(R?),
L—oo

]. a.s
—h(|Lx], Lt) — u(x, t)’ — 0
L L—o0

sup
IxI<R,t€[0, T]
oru = v(Vu
with u unique viscosity solution of (V) and
ugs, - 0) = U ,

_ 1 sin(wp1)sin(mp2)
vip) = —= Sin(gtpﬁngj)z
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|dea of the proof of the hydrodynamic limits

No envelope property nor supper-additivity for Anisotropic models...
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|dea of the proof of the hydrodynamic limits

No envelope property nor supper-additivity for Anisotropic models...
@ Semi-group approach by Rezakhanlou '01
— potentially robust but couldn’t be applied for the models considered
@ Domino shuffling dynamic: first full hydrodynamic limit X.Zhang '18

1) Properties of the semi-group associated to 0:u = v(Vu).

S(s.1) r—r (T = C(R?) with slope constraints)
S? . . .
up — u(-,t —s) wu = (viscosity solution started from wp)
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|dea of the proof of the hydrodynamic limits

No envelope property nor supper-additivity for Anisotropic models...
@ Semi-group approach by Rezakhanlou '01
— potentially robust but couldn’t be applied for the models considered
@ Domino shuffling dynamic: first full hydrodynamic limit X.Zhang '18

1) Properties of the semi-group associated to 0:u = v(Vu).
S(s.1) r—r (T = C(R?) with slope constraints)
s, t): . .
up — u(-,t —s) wu = (viscosity solution started from wp)

e Translation Invariance: S(s,t)(f+¢c)=5(s,t)(f) + ¢, ceR
e Monotonicity. f<g= S5(s,t)(f) < S(s,t)(g)
@ Finite speed of propagation:

f=gon B(x,R) = S(s,t)(f) = S(s, t)(g) on B(x,R— C(t —s))
Semi-group property: S(t2, t3) 0 S(t1, t2) = S(t1, t3)
Compatibility with linear profiles:

S(s, t)(f,) = f, + (t —s) v(p) with f)(x) =p-x
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|dea of the proof of the hydrodynamic limits

No envelope property nor supper-additivity for Anisotropic models...
@ Semi-group approach by Rezakhanlou '01
— potentially robust but couldn’t be applied for the models considered
@ Domino shuffling dynamic: first full hydrodynamic limit X.Zhang '18

1) Properties of the semi-group associated to 0:u = v(Vu).
S(s.1) r—r (T = C(R?) with slope constraints)
s, t): . .
up — u(-,t —s) wu = (viscosity solution started from wp)

Translation Invariance: S(s,t)(f+¢c)=5(s,t)(f) + ¢, ceR
Monotonicity: f<g= S5(s,t)(f) < S(s,t)(g)
Finite speed of propagation:
f=gon B(x,R) = S(s,t)(f) = S(s, t)(g) on B(x,R— C(t —s))
Semi-group property: S(t2, t3) 0 S(t1, t2) = S(t1, t3)
Compatibility with linear profiles:
S(s, t)(f,) = f, + (t —s) v(p) with f)(x) =p-x

Conversely, these are sufficient conditions
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|dea of the proof of the hydrodynamic limits

2) Rescaled microscopic semi-group.
For a fix realisation of Poison Point Process w

r—r

Si(s,t,w): 1
L ) f— Zh (LL-J,L(t—s);cp{,@st)

with 65 time-translation, go{ discrete height function approaching f
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|dea of the proof of the hydrodynamic limits

2) Rescaled microscopic semi-group.
For a fix realisation of Poison Point Process w

r—r

Si(s,t,w): 1
L ) f— Zh (LL-J,L(t—s);cp{,@st)

with 65 time-translation, cp{ discrete height function approaching f
3) A.s. compact containment of (S/(-,-,w))ien. Control on gradients

4) A.s identification of the limit. Any limit point S (-, ,w) satisfies
sufficient conditions (uses microscopic properties and stationary measures).
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|dea of the proof of the hydrodynamic limits

2) Rescaled microscopic semi-group.
For a fix realisation of Poison Point Process w

r—r

Si(s,t,w): 1
L ) f— Zh (LL-J,L(t—s);gp{,@st)

with 65 time-translation, cp{ discrete height function approaching f
3) A.s. compact containment of (S/(-,-,w))ien. Control on gradients

4) A.s identification of the limit. Any limit point S (-, ,w) satisfies
sufficient conditions (uses microscopic properties and stationary measures).

Compared to Rezakhanlou '01, Zhang '18, our results
@ hold in the strong almost sure sense of convergence
@ presents additional non-trivial difficulties from unbounded spatial
gradients (GW model) and divergence of v(p) when p1 + p2 ~ 1 with
lack of a priori bound on microscopic slopes (BF dynamic).
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Thank You for your attentionl
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