Kinetically constrained particle systems on a lattice

Oriane Blondel

LPMA – Paris 7; ENS Paris

December 3rd, 2013
Au commencement était le Verre...
Amorphous solid

Ice

Liquid water

Glass
Toy models for glassy systems

- Ingredients
- Facilitation/geometric constraints
- No interaction at equilibrium
- Can we observe...
 - Diverging relaxation times
 - Dynamical heterogeneities
 - Breakdown of the Stokes-Einstein relation
 - Etc.

Figure: L. Berthier, Physics 4, 42 (2011)

O. Blondel

KCSM
Toy models for glassy systems

- **Ingredients**
 - Facilitation/geometric constraints
 - No interaction at equilibrium

Figure: L. Berthier, Physics 4, 42 (2011)
Toy models for glassy systems

- **Ingredients**
 - Facilitation/geometric constraints
 - No interaction at equilibrium
- **Can we observe...?**
 - Diverging relaxation times
 - Dynamical heterogeneities
 - Breakdown of the Stokes-Einstein relation
 - Etc.

Figure: L. Berthier, Physics 4, 42 (2011)
The models
General description

- Continuous time stochastic processes on $\{0, 1\}^Z$.
- Transitions = creation/destruction of particles.
- Transition allowed at x only if a local constraint of the type “there are enough zeros around x” is satisfied.
- Density parameter $p \in (0, 1)$.
General description

- Continuous time stochastic processes on $\{0, 1\}^\mathbb{Z}^d$.
- Transitions = creation/destruction of particles.
- Transition allowed at x only if a local constraint of the type “there are enough zeros around x” is satisfied.
- Density parameter $p \in (0, 1)$.

Examples of constraints:
- East model ($d = 1$): the East neighbour should be empty.
- FA-1f* model: there should be at least one empty neighbour.

*Fredrickson-Andersen one-spin facilitated model
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.

- Each site x waits an exponential mean 1 time.
- Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the constraint is not satisfied, nothing happens.
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the constraint is not satisfied, nothing happens.
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^Z$.
- Each site x waits an exponential mean 1 time.
- Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the constraint is not satisfied, nothing happens.
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the constraint is not satisfied, nothing happens.
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the constraint is not satisfied, nothing happens.
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the constraint is not satisfied, nothing happens.
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the constraint is not satisfied, nothing happens.
Graphical construction (East model, density p)

- Initial configuration $\eta \in \{0, 1\}^\mathbb{Z}$.
- Each site x waits an exponential mean 1 time.
- Then if the constraint is satisfied, x is refreshed to 1 with probability p and 0 w.p. $q = 1 - p$.
- If the constraint is not satisfied, nothing happens.
Graphical construction (East model, density \(p \))

- Initial configuration \(\eta \in \{0, 1\}^\mathbb{Z} \).
- Each site \(x \) waits an exponential mean 1 time.
- Then if the constraint is satisfied, \(x \) is refreshed to 1 with probability \(p \) and 0 w.p. \(q = 1 - p \).
- If the constraint is not satisfied, nothing happens.
East at different densities

Simulations by Arturo L. Zamorategui.
$p = 0.8$

Simulation by Arturo L. Zamorategui.
Let $\mu = \mathcal{B}(p)^{\otimes \mathbb{Z}^d}$. μ is reversible for KCSM dynamics and is called the equilibrium measure.

The correlation between η and $\eta(t)$ decreases like $e^{-2t/\tau}$ when the initial configuration η has law μ. τ is the relaxation time (inverse of the spectral gap).

Non-attractive processes: $\eta \leq \sigma \neq \Rightarrow \eta(t) \leq \sigma(t)$.
Let $\mu = \mathcal{B}(p)^{\otimes \mathbb{Z}^d}$. μ is reversible for KCSM dynamics and is called the equilibrium measure.

Exponential return to equilibrium for East and FA-1f [Aldous-Diaconis ’02]

$$\text{Var}_\mu(P_t f) \leq \text{Var}_\mu(f)e^{-2t/\tau} \quad \text{with} \quad \tau < \infty.$$

“The correlation between η and $\eta(t)$ decreases like $e^{-2t/\tau}$ when the initial configuration η has law μ”. τ is the relaxation time (inverse of the spectral gap).
Equilibrium

- Let $\mu = \mathcal{B}(p)^\otimes \mathbb{Z}^d$. μ is reversible for KCSM dynamics and is called the equilibrium measure.

- Exponential return to equilibrium for East and FA-1f [Aldous-Diaconis ’02]

\[
\text{Var}_\mu(P_t f) \leq \text{Var}_\mu(f) e^{-2t/\tau} \quad \text{with} \quad \tau < \infty.
\]

“The correlation between η and $\eta(t)$ decreases like $e^{-2t/\tau}$ when the initial configuration η has law μ”. τ is the relaxation time (inverse of the spectral gap).

Non-attractive processes: $\eta \leq \sigma \implies \eta(t) \leq \sigma(t)$.

\[
\begin{array}{cccc}
\circ & \circ & \circ & \circ \\
\bullet & \circ & \circ & \not\circ
\end{array}
\]
Non equilibrium
What if $\eta \sim \mu', \mu' \neq \mu$?

N.B.: If $\eta \equiv 1$, at any time $\eta(t) \equiv 1 = \Rightarrow$ no uniform relaxation property.

Better question: given a model, for which density and which initial distribution does the system relax to equilibrium, and at what speed?

Answer for East: [Cancrini-Martinelli-Schonmann-Toninelli '10]

If η has infinitely many zeros on the right half-line, for all $p \in (0, 1)$ | $E\eta[f(\eta(t))] - \mu(f) \leq C e^{-ct}$ for any local function f.

N.B.: This condition is optimal, since if η has a right-most zero z, for all $t > 0$ $\eta(t)$ remains entirely occupied on the right of z.

Fundamental tool: the distinguished zero.
What if \(\eta \sim \mu', \mu' \neq \mu \)?

N.B.: If \(\eta \equiv 1 \), at any time \(\eta(t) \equiv 1 \) \(\implies \) no uniform relaxation property.
What if $\eta \sim \mu', \mu' \neq \mu$?

N.B.: If $\eta \equiv 1$, at any time $\eta(t) \equiv 1 \implies$ no uniform relaxation property.

Better question: given a model, for which density and which initial distribution does the system relax to equilibrium, and at what speed?
What if $\eta \sim \mu'$, $\mu' \neq \mu$?

N.B.: If $\eta \equiv 1$, at any time $\eta(t) \equiv 1 \implies$ no uniform relaxation property.

Better question: given a model, for which density and which initial distribution does the system relax to equilibrium, and at what speed?

Answer for East: [Cancrini-Martinelli-Schonmann-Toninelli ’10]
If η has infinitely many zeros on the right half-line, for all $p \in (0,1)$

$$|E_\eta [f(\eta(t))] - \mu(f)| \leq Ce^{-ct} \quad \text{for any local function } f.$$

N.B.: This condition is optimal, since if η has a right-most zero z, for all $t > 0$ $\eta(t)$ remains entirely occupied on the right of z.

Fundamental tool: the distinguished zero.
Out-of-equilibrium relaxation for FA-1f

Theorem
Consider the FA-1f model on \mathbb{Z}^d with density p. Let μ' be a probability measure on Ω. Assume

1. $p < \frac{1}{2}$
2. $\sup_{x \in \mathbb{Z}^d} \mu'(x, \text{zeros of } \eta) < \infty$ for some $\theta > 1$

Then for any local function f there is a constant $0 < c < \infty$ such that

$$|E_{\mu'} [f(\eta(t))] - \mu(f)| \leq c \|f\|_{\infty} \begin{cases} e^{-t/c} & \text{if } d = 1 \\ e^{-\left(\frac{t}{c \log t}\right)^{1/d}} & \text{if } d > 1 \end{cases}$$

(1)
Bubbles and front
Start from any configuration with left-most zero at 0.

Let the East dynamics run for time t.

Questions

- Does X_t converge to v as $t \to \infty$?
- What does the front see? Invariance measure for (θ_t) $t \geq 0$?
- Does (θ_t) converge as $t \geq 0$?
Front progression in the East model

- Start from any configuration with left-most zero at 0.
- Let the East dynamics run for time t.

X_t position of the front (i.e. the left-most zero) at time t.

$\theta(t)$ configuration seen from the front at time t.

Questions

$X_t \to t \to \infty \Rightarrow v < 0$?

What does the front see? Invariant measure for $(\theta(t))_{t \geq 0}$? Convergence of $(\theta(t))_{t \geq 0}$?
Front progression in the East model

- Start from any configuration with left-most zero at 0.
- Let the East dynamics run for time t.
Start from any configuration with left-most zero at 0.

Let the East dynamics run for time \(t \).

\(X_t \) position of the front (i.e. the left-most zero) at time \(t \).

\(\theta \eta(t) \) configuration seen from the front at time \(t \).
Front progression in the East model

Start from any configuration with left-most zero at 0.

Let the East dynamics run for time t.

X_t position of the front (i.e. the left-most zero) at time t.

$\theta \eta(t)$ configuration seen from the front at time t.

Questions

- Start from any configuration with left-most zero at 0.
- Let the East dynamics run for time t.

X_t position of the front (i.e. the left-most zero) at time t.

$\theta \eta(t)$ configuration seen from the front at time t.

Questions

- $\frac{X_t}{t} \xrightarrow{t \to \infty} v < 0$?
- What does the front see? Invariant measure for $(\theta \eta(t))_{t \geq 0}$? Convergence of $(\theta \eta(t))_{t \geq 0}$?
\(\mu \) is not invariant for \((\vartheta \eta(t))_{t \geq 0}\).
- μ is not invariant for $(\theta \eta(t))_{t \geq 0}$.
- Dynamics non attractive \implies no subadditive argument.
Far from the front, $\theta \eta(t)$ is almost distributed as μ.
Central argument

Far from the front, $\theta \eta(t)$ is almost distributed as μ.

Theorem (B., SPA ’13)

- If $L + M \leq Ct$
 \[\| \nu_{t;L,M}^\eta - \mu \|_{TV} \leq e^{-\epsilon L} \]

- If $L + M > Ct$ and η has “enough zeros”
 \[\| \nu_{t;L,M}^\eta - \mu \|_{TV} \leq e^{-\epsilon (L \wedge t)} \]
Theorem (B., SPA ’13)

- There exists $v < 0$ such that for every initial η as above

\[\frac{X_t}{t} \xrightarrow{t \to \infty} v \quad \text{in probability}. \]

- The process seen from the front has a unique invariant measure ν and

\[\theta \eta(t) \xrightarrow{} \nu \quad \text{in distribution}. \]
Theorem (B., SPA ’13)

- There exists $v < 0$ such that for every initial η as above

$$\frac{X_t}{t} \xrightarrow{t \to \infty} v \quad \text{in probability.}$$

- The process seen from the front has a unique invariant measure ν and

$$\theta \eta(t) \xrightarrow{} \nu \quad \text{in distribution.}$$

Main argument: use the previous result to construct a coupling between the processes started from η, σ.
Theorem (B., SPA ’13)

- There exists $\nu < 0$ such that for every initial η as above

$$\frac{X_t}{t} \xrightarrow{t \to \infty} \nu \quad \text{in probability.}$$

- The process seen from the front has a unique invariant measure ν and

$$\theta \eta(t) \xrightarrow{} \nu \quad \text{in distribution.}$$

Main argument: use the previous result to construct a coupling between the processes started from η, σ.

Perspectives: CLT, large deviations, generalization to non-oriented models.
At low temperature
Questions

- Can we give a simpler description of the dynamics when \(q \to 0 \)?
- Characteristic quantities of the system degenerate when \(q \to 0 \). How fast? What are the mechanisms involved?
Relaxation time and diffusion

- **Relaxation time**

 Recall that

 $$\text{Var}_\mu (P_t f) \leq \text{Var}_\mu (f) e^{-2t/\tau} \quad \text{with} \quad \tau < \infty,$$

 τ is the relaxation time of the system.
Relaxation time and diffusion

- **Relaxation time**
 Recall that
 \[
 \text{Var}_\mu(P_t f) \leq \text{Var}_\mu(f)e^{-2t/\tau} \quad \text{with} \quad \tau < \infty,
 \]
 \(\tau\) is the relaxation time of the system.

- **Diffusion coefficient**
 Add a probe/tracer (*pollen*) to the system (*liquid*) at equilibrium. It diffuses with diffusion coefficient \(D\) depending on the system.
Relaxation time and diffusion

- **Relaxation time**
 Recall that

 \[\text{Var}_\mu(P_t f) \leq \text{Var}_\mu(f)e^{-2t/\tau} \quad \text{with} \quad \tau < \infty, \]

 \(\tau \) is the relaxation time of the system.

- **Diffusion coefficient**
 Add a probe/tracer (*pollen*) to the system (*liquid*) at equilibrium. It diffuses with diffusion coefficient \(D \) depending on the system.

- **Stokes-Einstein relation**
 In simple liquids,

 \[D \approx \tau^{-1}. \]
Relaxation time and diffusion

- **Relaxation time**
 Recall that

 \[\text{Var}_\mu(P_t f) \leq \text{Var}_\mu(f)e^{-2t/\tau} \quad \text{with} \quad \tau < \infty, \]

 \(\tau \) is the relaxation time of the system.

- **Diffusion coefficient**
 Add a probe/tracer (*pollen*) to the system (*liquid*) at equilibrium. It diffuses with diffusion coefficient \(D \) depending on the system.

- **Stokes-Einstein relation**
 In simple liquids,
 \[D \approx \tau^{-1}. \]
 In glassy systems,
 \[D \approx \tau^{-\xi} \quad \text{with} \quad \xi < 1. \]
Relaxation time and diffusion

▶ Relaxation time
Recall that

\[\text{Var}_\mu(P_t f) \leq \text{Var}_\mu(f) e^{-2t/\tau} \quad \text{with} \quad \tau < \infty, \]

\(\tau \) is the relaxation time of the system.

▶ Diffusion coefficient
Add a probe/tracer (pollen) to the system (liquid) at equilibrium. It diffuses with diffusion coefficient \(D \) depending on the system.

▶ Stokes-Einstein relation
In simple liquids,

\[D \approx \tau^{-1}. \]

In glassy systems,

\[D \approx \tau^{-\xi} \quad \text{with} \quad \xi < 1. \]

For our models?
Diffusion coefficient

Setting of [Jung-Garrahan-Chandler ’04].

- Environment: East of FA-1f at equilibrium (initial configuration \(\sim \mu \)).
- Add a tracer at the origin.
Diffusion coefficient

Setting of [Jung-Garrahan-Chandler '04].

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.
Diffusion coefficient

Setting of [Jung-Garrahan-Chandler '04].

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.
Diffusion coefficient

Setting of [Jung-Garrahan-Chandler '04].

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.
Diffusion coefficient

Setting of [Jung-Garrahan-Chandler '04].

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.
Diffusion coefficient

Setting of [Jung-Garrahan-Chandler '04].

- Environment: East of FA-1f at equilibrium (initial configuration \(\sim \mu \)).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.
Diffusion coefficient

Setting of [Jung-Garrahan-Chandler ’04].

- Environment: East of FA-1f at equilibrium (initial configuration $\sim \mu$).
- Add a tracer at the origin.
- Simple random walk, but jumps only between empty sites.
Convergence to Brownian motion

[Kipnis-Varadhan '86, De Masi-Ferrari-Goldstein-Wick '89, Spohn '90]

Proposition

If X_t is the position of the tracer at time t

$$\lim_{\epsilon \to 0} \epsilon X_{\epsilon^{-2}t} = \sqrt{2DB_t},$$

where B_t is a standard Brownian motion and the diffusion matrix D is given by

$$u.Du = \frac{1}{2} \inf_f \left\{ \sum_{y \in \mathbb{Z}^d} \mu \left(c_y(\eta)((1 - q)(1 - \eta y) + q\eta y) \right) \left[f(\eta^y) - f(\eta) \right]^2 \right\}$$

$$> 0$$

where $u \in \mathbb{R}^d$ and the infimum is taken over local functions f on Ω.
FA-1f at low temperature

- Relaxation time [Cancrini-Martinelli-Roberto-Toninelli '08]

\[
C^{-1}q^{-3} \leq \tau \leq Cq^{-3} \quad \text{for } d = 1
\]
\[
C^{-1}q^{-2} \leq \tau \leq Cq^{-2} \log(1/q) \quad \text{for } d = 2
\]
\[
C^{-1}q^{-(1+2/d)} \leq \tau \leq Cq^{-2} \quad \text{for } d \geq 3
\]

Conjecture: \(\tau \sim q^{-2} \) for \(d \geq 3 \).
Relaxation time \cite{Cancrini-Martinelli-Roberto-Toninelli '08}

\begin{align*}
C^{-1}q^{-3} & \leq \tau \leq Cq^{-3} \quad \text{for } d = 1 \\
C^{-1}q^{-2} & \leq \tau \leq Cq^{-2}\log(1/q) \quad \text{for } d = 2 \\
C^{-1}q^{-(1+2/d)} & \leq \tau \leq Cq^{-2} \quad \text{for } d \geq 3
\end{align*}

Conjecture: $\tau \sim q^{-2}$ for $d \geq 3$.

Diffusion coefficient

- Prediction of \cite{JGC '04} $D \sim q^2$ in all dimensions.

\[\Longrightarrow \xi = 2/3 \text{ if } d = 1, \xi = 1 \text{ else.} \]
Relaxation time [Cancrini-Martinelli-Roberto-Toninelli '08]

\[C^{-1} q^{-3} \leq \tau \leq C q^{-3} \quad \text{for } d = 1 \]
\[C^{-1} q^{-2} \leq \tau \leq C q^{-2} \log(1/q) \quad \text{for } d = 2 \]
\[C^{-1} q^{-(1+2/d)} \leq \tau \leq C q^{-2} \quad \text{for } d \geq 3 \]

Conjecture: \(\tau \sim q^{-2} \) for \(d \geq 3 \).

Diffusion coefficient

- Prediction of [JGC '04] \(D \sim q^2 \) in all dimensions.
 \[\Rightarrow \xi = 2/3 \text{ if } d = 1, \; \xi = 1 \text{ else.} \]
- Results of [B. '13]. In all dimensions
 \[cq^2 \leq D \leq Cq^2, \]
 and analogous result for other non-cooperative models (with a different, explicit exponent).
East at low temperature

- Relaxation time [AD ’02, CMRT ’08]

\[c_\delta \exp \left(\frac{\log(1/q)^2}{2 \log 2 - \delta} \right) \leq \tau \leq \exp \left(\frac{\log(1/q)^2}{2 \log 2 + \delta} \right). \]
East at low temperature

- Relaxation time \([AD '02, CMRT '08]\)

\[
c_δ \exp \left(\frac{\log(1/q)^2}{2 \log 2 - \delta} \right) \leq \tau \leq \exp \left(\frac{\log(1/q)^2}{2 \log 2 + \delta} \right).
\]

- Diffusion coefficient
 - Prediction of \([JGC '04]\) \(D \approx \tau^{-0.73}\).
 \(\implies \xi \approx 0.73.\)
Relaxation time \([\text{AD '02, CMRT '08}]\)

\[
c_\delta \exp \left(\frac{\log(1/q)^2}{2 \log 2 - \delta} \right) \leq \tau \leq \exp \left(\frac{\log(1/q)^2}{2 \log 2 + \delta} \right).
\]

Diffusion coefficient

- Prediction of \([\text{JGC '04}]\) \(D \approx \tau^{-0.73}\).
 \[\implies \xi \approx 0.73.\]
- Results of \([\text{B. '13}]\).

\[
cq^2 \tau^{-1} \leq D \leq Cq^{-\alpha} \tau^{-1} \quad \implies \quad \frac{\log(D)}{\log(\tau^{-1})} \to 1.
\]
Open questions

- Weaker decoupling between D and τ^{-1} in the East model (for instance $D \approx q^{-\alpha} \tau^{-1}$, $\alpha > 0$)?
Open questions

- Weaker decoupling between D and τ^{-1} in the East model (for instance $D \approx q^{-\alpha} \tau^{-1}$, $\alpha > 0$)?
- Other KCSM with Stokes-Einstein violation?
Open questions

- Weaker decoupling between D and τ^{-1} in the East model (for instance $D \approx q^{-\alpha} \tau^{-1}, \alpha > 0$)?
- Other KCSM with Stokes-Einstein violation?
- Diffusion when $\tau = +\infty$?
Other perspectives

- **Tracer with drift** (work in progress, with Luca Avena and Alessandra Faggionato).
Other perspectives

- Tracer with drift (work in progress, with Luca Avena and Alessandra Faggionato).

- Simpler description of FA-1f at low temperature?
Thank you for your attention!
Subadditivity for the contact process.

•: infected, □: healthy.

• → □ at rate 1
□ → • at rate proportional to the number of infected neighbours.

\[
\begin{align*}
\text{basic coupling} & \quad X^1_s & \quad \eta^1(s) \\
\text{time} & \quad X^1_t & \quad \eta^1(t)
\end{align*}
\]