Devoir à rendre le vendredi 23 octobre

Exercice 1 (Preuve élémentaire du petit théorème de Fermat (exo 15 feuille 1))

1. Montrer que pour tout couple d'entiers a et b et tout p premier, on a :

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$
.

2. En déduire le petit théorème de Fermat :

$$n^p \equiv n \pmod{p}$$
.

3. A quelle condition a-t-on $n^{p-1} \equiv 1 \pmod{p}$?

Rappel: Groupe alterné

Soit $n \geq 1$. On appelle groupe alterné de degré n, le sous-groupe A_n de S_n formé des permutations de signature 1.

Rappel: Sous-groupe normal (ou distingué)

Soient G est un groupe et H un sous-groupe de G. On dit que H est normal ou distingué dans G si pour tout $h \in H$ et tout $g \in G$, $ghg^{-1} \in H$.

Exercice 2 Soit $n \geq 1$. Vérifier que A_n est un sous-groupe normal de S_n .

Exercice 3 1. Lister toutes les permutations dans A_4 .

- 2. Soit $H = {\sigma \in A_4 | \sigma^2 = id}$
 - (a) Lister les permutations dans H.
 - (b) Montrer que H est un sous-groupe de A_4 .
 - (c) Montrer que H est normal dans A_4 .
 - (d) H est-il normal dans S_4 ?
- 3. Donner un exemple de sous-groupe propre non trivial K de H.
 - Le sous-groupe K est-il normal dans H?
 - Le sous-groupe K est-il normal dans A_4 ?