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1. Extensions de degré fini, extensions algébriques.

Exercice 1.1

1. Déterminer les morphismes de Q(i) dans C.

2. Déterminer les morphismes de Q(j) dans C.

3. Les corps Q(i) et Q(j) sont-ils isomorphes ?

Exercice 1.2

1. Montrer que Q(
√

2) ∩Q(
√

3) = Q.

2. En déduire le degré de la Q-extension Q(
√

2,
√

3).

3. Soit α =
√

2 +
√

3. Montrer que Q(
√

2,
√

3) = Q(α).

4. Déterminer le polynôme minimal P de α sur Q et toutes les racines de P .

5. Déterminer les automorphismes de Q(α).

6. Soit K un sous-corps de Q(α) ; en remarquant que le polynôme minimal de α sur K divise
P dans K[X], montrer que

K = Q, Q(
√

2), Q(
√

3), Q(
√

6) ou Q(α).

Exercice 1.3 (Extensions quadratiques de Q) Soit K une extension de degré 2 sur Q. Mon-
trer que K = Q(

√
a) où a est un entier sans facteur carré, i.e. tel qu’il n’existe pas de nombre

premier p avec p2 | a.

Exercice 1.4 Soit α un élément algébrique sur K tel que [K(α) : K] est impair. Montrer que
K(α) = K(α2).

Exercice 1.5

1. Quelles sont les extensions de degré finis de R et de C ?

2. Montrer que pour tout entier n ≥ 1, il existe une extension de Q de degré n.

Exercice 1.6

1. Vérifier que le polynôme
P (X) = X3 − 3X + 1

est irréductible sur Q.

2. Soit α ∈ C une racine de P ; montrer que α2 − 2 et −α2 − α + 2 sont aussi racines de P .
Quel est le corps des racines de P sur Q ?

3. Soit ω ∈ C une racine de
X6 +X3 + 1.

Vérifier que ω9 = 1 et en déduire que ω+ω−1 est racine de P . Quel est le polynôme minimal
de ω sur Q(α) ?

4. Prouver que Q(α) = Q(ω) ∩ R.
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Exercice 1.7 Soient K un corps contenu dans un corps algébriquement clos Ω et P (X) ∈ K[X]
un polynôme non constant de degré d.

1. Soit α une racine de P dans Ω.
a) Montrer que [K(α) : K] ≤ d.
b) Prouver que [K(α) : K] = d si et seulement si P est irréductible sur K.

2. Soit L ⊂ Ω une extension de degré fini n sur K. On suppose que P est irréductible sur K
et que n et degP sont premiers entre eux. Montrer que P est irréductible sur L.
Application : Soit α ∈ C une racine de X7−6X+3, alors X2000 +10X8−45 est irréductible
sur Q(α).

Exercice 1.8 Soit K un corps. On appelle extension algébrique de K une extension qui ne
contient que des éléments algébriques sur K. On appelle clôture algébrique de K une extension
algébrique de K qui est de plus algébriquement close.

1. Donner un exemple d’extension algébrique de Q qui n’est pas une extension de degré fini.

2. Montrer que si L est une extension algébrique de K et M est une extension algébrique de
L alors M est une extension algébrique de K.

3. On suppose que K est contenu dans un corps algébriquement clos Ω. On note K̃ l’ensemble
des éléments de Ω algébriques sur K. Montrer que K̃ est un corps et que c’est en fait une
clôture algébrique de K.

Exercice 1.9 Soit K un corps fini ou dénombrable.

1. Quel est la cardinalité de K[X] ?

2. En déduire que toute extension algébrique de K est fini ou dénombrable.

Exercice 1.10 (Exemple de nombre transcendant)

1. Théorème de Liouville. Soit a un nombre algébrique réel sur Q de degré n > 0 (i.e. [Q(a) :

Q] = n). Montrer qu’il existe un réel c > 0 tel que pour tout rationnel
p

q
, avec q > 0, on ait

∣∣∣∣a− p

q

∣∣∣∣ > c

qn
.

Indication : considérer un polynôme P irréductible de degré n dans Z[X] et annulant a et
considérer δ > 0 tel que P ′ ne s’annule pas sur [a − δ, a + δ] et appliquer le théorème des

accroissements finis pour le cas où

∣∣∣∣∣a− p

q

∣∣∣∣∣ ≤ δ.
2. En déduire la transcendance de

a =
∑
i>0

ai10−i!

pour toute suite (ai) d’entiers naturels compris entre 1 et 9.

Exercice 1.11 Soit K un corps et P un polynôme irréductible de K[X] de degré n.

1. On dit qu’une extension L de K est un corps de rupture de P si elle est engendrée par L et
une racine de P . Montrer qu’un tel corps de rupture existe toujours.
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2. On dit qu’une extension L deK est un corps de décomposition de P s’il existe c, α1, α2, ..., αn ∈
L tel que L = K(α1, ..., αn) et P = c(X − α1) · · · (X − αn). Montrer qu’un tel corps de
décomposition existe.

Exercice 1.12 Soient K un corps et P ∈ K[X] un polynôme non constant. Notons d1, d2, . . . , dr
les degrés de ses facteurs irréductibles sur K. Soit L un corps de décomposition de P sur K.

Montrer que [L : K] divise
r∏
i=1

(di !).

Exercice 1.13 (Théorème de Steinitz) On va montrer que tout corpsK a une clôture algébrique.
1. Supposons dans un premier temps que K est fini ou dénombrable. A l’aide d’une suite

dénombrable d’extensions de degré fini montrer qu’il existe une extension algébrique K1 de
K contenant une racine pour chaque polynôme P sur K de degré non nul. En réitérant un
nombre dénombrable de fois, en déduire l’existence d’une clôture algébrique de K.

2. Pour montrer le théorème de Steinitz sans utiliser l’hypothèse ci-dessus, on va utiliser le fait
que tout idéal propre d’un anneau est contenu dans un idéal maximal. Ce fait découle du
lemme de Zorn (lemme équivalent à l’axiome du choix).
(a) Soit pour chaque polynôme P sur K de degré non nul, une variable XP et considérons

l’idéal I engendré par les élements P (XP ) de l’anneau K[XP : P ]. Montrer que I ne
contient pas 1.

(b) En déduire qu’il existe un idéal J maximal contenant I et qu’il existe une extension
K1 de K contenant une racine pour chaque polynôme P sur K de degré non nul.

(c) À l’aide d’une suite de telles extensions, montrer qu’il existe une extension algébriquement
close de K. Conclure.

Exercice 1.14 Soient p un nombre premier impair et Ω un corps algébriquement clos de carac-
téristique 6= p. Notons K le sous-corps premier de Ω.

1. Montrer qu’il existe ω ∈ Ω avec ωp = 1 et ω 6= 1.
2. Pour tout entier x ∈ Z, on définit son symbole de Legendre (modulo p) par

(
x

p

)
=


0 si x est un multiple de p,
1 si x est un carré modulo p,
−1 si x est n’est pas un carré modulo p.

a) On pose

s =
∑

1≤x≤p−1

(
x

p

)
ωx.

Montrer que

s2 =
∑

1≤z≤p−1

(
z

p

) ∑
1≤x≤p−1

ωx(1+z)


et en déduire que s2 = p

(
−1
p

)
.

b) En déduire que

p ≡ 1 (mod 4)⇒ √p ∈ K(ω)
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et

p ≡ −1 (mod 4)⇒
√
−p ∈ K(ω).

Exercice 1.15 Le but de cet exercice est de montrer que toute extension quadratique de Q est
contenu dans une extension cyclotomique de Q.

Soit K une extension de degré 2 sur Q. Montrer qu’il existe un entier n ≥ 1 tel que K ⊂
Q(e2iπ/n). (Utiliser les résultats des exercices 1.3 et 1.14.)

Exercice 1.16 (Résolution des équations cubiques)
Méthode de Cardan (1501-1576)/Tartaglia (1500-1557).

Soit l’équation
(E) z3 + pz + q = 0

avec p, q ∈ Q

1. Soient z1, z2, z3 les 3 racines dans C de (E). Exprimer le discriminant ∆ := (z1 − z2)2(z2 −
z3)2(z1 − z3)2 en fonction de p et q. (Indication : développer z3 + pz + q = (z − z1)(z −
z2)(z − z3)).

2. Montrer que :

∆ = 0 ⇐⇒ z3 + pz + q a une racine réelle double
∆ > 0 ⇐⇒ z3 + pz + q a 3 racines réelles simples
∆ < 0 ⇐⇒ z3 + pz + q a 2 racines complexes conjuguées et 1 racine réelle

3. Montrer que si {
u3 + v3 = −q
uv = −p

3

alors z = u+ v est racine de z3 + pz + q.

4. En déduire que si z1 et z2 sont les racines de :

z2 + qz − p3

27

et si u, v sont des racines cubiques de z1 et z2 telles que : uv = −p
3 alors :

u+ v, ju+ j2v, j2u+ jv

sont les racines de z3 + pz + q.

5. Résoudre z3 − z − 1 = 0.

6. Déterminer un changement de variable permettant de passer de la résolution d’une équation
générale du troisième degré de la forme

ax3 + bx2 + cx+ d = 0

à celle d’une équation de la forme (E).


