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1. Extensions de degré fini, extensions algébriques.

Exercice 1.1
1. Déterminer les morphismes de Q(z) dans C.
2. Déterminer les morphismes de Q(j) dans C.

3. Les corps Q(i) et Q(j) sont-ils isomorphes ?

Exercice 1.2
1. Montrer que Q(v/2) NQ(v/3) = Q.
En déduire le degré de la Q-extension Q(v/2,v/3).
Soit @ = v/2 4+ /3. Montrer que Q(\@, \/3) = Q(a).
Déterminer le polynome minimal P de a sur QQ et toutes les racines de P.

Déterminer les automorphismes de Q(«).

AN el

Soit K un sous-corps de Q(«) ; en remarquant que le polynéme minimal de a sur K divise
P dans K[X], montrer que

K =Q, Q(v2), Q(v3), Q(v6) ou Q(a).

Exercice 1.3 (Extensions quadratiques de Q) Soit K une extension de degré 2 sur Q. Mon-
trer que K = Q(y/a) ol a est un entier sans facteur carré, i.e. tel qu'il n’existe pas de nombre
premier p avec p? | a.

Exercice 1.4 Soit o un élément algébrique sur K tel que [K(«) : K| est impair. Montrer que
K(a) = K(a?).

Exercice 1.5
1. Quelles sont les extensions de degré finis de R et de C?

2. Montrer que pour tout entier n > 1, il existe une extension de Q de degré n.

Exercice 1.6

1. Vérifier que le polynome
P(X)=X3-3X+1

est irréductible sur Q.

2

2. Soit @ € C une racine de P; montrer que a® — 2 et —a® — a + 2 sont aussi racines de P.

Quel est le corps des racines de P sur Q7
3. Soit w € C une racine de
X604 X341,
Vérifier que w”? = 1 et en déduire que w+w ™! est racine de P. Quel est le polynéme minimal
de w sur Q(a) ?
4. Prouver que Q(a) = Q(w) NR.
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Exercice 1.7 Soient K un corps contenu dans un corps algébriquement clos 2 et P(X) € K[X]
un polynome non constant de degré d.

1. Soit & une racine de P dans 2.
a) Montrer que [K(«) : K] < d.
b) Prouver que [K(«) : K| = d si et seulement si P est irréductible sur K.

2. Soit L C 2 une extension de degré fini n sur K. On suppose que P est irréductible sur K
et que n et deg P sont premiers entre eux. Montrer que P est irréductible sur L.
Application : Soit & € C une racine de X7 —6X +3, alors X290 1+ 10.X® — 45 est irréductible

sur Q(a).

Exercice 1.8 Soit K un corps. On appelle extension algébriqgue de K une extension qui ne
contient que des éléments algébriques sur K. On appelle cloture algébrique de K une extension
algébrique de K qui est de plus algébriquement close.

1. Donner un exemple d’extension algébrique de Q qui n’est pas une extension de degré fini.

2. Montrer que si L est une extension algébrique de K et M est une extension algébrique de
L alors M est une extension algébrique de K.

3. On suppose que K est contenu dans un corps algébriquement clos Q. On note K l’ensemble
des éléments de 2 algébriques sur K. Montrer que K est un corps et que c’est en fait une
cloture algébrique de K.

Exercice 1.9 Soit K un corps fini ou dénombrable.
1. Quel est la cardinalité de K[X]?

2. En déduire que toute extension algébrique de K est fini ou dénombrable.

Exercice 1.10 (Exemple de nombre transcendant)

1. Théoréme de Liouville. Soit a un nombre algébrique réel sur Q de degré n > 0 (i.e. [Q(a) :

Q] = n). Montrer qu’il existe un réel ¢ > 0 tel que pour tout rationnel ]3, avec ¢ > 0, on ait
q

a — — >7
q q

p' c
Indication : considérer un polynéme P irréductible de degré n dans Z[X] et annulant a et

considérer § > 0 tel que P’ ne s’annule pas sur [a — §,a + 0] et appliquer le théoreme des

. . N p
accroissements finis pour le cas ou [a — —| < 4.

2. En déduire la transcendance de

a= Z ail(]_i!

1>0

pour toute suite (a;) d’entiers naturels compris entre 1 et 9.

Exercice 1.11 Soit K un corps et P un polynéme irréductible de K[X] de degré n.

1. On dit qu'une extension L de K est un corps de rupture de P si elle est engendrée par L et
une racine de P. Montrer qu'un tel corps de rupture existe toujours.
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2. On dit qu'une extension L de K est un corps de décomposition de P s’il existe ¢, a1, s, ..., o, €
L tel que L = K(aq,...,ap) et P = ¢(X — 1)+ (X — ap). Montrer qu'un tel corps de
décomposition existe.

Exercice 1.12 Soient K un corps et P € K[X] un polynéme non constant. Notons di, da, . .., d,

les degrés de ses facteurs irréductibles sur K. Soit L un corps de décomposition de P sur K.

T
Montrer que [L : K| divise [](d;!).
i=1

Exercice 1.13 (Théoréme de Steinitz) On va montrer que tout corps K a une cloture algébrique.

1. Supposons dans un premier temps que K est fini ou dénombrable. A 1'aide d’une suite
dénombrable d’extensions de degré fini montrer qu’il existe une extension algébrique K7 de
K contenant une racine pour chaque polynéme P sur K de degré non nul. En réitérant un
nombre dénombrable de fois, en déduire I'existence d’une cléture algébrique de K.

2. Pour montrer le théoréeme de Steinitz sans utiliser I’hypothese ci-dessus, on va utiliser le fait
que tout idéal propre d’un anneau est contenu dans un idéal maximal. Ce fait découle du
lemme de Zorn (lemme équivalent & 'axiome du choix).

(a) Soit pour chaque polynéme P sur K de degré non nul, une variable Xp et considérons
I'idéal I engendré par les élements P(Xp) de 'anneau K[Xp : P]. Montrer que I ne
contient pas 1.

(b) En déduire qu’il existe un idéal J maximal contenant I et qu’il existe une extension
K de K contenant une racine pour chaque polynoéme P sur K de degré non nul.

(c) A Paide d’une suite de telles extensions, montrer qu’il existe une extension algébriquement
close de K. Conclure.

Exercice 1.14 Soient p un nombre premier impair et {2 un corps algébriquement clos de carac-
téristique # p. Notons K le sous-corps premier de 2.

1. Montrer qu’il existe w € 2 avec wP =1 et w # 1.

2. Pour tout entier x € Z, on définit son symbole de Legendre (modulo p) par

0 six est un multiple de p,
x
() =< 1 sizestun carré modulo p,

—1 six est n’est pas un carré modulo p.

a) On pose

Montrer que

-1
et en déduire que s? = p <>

b) En déduire que
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et

p=-1 (mod4) = +—pe K(w).

Exercice 1.15 Le but de cet exercice est de montrer que toute extension quadratique de Q est
contenu dans une extension cyclotomique de Q.

Soit K une extension de degré 2 sur Q. Montrer qu’il existe un entier n > 1 tel que K C
Q(e?7/™). (Utiliser les résultats des exercices 1.3 et 1.14.)

Exercice 1.16 (Résolution des équations cubiques)
Méthode de Cardan (1501-1576)/Tartaglia (1500-1557).
Soit I'équation
(E) 22 4+pz+q=0
avec p,q € Q

1. Soient 21, 22, 23 les 3 racines dans C de (E). Exprimer le discriminant A := (21 — 22)?(29 —
23)%(21 — 23)? en fonction de p et ¢. (Indication : développer 2% + pz + ¢ = (z — 21)(z —
22)(z — 23)).

2. Montrer que :

A=0 <= 2%+ pz+qa une racine réelle double
A>0 <= 2%+ pz+qa 3racines réelles simples
A <0 <= 224 pz+qa?2racines complexes conjuguées et 1 racine réelle

3. Montrer que si
{ ud 403 = —q
__vp
uv = -3
alors z = u + v est racine de 2% + pz + q.

4. En déduire que si z1 et z9 sont les racines de :

3
2 p
20+ qz— —
T
et si u, v sont des racines cubiques de z; et zo telles que : uv = —% alors :

u+ v, ju+ %, j2u+ jo
sont les racines de 22 + pz + q.
5. Résoudre 22 — 2z — 1 = 0.

6. Déterminer un changement de variable permettant de passer de la résolution d’une équation
générale du troisieme degré de la forme

ard + b’ +ecx+d=0

a celle d’une équation de la forme (E).



