M1 – Théorie de Galois Fiche 7

7. Résolubilité par radicaux des équations polynomiales

Exercice 7.1 Un groupe G est dit $r\acute{e}soluble$ s'il existe une suite décroissante finie de sous-groupes G_i de G, $0 \le i \le n$ telle que

$$\{1\} = G_n \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G$$

et telle que les quotients G_i/G_{i+1} sont tous abéliens.

- 1. Montrer que les groupes S_3 et S_4 sont résolubles.
- 2. Soit K un corps de caractéristique nulle, $a \in K$ et n un entier naturel non nul. Que peut-on dire du groupe de Galois du corps de décomposition de $X^n a$ sur K?

Le sous-groupe dérivé D(G) de G est le groupe engendré par les commutateurs $[a,b] = aba^{-1}b^{-1}$ pour $a,b \in G$.

- 3. Montrer que $D(G) \triangleleft G$ et que pour tout $H \triangleleft G$, le quotient G/H est abélien si et seulement si $D(G) \subseteq G$.
- 4. La suite des sous-groupes dérivés $D_i(G)$ de G est définie par $D_0(G) = G$ et $D_{i+1}(G) = D(D_i(G))$. Montrer que G est résoluble si et seulement s'il existe n tel que $D_n(G) = \{1\}$.
- 5. Montrer que tout sous-groupe H d'un groupe résoluble G est résoluble. En déduire que S_n n'est résoluble pour aucun $n \geq 5$.
 - 6. Montrer que si H est un sous-groupe distingué d'un groupe résoluble G alors G/H est résoluble.
 - 7. Soit H un sous-groupe distingué de G tel que H et G/H sont résolubles. Montrer que G est résoluble.

Exercice 7.2 Soit K un corps de caractéristique nulle. Une extension L sur K est dite radicale si $L = K(\alpha_1, \ldots, \alpha_m)$ et pour tout $i \in \{1, \ldots, n\}$ il existe m_i tel que $\alpha_i^{m_i} \in K(\alpha_1, \ldots, \alpha_{i-1})$.

- 1. Montrer que toute extension radicale L sur K est contenue dans une extension radicale M sur K qui est de plus galoisienne.
- 2. Montrer que le groupe de Galois d'une extension Galoisienne radicale est résoluble.
- 3. Un polynôme $P \in K[X]$ est dit résoluble par radicaux s'il existe une extension M du corps de décompostion L de P sur K tel que M est une extension radicale de K. Montrer que le groupe de Galois d'un polynôme résoluble par radicaux est résoluble.
- 4. Montrer que si f est un polynôme irréductible sur \mathbb{Q} de degré un nombre premier p supérieur ou égal à 5 tel que f a exactement deux racines complexes non réelles alors f n'est pas résoluble par radicaux. Vérifier que le polynôme $X^5 6X + 3$ satisfait les propriétés ci-dessus.

Exercice 7.3 Soit L une extension galoisienne d'un corps K de caractéristique nulle tel que $G_{L/K}$ est résoluble. On pose n = [L:K] et ξ une racine primitive n-ème de l'unité.

- 1. Montrer que $M=L(\xi)$ est galoisienne sur K et que $G_{L(\xi)/K}$ est résoluble.
- 2. Montrer qu'il existe une suite finie

$$\{1\} = G_r \triangleleft G_{r-1} \triangleleft \cdots \triangleleft G_1 \triangleleft G_0 = G_{L(\xi)/K(\xi)}$$

telle que pour tout i < r, le groupe G_i/G_{i+1} est un groupe cyclique d'ordre premier p_i .

- 3. En utilisant l'exercice 6.2, montrer que pour chaque i < r, il existe $\alpha_i \in M^{G_i}$ tel que $M^{G_i} = M^{G_{i+1}}[\alpha_i]$ et $\alpha_i^{p_i} \in M^{G_{i+1}}$.
- 4. En déduire que M est une extension radicale de K.
- 5. Conclure en donnant une caractérisation des polynômes résolubles par radicaux.