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8. Discriminant et corps de nombres.

On fixe pour toute la suite un corps de nombre K de degré n sur Q (c.a.d. une extension de degré n sur
Q) et on note Ok Panneau des entiers algébriques de K. On désigne par o1, ..., 0, les homomorphismes de
K dans C. Pour toute la suite on note simplement Tr et N pour la trace Trg g et la norme N q.

Exercice 8.1 1. Montrer qu’il existe u € Ok tel que K = Q(u).
2. Montrer que si z € Ok, alors Tr(x) et N(z) sont dans Z.

Rappel de cours sur le discriminant : Soit x1,...,x, € K. Rappelons la définition du discriminant
Disc(x1, ..., ) := det[Tr(z;2;)]. On a les propriétés suivantes :

1. Disc(21, ..., xn) = (det[o;(x;)])?

2. Disc(x1, ..., zpn) # 0 si et seulement si (z1, ..., 2, ) est une base de K sur Q.

3. Soient (eq,...,en) et (€], ...,e),) deux bases de K sur Q. Notons A la matrice de passage de la premiere

base vers la seconde. Alors
Disc(e], ...,e},) = (det A)? Disc(ey, ..., e,).
4. Si x est une élément primitif de K sur Q de polynéme minimal f alors

Disc(L, 2, ..., 2"~ ') = Dise(f) = [[(oi(z) — 0j())* = (=1)"""V/2N(f'(x)).
1<j
Exercice 8.2 (Bases intégrales) 1. Montrer que si z1, .., 2, € Ok alors Disc(z1, ..., z,) € Z.

2. Soit eq, .., e, € Ok tel que (eq, ..., e, ) soit une base de K sur Q avec |Disc(ey, ..., €, )| minimal parmi de
telles bases formées d’entiers algébriques. Montrer que Ok = Ze1 @ .... ® Ze,,. (Indication : supposer
qu’il existe x = > a;e; € Ok tel que a1 ¢ Z et utiliser la base (z — biey, ea,...,e,) ol by est la partie
entiere de ag.)

3. En déduire que Ok est un Z-module libre de rang n.

4. Vérifier que toute base du Z-module Ok est aussi une base de K sur Q. On appelera une telle base,
base intégrale de K.

5. Montrer que toutes les bases intégrales ont méme discriminant. On appelera ce discriminant le discri-
minant de K que l'on notera Disc(K).

Pour ’exercice suivant, on utilisera le “théoréme de la base adaptée” : si M est un module libre de
rang n sur un anneau principal A,et st N est un sous-module de M alors :

1. N est un module libre de rang ¢ < n ;

2. il existe une base (e1,...,e,) de M et des éléments non nuls a1, ...,aq, de A tels que (aieq,..,aqeq) soit
une base de N (et tels que a; | a;41 pour 1 <i<gq—1.

Exercice 8.3 Soit (ug, ..., u,) une base de K formée d’entiers algébriques.

1. Montrer que le module quotient Ok /(Zuy @ ... ® Zu,,) est fini. On appele indice du sous-module
Zuy & ... ® Zu,, dans Ok le cardinal cardinal Ok /Z[uy, ..., up].

2. Montrer que Disc(uy, ..., u,) = m?Disc(K) ot m est 'indice de Zu; & ... ® Zu,, dans O .
Exercice 8.4 Soit u € Ok un élément primitif de K sur Q tel que le polynéme minimal de u est d’Eisenstein
en p. Le but de cet exercice est de montrer que p 1 [Of : Z[u]].

1. Montrer que p~!u™ € Ok et p? { N(u).

2. Supposons que p | [Ok : Z[u]]. Montrer qu’il existe x € Ok \ Z[u] tel que px € Z[u).
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3. En déduire qu'’il existe des entiers by, ..., b,_1 non tous divisibles par p tel que x = p~1(bg + byu + ... +
bn,lu”_l).

4. Soit y = p~L(bu” + ... + b,_1u™" 1) avec r le plus petit entier tel que b, non divisible par p. Montrer
que y est un entier algébrique.

5. Soit z = p~'b,u" 1. Montrer que z est aussi un entier algébrique.
6. Montrer que p"N(z) = bPN(u)" 1.

7. En déduire une contradiction.

Pour la suite, on considere un “corps cubique pur” K, c.a.d. tel que K = Q(\s/;l) avec d entier
strcitement supérieur a 1 sans facteur cubique. Le but du probléeme suivant est de déterminer ’anneau des
entiers OQ( Yay

Probléme 8.1 On note 6; = v/d.
1. (a) Quel est le polynéme minimal de #; et quels sont ses conjugués.
(b) Calculer Disc(1, 61, 6%).
(c) Démontrer qu'il existe deux entiers positifs a et b uniques tels que ab soit sans facteur carré et

d = ab®. On pose #; = va2b. Démontrer que f est un élément primitif de K sur Q et que
Disc(1, 60o,63) = —27a*b>.

(d) Démontrer que (1,61, 602) est une base de K sur Q et que Disc(1,61,62) = —27a%b?.
2. Soeint u, v, w les indices respectifs des sous-modules Z[0:], Z[02] et Z[1, 01, 2] dans Og-.
(a) Montrer que (a,u) =1 (on utilisera ’exercice 8.4). En déduire que :
i. si 3| a alors Disc(K) est divisible par 27a?;
ii. sinon Disc(K) est divisible par a?.
(b) Montrer que (b,v) = 1. En déduire que :
i. si 3| b, alors Disc(K) est divisible par 27b%;
ii. sinon Disc(K) est divisible par b?.
(c) Démontrer que Disc(K) est divisible par a?b?, est négatif et divise 27a%b.
3. Démontrer que si d =0 mod 3 alors Disc(K) = —27a?b? et (1,601, 02) est une base intégrale de K.

4. Plus généralement démontrer le résultat précédent pour d % +1 mod 9 : on pourra vérifier que 61 — d
a un polynome minimal d’Einsenstein en 3.

5. On suppose que d =1 mod 9. On considere a = (1 + 61 + 63)/3.
(a) Montrer que « est un entier algébrique. (On calculera son polynéme minimal.)
(b) En déduire que 3 | w et donc que Disc(K) = —3a%b%.
(¢) Montrer que («, 61,02) est une base intégrale de K.
6. Si d=—1 mod 9 montrer que ((1 — 601 + 67)/3,01,02) est une base intégrale de K.
7. Conclusion (théoréme dit & Dedekind en 1900) :
(a) Sid# 41 mod 9 alors Disc(K) = —27a?b? et (1,61,67) est une base intégrale de K.
(b) Sid=+1 mod 9 alors Disc(K) = —3a?b? et
i. (1461 +b62)/3,01,02) est une base intégrale de K sid =1 mod 9,
ii. ((1—01+0b62)/3,01,02) est une base intégrale de K si d = —1 mod 9



