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8. Discriminant et corps de nombres.

On fixe pour toute la suite un corps de nombre K de degré n sur Q (c.à.d. une extension de degré n sur
Q) et on note OK l’anneau des entiers algébriques de K. On désigne par σ1, ..., σn les homomorphismes de
K dans C. Pour toute la suite on note simplement Tr et N pour la trace TrK/Q et la norme NK/Q.

Exercice 8.1 1. Montrer qu’il existe u ∈ OK tel que K = Q(u).
2. Montrer que si x ∈ OK , alors Tr(x) et N(x) sont dans Z.

Rappel de cours sur le discriminant : Soit x1, ..., xn ∈ K. Rappelons la définition du discriminant
Disc(x1, ..., xn) := det[Tr(xixj)]. On a les propriétés suivantes :

1. Disc(x1, ..., xn) = (det[σi(xj)])2

2. Disc(x1, ..., xn) 6= 0 si et seulement si (x1, ..., xn) est une base de K sur Q.
3. Soient (e1, ..., en) et (e′1, ..., e

′
n) deux bases de K sur Q. Notons A la matrice de passage de la première

base vers la seconde. Alors

Disc(e′1, ..., e
′
n) = (detA)2 Disc(e1, ..., en).

4. Si x est une élément primitif de K sur Q de polynôme minimal f alors

Disc(1, x, ..., xn−1) = Disc(f) =
∏
i<j

(σi(x)− σj(x))2 = (−1)n(n−1)/2N(f ′(x)).

Exercice 8.2 (Bases intégrales) 1. Montrer que si x1, .., xn ∈ OK alors Disc(x1, ..., xn) ∈ Z.
2. Soit e1, .., en ∈ OK tel que (e1, ..., en) soit une base de K sur Q avec |Disc(e1, ..., en)| minimal parmi de

telles bases formées d’entiers algébriques. Montrer que OK = Ze1 ⊕ .... ⊕ Zen. (Indication : supposer
qu’il existe x =

∑
aiei ∈ OK tel que a1 /∈ Z et utiliser la base (x − b1e1, e2, ..., en) où b1 est la partie

entière de a1.)
3. En déduire que OK est un Z-module libre de rang n.
4. Vérifier que toute base du Z-module OK est aussi une base de K sur Q. On appelera une telle base,

base intégrale de K.
5. Montrer que toutes les bases intégrales ont même discriminant. On appelera ce discriminant le discri-

minant de K que l’on notera Disc(K).

Pour l’exercice suivant, on utilisera le “théorème de la base adaptée” : si M est un module libre de
rang n sur un anneau principal A,et si N est un sous-module de M alors :

1. N est un module libre de rang q ≤ n ;
2. il existe une base (e1, ..., en) de M et des éléments non nuls a1, ..., aq de A tels que (a1e1, .., aqeq) soit

une base de N (et tels que ai | ai+1 pour 1 ≤ i ≤ q − 1.

Exercice 8.3 Soit (u1, ..., un) une base de K formée d’entiers algébriques.
1. Montrer que le module quotient OK/(Zu1 ⊕ ... ⊕ Zun) est fini. On appele indice du sous-module

Zu1 ⊕ ...⊕ Zun dans OK le cardinal cardinal OK/Z[u1, ..., un].
2. Montrer que Disc(u1, ..., un) = m2Disc(K) où m est l’indice de Zu1 ⊕ ...⊕ Zun dans OK .

Exercice 8.4 Soit u ∈ OK un élément primitif de K sur Q tel que le polynôme minimal de u est d’Eisenstein
en p. Le but de cet exercice est de montrer que p - [OK : Z[u]].

1. Montrer que p−1un ∈ OK et p2 - N(u).
2. Supposons que p | [OK : Z[u]]. Montrer qu’il existe x ∈ OK \ Z[u] tel que px ∈ Z[u].
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3. En déduire qu’il existe des entiers b0, ..., bn−1 non tous divisibles par p tel que x = p−1(b0 + b1u+ ...+
bn−1u

n−1).

4. Soit y = p−1(brur + ... + bn−1u
n−1) avec r le plus petit entier tel que br non divisible par p. Montrer

que y est un entier algébrique.

5. Soit z = p−1bru
n−1. Montrer que z est aussi un entier algébrique.

6. Montrer que pnN(z) = bnr N(u)n−1.

7. En déduire une contradiction.

Pour la suite, on considère un “corps cubique pur” K, c.à.d. tel que K = Q( 3
√
d) avec d entier

strcitement supérieur à 1 sans facteur cubique. Le but du problème suivant est de déterminer l’anneau des
entiers OQ(

3√
d).

Problème 8.1 On note θ1 = 3
√
d.

1. (a) Quel est le polynôme minimal de θ1 et quels sont ses conjugués.

(b) Calculer Disc(1, θ1, θ21).

(c) Démontrer qu’il existe deux entiers positifs a et b uniques tels que ab soit sans facteur carré et
d = ab2. On pose θ2 = 3

√
a2b. Démontrer que θ2 est un élément primitif de K sur Q et que

Disc(1, θ2, θ22) = −27a4b2.

(d) Démontrer que (1, θ1, θ2) est une base de K sur Q et que Disc(1, θ1, θ2) = −27a2b2.

2. Soeint u, v, w les indices respectifs des sous-modules Z[θ1], Z[θ2] et Z[1, θ1, θ2] dans OK .

(a) Montrer que (a, u) = 1 (on utilisera l’exercice 8.4). En déduire que :

i. si 3 | a alors Disc(K) est divisible par 27a2 ;

ii. sinon Disc(K) est divisible par a2.

(b) Montrer que (b, v) = 1. En déduire que :

i. si 3 | b, alors Disc(K) est divisible par 27b2 ;

ii. sinon Disc(K) est divisible par b2.

(c) Démontrer que Disc(K) est divisible par a2b2, est négatif et divise 27a2b2.

3. Démontrer que si d ≡ 0 mod 3 alors Disc(K) = −27a2b2 et (1, θ1, θ2) est une base intégrale de K.

4. Plus généralement démontrer le résultat précédent pour d 6≡ ±1 mod 9 : on pourra vérifier que θ1 − d
a un polynôme minimal d’Einsenstein en 3.

5. On suppose que d ≡ 1 mod 9. On considère α = (1 + θ1 + θ21)/3.

(a) Montrer que α est un entier algébrique. (On calculera son polynôme minimal.)

(b) En déduire que 3 | w et donc que Disc(K) = −3a2b2.

(c) Montrer que (α, θ1, θ2) est une base intégrale de K.

6. Si d ≡ −1 mod 9 montrer que ((1− θ1 + θ21)/3, θ1, θ2) est une base intégrale de K.

7. Conclusion (théorème dû à Dedekind en 1900) :

(a) Si d 6≡ ±1 mod 9 alors Disc(K) = −27a2b2 et (1, θ1, θ2) est une base intégrale de K.

(b) Si d ≡ ±1 mod 9 alors Disc(K) = −3a2b2 et

i. ((1 + θ1 + bθ2)/3, θ1, θ2) est une base intégrale de K si d ≡ 1 mod 9,

ii. ((1− θ1 + bθ2)/3, θ1, θ2) est une base intégrale de K si d ≡ −1 mod 9


