M1 — Théorie de Galois Corrigé rapide examen mai 2008

Corrigé rapide examen 2008

Ce corrigé donne uniquement des indications pour certaines réponses. Elles sont donc

incomplétes.

1. Comme f est un polynéme unitaire de degré 3 et a coéfficients entiers, il est irréductible ssi il n’a
pas de racine dans Z. Supposons que z est un entier et racine de f. Alors 2 = a(z — 1). Donc si p
est un diviseur premie de x — 1, alors p divise 2> donc z. On en déduit que x — 1 est égal & —1, 0 ou
1, c’est-a-dire x = 0,1 ou 2. On vérifie facilement que 0 et 1 sont impossibles et que 2 n’est possible
que si a = 8. D’ou le résultat.

Sia=8alors f = (X —2)(X2+2X —4) et il est facile de voir que X% + 2X — 4 n’a pas de racine
dans Z donc c’est la factorisation recherchée.

2.

(a)

(b)
(c)

g(X) = f(X?) donc les racines de f sont I'ensembles des racines carrées de u, v et w. D’ott le
résultat.

Pour cette question on fait les calculs en utilisant les relations coefficients/racines de f.

On montre que h est séparable en vérifiant que h et h’ sont premier entre-eux (on peut utiliser
lalgorithme d’euclide). On en déduit que h a 4 racines distinctes.

Rappelons que la notation 1/u désigne I'une des deux racines carrées de u. Si on choisit Pautre,
c’est-a-dire —/u on déduit de la question pécédente que zo = u\/vy/w — vV W\ /u — wW\/uy/v
est également racine de h. De méme x3 = —u\/v/w + vy/wy/u — w/u\/v et T4 = —u\/vy/w —
vy/w/u + wy/uy/v sont racines de h. On vérifie en suite que z, x2, x3, x4 sont 4 nombres
disctincts (on utilise pour cela que u, v et w sont distincts car f est séparable; & vérifier
également.)

Donc x, xq, 3, x4 sont les 4 racines de h. (Remarque : ces racines ne sont pas nécessairement
toutes conjuguées sur Q, voir le cas a = 4 dans la question 5.)

Remarquons que uwvw = —a. donc v/—a € L. Notons de plus que 2u~/vy/w = x + 1. De ceci,
on déduit que /u € K(v/—a). De méme pour /v et \/w d’ou le résultat.

D’aprés ce qui précede uy/vy/w € K, donc u = (u?vw)/(uvw) également.

Jh mod3=X*"+X+1=(X-1)(X>+X2+X —1)et X3+ X?+ X — 1 et n’a pas de racine

dans F3. C’est donc la factorisation recherchée.

Du fait de la factorisation de h mod 3, si h est réductible sur Q alors h a une racine. On étudie
alors la tableau de variation de la fonction polynomiale associée a h et on vérifie que cette
fonction est strictement positive si a > 7. Si @ = 1, les seules racines rationnelles possibles de
h sont +1, +2, +4. On vérifie que ce ne sont pas des racines et on conclut.

Comme h est irréductible et de degré 4, on a |Galg(h)| est divisible par 4. Par a) et van der
Waerden,

Par le critere de van der Waerden, Galg(h) conteint un 3-cycle. Donc |Galg(h)| est divisible
par 12. Il est donc isomorphe & un sous-groupe d’indice 2 de S4. D’ou le résultat.

h mod 3 = X*+ X — 1. Supposons que = € Fy est racine de h. Alors 2® =1let z*+2—1 = 0.
Dol = (2)? = (r—1)? =22+ +1. Alors 22+ = 0, donc = 0 ou 1, ce qui est impossible.
Si X4+ X —1 était réductible sur Fs, il aurait un facteur de degré au plus 2 et donc une racine
dans Fy. Il est donc irréductible. On en déduit que h est également irréductible sur Q. Par van
der Waerden, Galg(h) contient un 4-cycle.

Sia # 8, f est irréductible. Comme K contient u, v, w les racines de f, on en déduit que [K : Q]
est divisible par 3. Conclusion |Galg(h)| est divisible par 3 et 4 donc par 12. De plus il contient
un 4-cycle, donc il ne peut étre isomorphe a A4. Il est donc isomorphe a Sy.

Sia=8onah mod13=X44+8X+7=(X+1)(X -2)(X%2+ X +3) avec X>+ X +3 quin’a
pas de racine dans Fy3. C’est donc la factorisation recherchée. Par van der Waerden, Galg(h)

contient une transposition. De plus il contient un 4-cycle. On en déduit qu’il est isomorphe a
S4 (A EXPLICITER).
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5. Sia=4,h=(X—4)(X?+4X%+ 16X — 64). On remarque que X> + 4X? + 16X — 64 n’a pas
de racine rationnelle,en étudiant la fonction polynomiale associée. Celle-ci est trictement croissante,
et s’annule dan s’intervalle ]2, 3[. Donc X? + 4X?2 4 16X — 64 n’a aps de racine dans Z, et comme
il est unitaire et degré 3, il suit qu’il est irréductible sur Q. Cette décomposition montrer que
Galg(h) = Galg(X® +4X? + 16X — 64). Ce groupe est donc isomorphe & un sous-groupe de S et
d’ordre au moins 3. De plus X2 +4X? 416X — 64 a une seule racine réelle et deux racines complexes
conjuguées, donc Galg(h) contient une transposition. Ce groupe est donc isomorphe & Ss.

6. (a) Pour le calcul du discriminant voir la fiche de TD 4. On a A = 4%a%(4a — 27). D’ott —aA
mod 3 = —a? mod 3 = —1. Donc —aA n’est pas un carré dans Z (ni dans Q.

(b) Supposons que K N Q(y/—a) # Q. Alors comme [Q(v/—a) : Q] = 2, on a K N Q(y/—a) =
Q(v—a) et Galg /= (h) est un sous-groupe d’indice 2 de Galg(h). Alors Galg(,/—;(h) est
donc isomorphe & A4 ou As, et Galg(h) isomorphe & Sy ou S3. De ce fait A est alors un carré
dans Q(v/—a), mais pas dans Q. Comme A € Q, on déduit facilement alors que A = (y/—a)?
avec y € Q. Ceci contredit le fait que —aA n’est pas un carré dans Q.

7. Rappelons que L est le corps des racines de g. Donc L est une extension galoisienne de Q. D’autre
part K est une sous-extension galoisienne sur Q. Par la correspondance de Galois, il suit que H est
un sous-groupe distingué de G.De méme H' est un sous-groupe distingué de G.

Soit o € HN H'. Alors o fixe K et v/—a donc fixe K(y/—a) = L.

Par 6b, \/—a ¢ K, donc /—a et —y/—a sont conjugués au-dessus de K. Soit ¢ € G. Comme
V/—a et —y/—a sont conjugués au-dessus de K, il existe 7 € H tel que o(y/—a) = 7(v/—a). D’ou
tlor e H et 0 € HH'.

8. Les propriétés ci-dessus caractérisent le fait que G est isomorphe au produit direct H x H’ et de
plus, on alors H isomorphe & G/H' et H' isomorphe G/H. Par la correspondance de Galois, G/H’
est isomorphe & Gal(Q(v/—a)/Q) qui est isomorphe & Z/2Z et G/H est isomorphe & Gal(K/Q) =
Galg(h). Pour conclure, il suffit de reprendre les questions précédentes, en utilisant le fait que dans
le cas ou Galg(h) est isomorphe & un sous-groupe de Sy, alors A est un carré dans Q si et seulement
si Galg(h) est isomorphe & un sous-groupe de Ay.



