M1 — Théorie de Galois Fiche 1
1. Anneaux, Corps et Polynomes

Convention : les anneaux et corps qui suivent sont tous supposés commutatifs.

Exercice 1.1 Combien les polynoémes X2 — 1 et X2 + 1 ont-ils de solutions sur R, Fy, F3, F7 et
7]2477

Exercice 1.2 Le polynéome X*+ X241 est-il irréductible sur Fy ? Méme question avec le polynome
X+ X +1.

Exercice 1.3

1. Soit P(X) € Z[X] un polynéme unitaire. Montrer que si € Q est une racine non nulle de P,
alors € Z et x divise P(0) dans Z.
Application : factoriser X4 4+ X3 — X2 4+ X + 2 sur Q.

2. Soient P et () deux polynomes unitaires dans Q[X]. Montrer que si
P(X) - Q(X) € Z[X],

alors P et @ sont dans Z[X]|

Exercice 1.4
1. Montrer que le polynéme X° + X3 + 1 est irréductible sur Fy
2. En déduire que le polynoéme 2009X° + 1000X? + 3X3 + 2X? + 1 est irréductible sur Q.

Exercice 1.5 Soit K un corps, et soient m,n > 1 deux entiers. On note r le reste de la division
euclidienne de m par n. Montrer que X" — 1 est le reste de la division euclidienne dans K[X] de
X™ —1 par X" — 1.

En déduire que le PGCD de X™ — 1 et X" — 1 est X% — 1 ot d = pged(m,n).

Exercice 1.6 Soient K et L deux corps tels que K C L. Soient P(X),Q(X) € K[X]. Montrer que
P et @ sont premiers entre eux dans K [X] si et seulement ils sont premiers entre eux dans L[X].
En déduire que si P et @ sont deux polynomes de R[X] alors P et () sont premiers entre-eux dans
R[X] si et seulement si ils n’ont aucune racine complexe commune.

Exercice 1.7 Soit p un nombre premier. Factoriser sur Q le polynéme X? — 1.

Exercice 1.8 Soit z un nombre complexe (ou réel). On dit que z est un nombre algébrique (sur Q),
si z est racine d’un polynéme rationnel non nul.
Montrer que les propriétés suivantes sont équivalentes :

1. L’anneau Q|z] est un corps.

2. Le Q-espace vectoriel Q[z] est de dimension finie.
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3. z est algébrique sur Q.

Exercice 1.9 Soit A un anneau.

1. Montrer qu’il existe un unique homomorphisme d’anneaux f de Z dans A.

On appelle caractéristique de A Pentier naturel ¢ tel que ker(f) = ¢Z.
2. Montrer que si A est integre alors la caractéristique de A est nulle ou un nombre premier.
3. Montrer que si A est fini alors ¢ divise le cardinal de A.

4. Que peut-on dire sur ¢ si A est un corps fini?

Exercice 1.10 Montrer qu'un corps fini est un IF,-espace vectoriel pour un nombre premier p. En
déduire que tout corps fini a pour cardinalité p™ pour un nombre premier p et un enitier m > 1.

Exercice 1.11 1. Soit K un corps et G un sous-groupe fini de (K*, x). Montrer que G est
cyclique. (On pourra utiliser I'indicatrice d’Euler et la formule g,,¢(d) = n).

2. Soit K un corps et G un sous-groupe de (K*, x). On suppose qu'il existe n > 0 tel que tous
les éléments de G sont d’ordre < n. Montrer que G est cyclique.

3. Quels sont les sous-groupes finis de (C*, x) et de (R*, x)?

Exercice 1.12 Soient K un corps et P un polynéme dans K[X].

1. Vérifier que si carac(K) = 0, alors P'(X) = 0 si et seulement si P est constant, et que si
carac(K) = p > 0, alors P'(X) = 0 si et seulement si P(X) € K[X?].

2. On suppose par la suite P irréductible sur K et deg P > 0. Montrer que si K est de caracté-
ristique nulle ou si K est fini, alors P'(X) # 0.

3. Soient L un corps contenant K et x € L une racine de P. Montrer que x est racine simple de
P si et seulement si P'(z) # 0.

4. Soit k un corps de caractéristique p > 0 et prenons A = k[YP] et B = k[Y]. Montrer que
P(X) = XP—Y? est irréductible sur A et que Y est racine de P d’ordre de multiplicité p dans
B.

Exercice 1.13 Soient p un nombre premier impair, K un corps et a € K. On suppose que XP — qa
n’est pas irréductible sur K. Soit P(X) un facteur unitaire propre de X? — a dans K[X]. On pose
b= P(0).

1. Montrer qu’il existe un entier m avec 0 < m < p tel que
b = (—a)™.

(On admettera que K est contenu dans un corps algébriquement clos et considérera les racines
de P dans ce corps algébriquement clos)

2. En utilisant Iidentité de Bezout, en déduire que X? — a a une racine dans K.
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Exercice 1.14 Soit p un nombre premier impair, soit ¢ un diviseur premier de p — 1. Soit a un
entier, p 1 a, tel que la classe a de a modulo p engendre le groupe . Montrer que tout polynome

de la forme .
g—
X%4p (§ :)\iXi> —a,

i=1
avec \; € Z, est irréductible sur Q. (Indication : réduire modulo p et utiliser I'exercice 1.13.)
Application : démontrer Iirréductibilité sur Q du polynéme X7 — 29X4 + 2.

Exercice 1.15 (Résolution des équations cubiques)
Méthode de Cardan (1501-1576)/Tartaglia (1500-1557).

Soit ’équation
(E) 22 4+pz+q=0
avec p,q € Q

1. Soient z1, 29,23 les 3 racines dans C de (E). Exprimer le discriminant A = (21 — 22)%(22 —
23)%(21—23)? en fonction de p et q. (Indication : développer 23 4+pz+q = (z—21)(2—22)(2—23)).

2. Montrer que :

A=0 <= 2%+ pz+qa une racine réelle double
A>0 <= 234 pz+qa 3 racines réelles simples
A <0 <= 2%+ pz+qa?2racines complexes conjuguées et 1 racine réelle
3. Montrer que si
uv = —

{ ud +v3 = —q

alors z = u + v est racine de 23 + pz + q.

4. En déduire que si z1 et 29 sont les racines de :

3
2 p
25 +qz— —
T
et si u,v sont des racines cubiques de 21 et 2o telles que : uv = —% alors :

U+ v, ju —i—j2v, j2u + jv
sont les racines de 23 + pz + q.
5. Résoudre 23 — z — 1 = 0.

6. Déterminer un changement de variable permettant de passer de la résolution d’une équation
générale du troisieme degré de la forme

ax® + b’ +cx+d=0

a celle d’une équation de la forme (E).



