M1 — Théorie de Galois Fiche 1
1. Anneaux, Corps et Polynomes

Convention : les anneaux et corps qui suivent sont tous supposés commutatifs.

Exercice 1.1 Combien les polynoémes X2 — 1 et X2 + 1 ont-ils de solutions sur R, Fy, F3, F7 et
7]2477

Exercice 1.2

1. Soit P(X) € Z[X] un polynéme unitaire. Montrer que si € Q est une racine non nulle de P,
alors x € Z et z divise P(0) dans Z.
Application : factoriser X4+ X2 — X2 + X + 2 sur Q.

2. Soient P et () deux polyndmes unitaires dans Q[X]. Montrer que si
P(X)-Q(X) € Z[X],

alors P et @ sont dans Z[X].

Exercice 1.3 Soit K un corps, et soient m,n > 1 deux entiers. On note 7 le reste de la division
euclidienne de m par n. Montrer que X" — 1 est le reste de la division euclidienne dans K[X]| de
X™ —1 par X" — 1.

En déduire que le PGCD de X™ — 1 et X™ — 1 est X¢ — 1 ot d = pged(m,n).

Exercice 1.4 Soient K et L deux corps tels que K C L. Soient P(X),Q(X) € K[X]. Montrer que
P et @ sont premiers entre eux dans K[X] si et seulement ils sont premiers entre eux dans L[X].
En déduire que si P et @ sont deux polynomes de R[X] alors P et () sont premiers entre-eux dans
R[X] si et seulement si ils n’ont aucune racine complexe commune.

Exercice 1.5
1. Déterminer les automorphismes du corps Q.
2. Déterminer les automorphismes du corps Q(v/2)

3. Déterminer les automorphismes du corps R. (On pourra montrer que tout automorphisme de
R est strictement croissant et utiliser la densité de Q dans R.)

4. Déterminer le groupe de Galois de C sur R, Gal(C/R) := Autg(C).

Exercice 1.6 Soient K est un corps et K(X) le corps des fractions rationnelles a coéfficients dans
K. Soit G := Autg (K (X)) le groupe de Galois de K(X) sur K.

1. Vérifier que pour a € K, l'application qui & F(X) € K(X) associe F(X + a) est un automor-
phisme de K (X).
2. En déduire que si K est infini alors G est infini.

3. Soit Fix(G) :={F € K(X)|o(F) = F, Yo € G} le corps fixe de G. Montrer que si K est infini
alors Fix(G) = K.
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Exercice 1.7 Soit z un nombre complexe (ou réel). On dit que z est un nombre algébrique (sur Q),
si z est racine d’un polynome rationnel non nul.
Montrer que les propriétés suivantes sont équivalentes :

1.

L’anneau Q[z] est un corps.

2. Le Q-espace vectoriel Q[z] est de dimension finie.

3. z est algébrique sur Q.

Exercice 1.8 Soit A un anneau.

1.

Montrer qu’il existe un unique homomorphisme d’anneaux f de Z dans A.
On appelle caractéristque de A Pentier naturel ¢ tel que ker(f) = ¢Z.

2. Montrer que si A est integre alors la caractéristique de A est nulle ou un nombre premier.

3. Montrer que si A est fini alors ¢ divise le cardinal de A.

4. Que peut-on dire sur ¢ si A est un corps fini 7

Exercice 1.9 Soit K un corps fini & ¢ éléments.

1.

Montrer qu’il existe un nombre premier p et un entier f > 1 tels que ¢ = p/.

2. Montrer que :

3.

X1-X=][(X-2).
zeK

Soit o le morphisme de Frobenius de K, i.e. o(x) = zP pour tout z € K. Prouver que
o € Autp,(K) et que o est d’ordre f. (On verra par la suite que o est un générateur de
Auty, (K)).

4. Soit x € K. Montrer que x € F, si et seulement si 2” = z.

En déduire que pour P(X) € K[X], P(X) € F,[X] si et seulement si P(X)? = P(XP?).

Exercice 1.10 Soient K un corps et P un polynéme dans K[X].

1.

Vérifier que si carac(K) = 0, alors P'(X) = 0 si et seulement si P est constant, et que si
carac(K) = p > 0, alors P'(X) = 0 si et seulement si P(X) € K[XP?].

. On suppose par la suite P irréductible sur K et deg P > 0. Montrer que si K est de caracté-

ristique nulle ou si K est fini, alors P'(X) # 0.

. Soient L un corps contenant K et x € L une racine de P. Montrer que x est racine simple de

P si et seulement si P'(x) # 0.

. Soit k un corps de caractéristique p > 0 et prenons A = k[YP] et B = k[Y]. Montrer que

P(X) = XP—YP est irréductible sur A et que Y est racine de P d’ordre de multiplicité p dans
B.

Exercice 1.11 Soit K un corps fini a g éléments de caractéristique p impair.

1.

Montrer que ’application
v : K* — K~*
r = 2’

est un morphisme de groupes et que Imyp est d’indice 2 dans K*.
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2. Soit € K*; montrer que x est un carré dans K si et seulement si z(?~1/2 = 1.
3. Montrer que —1 est un carré dans K si et seulement si ¢ = 1 (mod 4).

4. a) Soit L un corps contenant K sur lequel X% +1 est scindé. Soit « € L une racine de X4 +1.
Vérifier que :
(a + a_1)2 = 2.

b) En déduire que 2 est un carré dans K si et seulement si ¢ = £1 (mod 8). (On admettra
qu’il existe toujours un corps L contenant K sur lequel X* + 1 est scindé.)

Exercice 1.12 Soit p un nombre premier. Factoriser sur Q le polynome X? — 1.

Exercice 1.13 Soient p un nombre premier impair, K un corps et a € K. On suppose que XP —qa
n’est pas irréductible sur K. Soit P(X) un facteur unitaire propre de X? — a dans K[X]. On pose
b= P(0).

1. Montrer qu’il existe un entier m avec 0 < m < p tel que
b = (—a)™.

2. En utilisant I'identité de Bezout, en déduire que XP — a a une racine dans K.

Exercice 1.14

1. Factoriser X% + 1 sur [, (avec p nombre premier). Distinguer les cas : p =2, p=1 (mod 8),
= —3 (mod 8), p= —1 ou 3 (mod 8) et on utilisera I’exercice 1.11.

2. Montrer que X* + 1 est irréductible sur Q.

Exercice 1.15 Soit p un nombre premier impair, soit ¢ un diviseur premier de p — 1. Soit a un
entier, p 1 a, tel que la classe @ de a modulo p engendre le groupe . Montrer que tout polynome

de la forme .
g—
X74p (Z )\iXi> —a,

i=1
avec \; € Z, est irréductible sur Q. (Indication : réduire modulo p et utiliser I'exercice 1.13.)
Application : démontrer Iirréductibilité sur Q du polynéme X7 — 29X* + 2.

Exercice 1.16 Soit p un nombre premier et K un corps fini de caractéristique différente de p.

1. Soit P un facteur irréductible dans K[X] du polynome
Pp(X)=XP 1+ XP 24 4 1.

Considérons le corps L = K[X]/(P) et soit « = X la classe de X dans L.

Montrer que a est d’ordre p dans L* et en déduire que :
card(K)?=1 (mod p)

ou d = degP.
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2. On suppose que card(K) engendre le groupe ;. Montrer que @, est irréductible sur K.

3. En déduire que si g est un nombre premier tel que g engendre F 7, alors @, est irréductible sur
F,.

4. Soient p et ¢ deux nombres premiers. On suppose que g # 2, p = —1 (mod 3) et que g engendre
F,’. Montrer que X P+l _ X 4 q est irréductible sur Q. (Indication : réduire modulo ¢ et modulo
2 et utiliser la question précédente.)
Application : Montrer que X'® — X + 3 est irréductible sur Q.

Exercice 1.17 (Résolution des équations cubiques)
Méthode de Cardan (1501-1576)/Tartaglia (1500-1557).

Soit I’équation
(E) 224+ pz+q=0
avec p,q € Q

1. Soient z1, 29,23 les 3 racines dans C de (E). Exprimer le discriminant A 1= (21 — 22)%(22 —
23)%(21—23)? en fonction de p et q. (Indication : développer 23 4+pz+q = (z—21)(2—22)(2—23)).

2. Montrer que :

A=0 <= 23+ pz+qa une racine réelle double
A>0 <= 23+ pz+qa 3 racines réelles simples
A <0 <= 23+ pz+qa?2racines complexes conjuguées et 1 racine réelle

3. Montrer que si
ud 4+ 3 = —q
Uy = —
alors z = u + v est racine de 2% + pz + q.

4. En déduire que si z1 et 29 sont les racines de :

3
2 p
25 +qz— —
97
et si u,v sont des racines cubiques de 21 et 2o telles que : uv = —% alors :

U+ v, ju —I—j21), j2u + jv
sont les racines de 23 + pz + q.
5. Résoudre 23 — z — 1 = 0.

6. Déterminer un changement de variable permettant de passer de la résolution d’une équation
générale du troisieme degré de la forme

ax® + b’ +cx+d=0

a celle d’une équation de la forme (E).



