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1. Anneaux, Corps et Polynômes

Convention : les anneaux et corps qui suivent sont tous supposés commutatifs.

Exercice 1.1 Combien les polynômes X2 − 1 et X2 + 1 ont-ils de solutions sur R, F2, F3, F7 et
Z/24Z ?

Exercice 1.2

1. Soit P (X) ∈ Z[X] un polynôme unitaire. Montrer que si x ∈ Q est une racine non nulle de P ,
alors x ∈ Z et x divise P (0) dans Z.
Application : factoriser X4 + X3 −X2 + X + 2 sur Q.

2. Soient P et Q deux polynômes unitaires dans Q[X]. Montrer que si

P (X) ·Q(X) ∈ Z[X],

alors P et Q sont dans Z[X].

Exercice 1.3 Soit K un corps, et soient m,n ≥ 1 deux entiers. On note r le reste de la division
euclidienne de m par n. Montrer que Xr − 1 est le reste de la division euclidienne dans K[X] de
Xm − 1 par Xn − 1.
En déduire que le PGCD de Xm − 1 et Xn − 1 est Xd − 1 où d = pgcd(m,n).

Exercice 1.4 Soient K et L deux corps tels que K ⊂ L. Soient P (X), Q(X) ∈ K[X]. Montrer que
P et Q sont premiers entre eux dans K[X] si et seulement ils sont premiers entre eux dans L[X].
En déduire que si P et Q sont deux polynômes de R[X] alors P et Q sont premiers entre-eux dans
R[X] si et seulement si ils n’ont aucune racine complexe commune.

Exercice 1.5

1. Déterminer les automorphismes du corps Q.

2. Déterminer les automorphismes du corps Q(
√

2)

3. Déterminer les automorphismes du corps R. (On pourra montrer que tout automorphisme de
R est strictement croissant et utiliser la densité de Q dans R.)

4. Déterminer le groupe de Galois de C sur R, Gal(C/R) := AutR(C).

Exercice 1.6 Soient K est un corps et K(X) le corps des fractions rationnelles à coéfficients dans
K. Soit G := AutK(K(X)) le groupe de Galois de K(X) sur K.

1. Vérifier que pour a ∈ K, l’application qui à F (X) ∈ K(X) associe F (X + a) est un automor-
phisme de K(X).

2. En déduire que si K est infini alors G est infini.

3. Soit Fix(G) := {F ∈ K(X)|σ(F ) = F, ∀σ ∈ G} le corps fixe de G. Montrer que si K est infini
alors Fix(G) = K.
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Exercice 1.7 Soit z un nombre complexe (ou réel). On dit que z est un nombre algébrique (sur Q),
si z est racine d’un polynôme rationnel non nul.

Montrer que les propriétés suivantes sont équivalentes :

1. L’anneau Q[z] est un corps.

2. Le Q-espace vectoriel Q[z] est de dimension finie.

3. z est algébrique sur Q.

Exercice 1.8 Soit A un anneau.

1. Montrer qu’il existe un unique homomorphisme d’anneaux f de Z dans A.
On appelle caractéristque de A l’entier naturel c tel que ker(f) = cZ.

2. Montrer que si A est intègre alors la caractéristique de A est nulle ou un nombre premier.

3. Montrer que si A est fini alors c divise le cardinal de A.

4. Que peut-on dire sur c si A est un corps fini ?

Exercice 1.9 Soit K un corps fini à q éléments.

1. Montrer qu’il existe un nombre premier p et un entier f ≥ 1 tels que q = pf .

2. Montrer que :
Xq −X =

∏
x∈K

(X − x).

3. Soit σ le morphisme de Frobenius de K, i.e. σ(x) = xp pour tout x ∈ K. Prouver que
σ ∈ AutFp(K) et que σ est d’ordre f . (On verra par la suite que σ est un générateur de
AutFp(K)).

4. Soit x ∈ K. Montrer que x ∈ Fp si et seulement si xp = x.
En déduire que pour P (X) ∈ K[X], P (X) ∈ Fp[X] si et seulement si P (X)p = P (Xp).

Exercice 1.10 Soient K un corps et P un polynôme dans K[X].

1. Vérifier que si carac(K) = 0, alors P ′(X) = 0 si et seulement si P est constant, et que si
carac(K) = p > 0, alors P ′(X) = 0 si et seulement si P (X) ∈ K[Xp].

2. On suppose par la suite P irréductible sur K et deg P > 0. Montrer que si K est de caracté-
ristique nulle ou si K est fini, alors P ′(X) 6= 0.

3. Soient L un corps contenant K et x ∈ L une racine de P . Montrer que x est racine simple de
P si et seulement si P ′(x) 6= 0.

4. Soit k un corps de caractéristique p > 0 et prenons A = k[Y p] et B = k[Y ]. Montrer que
P (X) = Xp−Y p est irréductible sur A et que Y est racine de P d’ordre de multiplicité p dans
B.

Exercice 1.11 Soit K un corps fini à q éléments de caractéristique p impair.

1. Montrer que l’application
ϕ : K× → K×

x 7→ x2

est un morphisme de groupes et que Imϕ est d’indice 2 dans K×.
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2. Soit x ∈ K× ; montrer que x est un carré dans K si et seulement si x(q−1)/2 = 1.

3. Montrer que −1 est un carré dans K si et seulement si q ≡ 1 (mod 4).

4. a) Soit L un corps contenant K sur lequel X4 + 1 est scindé. Soit α ∈ L une racine de X4 + 1.
Vérifier que : (

α + α−1
)2 = 2.

b) En déduire que 2 est un carré dans K si et seulement si q ≡ ±1 (mod 8). (On admettra
qu’il existe toujours un corps L contenant K sur lequel X4 + 1 est scindé.)

Exercice 1.12 Soit p un nombre premier. Factoriser sur Q le polynôme Xp − 1.

Exercice 1.13 Soient p un nombre premier impair, K un corps et a ∈ K. On suppose que Xp − a
n’est pas irréductible sur K. Soit P (X) un facteur unitaire propre de Xp − a dans K[X]. On pose
b = P (0).

1. Montrer qu’il existe un entier m avec 0 < m < p tel que

bp = (−a)m.

2. En utilisant l’identité de Bezout, en déduire que Xp − a a une racine dans K.

Exercice 1.14

1. Factoriser X4 + 1 sur Fp (avec p nombre premier). Distinguer les cas : p = 2, p ≡ 1 (mod 8),
p ≡ −3 (mod 8), p ≡ −1 ou 3 (mod 8) et on utilisera l’exercice 1.11.

2. Montrer que X4 + 1 est irréductible sur Q.

Exercice 1.15 Soit p un nombre premier impair, soit q un diviseur premier de p − 1. Soit a un
entier, p - a, tel que la classe ā de a modulo p engendre le groupe F×p . Montrer que tout polynôme
de la forme

Xq + p

(
q−1∑
i=1

λiX
i

)
− a,

avec λi ∈ Z, est irréductible sur Q. (Indication : réduire modulo p et utiliser l’exercice 1.13.)
Application : démontrer l’irréductibilité sur Q du polynôme X7 − 29X4 + 2.

Exercice 1.16 Soit p un nombre premier et K un corps fini de caractéristique différente de p.

1. Soit P un facteur irréductible dans K[X] du polynôme

Φp(X) = Xp−1 + Xp−2 + · · ·+ 1.

Considérons le corps L = K[X]/(P ) et soit α = X la classe de X dans L.
Montrer que α est d’ordre p dans L× et en déduire que :

card(K)d ≡ 1 (mod p)

où d = deg P .
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2. On suppose que card(K) engendre le groupe F×p . Montrer que Φp est irréductible sur K.

3. En déduire que si q est un nombre premier tel que q engendre F×p , alors Φp est irréductible sur
Fq.

4. Soient p et q deux nombres premiers. On suppose que q 6= 2, p ≡ −1 (mod 3) et que q engendre
F×p . Montrer que Xp+1−X +q est irréductible sur Q. (Indication : réduire modulo q et modulo
2 et utiliser la question précédente.)
Application : Montrer que X18 −X + 3 est irréductible sur Q.

Exercice 1.17 (Résolution des équations cubiques)
Méthode de Cardan (1501-1576)/Tartaglia (1500-1557).

Soit l’équation
(E) z3 + pz + q = 0

avec p, q ∈ Q

1. Soient z1, z2, z3 les 3 racines dans C de (E). Exprimer le discriminant ∆ := (z1 − z2)2(z2 −
z3)2(z1−z3)2 en fonction de p et q. (Indication : développer z3+pz+q = (z−z1)(z−z2)(z−z3)).

2. Montrer que :

∆ = 0 ⇐⇒ z3 + pz + q a une racine réelle double
∆ > 0 ⇐⇒ z3 + pz + q a 3 racines réelles simples
∆ < 0 ⇐⇒ z3 + pz + q a 2 racines complexes conjuguées et 1 racine réelle

3. Montrer que si {
u3 + v3 = −q

uv = −p
3

alors z = u + v est racine de z3 + pz + q.

4. En déduire que si z1 et z2 sont les racines de :

z2 + qz − p3

27

et si u, v sont des racines cubiques de z1 et z2 telles que : uv = −p
3 alors :

u + v, ju + j2v, j2u + jv

sont les racines de z3 + pz + q.

5. Résoudre z3 − z − 1 = 0.

6. Déterminer un changement de variable permettant de passer de la résolution d’une équation
générale du troisième degré de la forme

ax3 + bx2 + cx + d = 0

à celle d’une équation de la forme (E).


