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2. Extensions de corps : extensions de degré fini, extensions
algébriques.

Exercice 2.1 1. Donner un exemple d’extension non algébrique de Q. Donner un exemple
d’extension algébrique de Q qui n’est pas une extension de degré fini.

2. Soit K un corps dénombrable. Que peut-on dire de la cardinialité d’une extension algébirque
de K ?

Exercice 2.2 (Exemple de nombre transcendant)

1. Théorème de Liouville. Soit a un nombre algébrique réel sur Q de degré n > 0 (i.e.

[Q(a) : Q] = n). Montrer qu’il existe un réel c > 0 tel que pour tout rationnel
p

q
, avec

q > 0, on ait ∣∣∣∣a− p

q

∣∣∣∣ >
c

qn
.

Indication : considérer un polynôme P irréductible de degré n dans Z[X] et annulant a
et considérer δ > 0 tel que P ′ ne s’annule pas sur [a − δ, a + δ] et appliquer le théorème

des accroissements finis pour le cas où

∣∣∣∣∣a− p

q

∣∣∣∣∣ ≤ δ.

2. En déduire la transcendance de
a =

∑
i>0

ai10−i!

pour toute suite (ai) d’entiers naturels compris entre 1 et 9.

Exercice 2.3 Soit P le polynôme X3 − 2 de Q[X].

1. Déterminer un corps K de rupture sur Q de P . Que vaut [K : Q] ?

2. Décrire le corps L de racines sur Q de P . Calculer [L : Q].

Exercice 2.4 1. Soit K un corps et L une extension de K qui est algébriquement close.
Notons K̃ l’ensemble des éléments algébriques sur K dans L. Montrer que K̃ est un corps,
puis que K̃ est algébriquement clos.

2. Théorème de Steinitz. Soit K un corps. On va montrer qu’il existe une extension algébriquement
close de K.

(a) Soit pour chaque polynôme P sur K de degré non nul, une variable XP et considérons
l’idéal I engendré par les élements P (XP ) de l’anneau K[XP : P ]. Montrer que I ne
contient pas 1.

(b) En déduire qu’il existe un idéal J maximal contenant I et qu’il existe une extension
K1 de K contenant une racine pour chaque polynôme P sur K de degré non nul.

(c) Conclure à l’aide d’une suite de telles extensions.
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3. En déduire que tout corps a une extension algébrique qui est algébriquement close. On
appelle une telle extension une clôture algébrique de K. En utilisant le théorème de pro-
longement des morphismes à une extension algébrique (voir cours), on vérifie facilement
que toutes les clôtures algébriques de K sont isomorphes.

Exercice 2.5 Soit α =
√

2 +
√

3 ∈ C.

1. Montrer que Q(
√

2,
√

3) = Q(α).

2. Quel est le polynôme minimal de α sur Q ? Même question sur Q(
√

2) et Q(
√

3).

3. Vérifier que α et α−1 sont conjugués sur Q. Quel est le corps de racines de Pα sur Q ?

4. Soit K un sous-corps de Q(α) ; en remarquant que le polynôme minimal de α sur K divise
Pα dans K[X], montrer que

K = Q, Q(
√

2), Q(
√

3), Q(
√

6) ou Q(α).

Exercice 2.6 (Extensions quadratiques de Q) Soit K une extension de degré 2 sur Q.
Montrer que K = Q(

√
a) où a est un entier sans facteur carré, i.e. tel qu’il n’existe pas de

nombre premier p avec p2 | a.

Exercice 2.7 Soit α un élément algébrique sur K tel que [K(α) : K] est impair. Montrer que
K(α) = K(α2).

Exercice 2.8

1. Vérifier que le polynôme
P (X) = X3 − 3X + 1

est irréductible sur Q.

2. Soit α ∈ C une racine de P ; montrer que α2 − 2 et −α2 − α + 2 sont aussi racines de P .
Quel est le corps des racines de P sur Q ?

3. Soit ω ∈ C une racine de
X6 + X3 + 1.

Vérifier que ω9 = 1 et en déduire que ω + ω−1 est racine de P . Quel est le polynôme
minimal de ω sur Q(α) ?

4. Prouver que Q(α) = Q(ω) ∩ R.

Exercice 2.9 Soient K un corps et P (X) ∈ K[X] un polynôme non constant de degré d.
Notons Ω une clôture algébrique de K.

1. Soit α une racine de P dans Ω.
a) Montrer que [K(α) : K] ≤ d.
b) Prouver que [K(α) : K] = d si et seulement si P est irréductible sur K.

2. Soit L ⊂ Ω une extension de degré fini n sur K. On suppose que P est irréductible sur
K et que n et deg P sont premiers entre eux. Montrer que P est irréductible sur L.
Application : Soit α ∈ C une racine de X7−6X+3, alors X2000+10X8−45 est irréductible
sur Q(α).
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Exercice 2.10 Soient K un corps et P ∈ K[X] un polynôme non constant. Notons d1, d2, . . . , dr

les degrés de ses facteurs irréductibles sur K. Soit L le corps des racines de P sur K. Montrer

que [L : K] divise
r∏

i=1
(di !).

Exercice 2.11 Soient p un nombre premier impair et Ω un corps algébriquement clos de carac-
téristique 6= p. Notons K le sous-corps premier de Ω.

1. Montrer qu’il existe ω ∈ Ω avec ωp = 1 et ω 6= 1.

2. Pour tout entier x ∈ Z, on définit son symbole de Legendre (modulo p) par

(
x

p

)
=


0 si x est un multiple de p,

1 si x est un carré modulo p,

−1 si x est n’est pas un carré modulo p.

a) On pose

s =
∑

1≤x≤p−1

(
x

p

)
ωx.

Montrer que

s2 =
∑

1≤z≤p−1

(
z

p

)  ∑
1≤x≤p−1

ωx(1+z)


et en déduire que s2 = p

(
−1
p

)
.

b) En déduire que

p ≡ 1 (mod 4) ⇒ √
p ∈ K(ω)

et

p ≡ −1 (mod 4) ⇒
√
−p ∈ K(ω).

Exercice 2.12 Le but de cet exercice est de montrer que toute extension quadratique de Q
est contenu dans une extension cyclotomique de Q.

Soit K une extension de degré 2 sur Q. Montrer qu’il existe un entier n ≥ 1 tel que
K ⊂ Q(e2iπ/n). (Utiliser les résultats des exercices 2.6 et 2.11.)

Exercice 2.13 (Elément algébrique de degré 4 qui n’est pas constructible)

1. Montrer que le polynôme P (X) = X4 −X − 1 est irréductible sur Q et possède 4 racines
distinctes x1, x2, x3, x4 dans C.

2. Montrer que u = x1 x2 + x3 x4 est racine du polynôme X3 + 4X − 1.
(On pourra remarquer que u = t− 1/t où t = x1x2 et calculer u4 + 4u2 − u.)

3. En déduire que, pour tout i, xi n’est pas constructible.

4. Montrer que [Q(x1, x2) : Q] = 12 et que si K est le corps des racines de P sur Q, alors
[K : Q] = 24.
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Exercice 2.14 Soit L/K une extension algébrique.

1. On suppose qu’il existe x tel que L = K(x). Soit P le polynôme minimal de x sur K.

a. Soit M un sous-corps de L, contenant K. Montrer qu’il existe un facteur unitaire Q
de P dans L[X] tel que M soit engendré sur K par les coefficients de Q.

b. En déduire que l’extension L/K n’a qu’un nombre fini de sous-extensions.

2. Réciproquement, on suppose que l’extension L/K n’a qu’un nombre fini de sous-extensions.

a. Montrer que [L : K] est fini.

b. Si K est fini, prouver qu’il existe x avec L = K(x).

c. Si K est infini, montrer que pour tout x, y dans L, il existe λ ∈ K tel que K(x, y) =
K(x + λy). En déduire qu’il existe x tel que L = K(x).

Exercice 2.15 Soit p un nombre premier, L = Fp(X, Y ) le corps des fractions rationnelles à
deux variables. On pose K = Fp(Xp, Y p) ⊂ L.

1. Montrer que [L : K] = p2, et que pour tout x dans L, xp ∈ K.

2. En déduire qu’il n’existe pas de x ∈ L tel que L = K(x).


