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2. Extensions de corps : extensions de degré fini, extensions
algébriques.

Exercice 2.1 1. Donner un exemple d’extension non algébrique de Q. Donner un exemple
d’extension algébrique de Q qui n’est pas une extension de degré fini.

2. Soit K un corps dénombrable. Que peut-on dire de la cardinialité d’une extension algébirque
de K7

Exercice 2.2 (Exemple de nombre transcendant)

1. Théoreme de Liouville. Soit a un nombre algébrique réel sur Q de degré n > 0 (i.e.

[Q(a) : Q] = n). Montrer qu'il existe un réel ¢ > 0 tel que pour tout rationnel 23, avec
q
q > 0, on ait

C
a—=|>—.
q q"

Indication : considérer un polynéme P irréductible de degré n dans Z[X]| et annulant a
et considérer § > 0 tel que P’ ne s’annule pas sur [a — 0, a + §] et appliquer le théoréme

;

. . N p
des accroissements finis pour le cas ou |a — —| < 4.
q

2. En déduire la transcendance de

a= Z ail()_i!

1>0

pour toute suite (a;) d’entiers naturels compris entre 1 et 9.

Exercice 2.3 Soit P le polynéme X3 — 2 de Q[X].
1. Déterminer un corps K de rupture sur Q de P. Que vaut [K : Q] ?
2. Décrire le corps L de racines sur Q de P. Calculer [L : Q).

Exercice 2.4 1. Soit K un corps et L une extension de K qui est algébriquement close.
Notons K I’ensemble des éléments algébriques sur K dans L. Montrer que K est un corps,
puis que K est algébriquement clos.

2. Théoreme de Steinitz. Soit K un corps. On va montrer qu’il existe une extension algébriquement
close de K.

(a) Soit pour chaque polynéme P sur K de degré non nul, une variable X p et considérons
I'idéal I engendré par les élements P(Xp) de Panneau K[Xp : P]. Montrer que I ne
contient pas 1.

(b) En déduire qu'’il existe un idéal J maximal contenant I et qu’il existe une extension
K7 de K contenant une racine pour chaque polynéme P sur K de degré non nul.

(c) Conclure a I'aide d’une suite de telles extensions.
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3.

En déduire que tout corps a une extension algébrique qui est algébriquement close. On
appelle une telle extension une cloture algébrique de K. En utilisant le théoréeme de pro-
longement des morphismes & une extension algébrique (voir cours), on vérifie facilement
que toutes les clotures algébriques de K sont isomorphes.

Exercice 2.5 Soit a =2+ V3 € C.

1.

Montrer que Q(v/2,v/3) = Q().

2. Quel est le polynéme minimal de a sur Q ? Méme question sur Q(v/2) et Q(v/3).
3.
4

. Soit K un sous-corps de Q(«) ; en remarquant que le polynéme minimal de « sur K divise

Vérifier que v et o~ ! sont conjugués sur Q. Quel est le corps de racines de P, sur Q?

P, dans K[X], montrer que

K =Q, Q(vV2), Q(v3), Q(v6) ou Q(a).

Exercice 2.6 (Extensions quadratiques de Q) Soit K une extension de degré 2 sur Q.
Montrer que K = Q(y/a) ou a est un entier sans facteur carré, i.e. tel qu'il n’existe pas de

nombre premier p avec p? | a.

Exercice 2.7 Soit a un élément algébrique sur K tel que [K (&) : K] est impair. Montrer que
K(a) = K(a?).

Exercice 2.8

1.

2.

3.

Vérifier que le polynome
P(X)=X3-3X+1
est irréductible sur Q.

Soit v € C une racine de P; montrer que a® — 2 et —a? — o + 2 sont aussi racines de P.
Quel est le corps des racines de P sur Q7

Soit w € C une racine de
X0+ X3 4+1.

Vérifier que w? = 1 et en déduire que w + w™! est racine de P. Quel est le polynome
minimal de w sur Q(«) 7

4. Prouver que Q(a) = Q(w) NR.

Exercice 2.9 Soient K un corps et P(X) € K[X]| un polynéme non constant de degré d.
Notons €2 une cloture algébrique de K.

1.

Soit av une racine de P dans ).

a) Montrer que [K(«a) : K] < d.

b) Prouver que [K(«) : K| = d si et seulement si P est irréductible sur K.

Soit L C €2 une extension de degré fini n sur K. On suppose que P est irréductible sur

K et que n et deg P sont premiers entre eux. Montrer que P est irréductible sur L.
Application : Soit a € C une racine de X’ —6X +3, alors X290 410X8—45 est irréductible

sur Q(«).
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Exercice 2.10 Soient K un corps et P € K[X] un polynéme non constant. Notons dy,ds, . . ., d,
les degrés de ses facteurs irréductibles sur K. Soit L le corps des racines de P sur K. Montrer

que [L : K] divise [](d;!).
i=1

Exercice 2.11 Soient p un nombre premier impair et €2 un corps algébriquement clos de carac-
téristique # p. Notons K le sous-corps premier de (2.

1. Montrer qu’il existe w € 2 avec wP =1 et w # 1.

2. Pour tout entier x € Z, on définit son symbole de Legendre (modulo p) par

0 iz est un multiple de p,
x
() =< 1 sixestun carré modulo p,

—1 six est n’est pas un carré modulo p.

a) On pose

Montrer que

-1
et en déduire que s> =p < >

b) En déduire que
p=1 (mod4)=./pec K(w)

et
p=-1 (mod4)=+—pe K(w).

Exercice 2.12 Le but de cet exercice est de montrer que toute extension quadratique de Q
est contenu dans une extension cyclotomique de Q.

Soit K une extension de degré 2 sur Q. Montrer qu’il existe un entier n > 1 tel que
K C Q(e*™/™). (Utiliser les résultats des exercices 2.6 et 2.11.)

Exercice 2.13 (Elément algébrique de degré 4 qui n’est pas constructible)

1. Montrer que le polynéme P(X) = X* — X — 1 est irréductible sur Q et possede 4 racines
distinctes x1, 2o, x3, x4 dans C.

2. Montrer que u = x1 T3 + x3 x4 est racine du polyndéme X3 44X —1.
(On pourra remarquer que u =t — 1/t ot t = x129 et calculer u* + 4u? — u.)
3. En déduire que, pour tout ¢, x; n’est pas constructible.

4. Montrer que [Q(x1,x2) : Q] = 12 et que si K est le corps des racines de P sur Q, alors
[K : Q] = 24.
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Exercice 2.14 Soit L/K une extension algébrique.
1. On suppose qu'il existe z tel que L = K(x). Soit P le polynéme minimal de x sur K.

a. Soit M un sous-corps de L, contenant K. Montrer qu’il existe un facteur unitaire @)
de P dans L[X] tel que M soit engendré sur K par les coefficients de Q.

b. En déduire que I'extension L/K n’a qu'un nombre fini de sous-extensions.

2. Réciproquement, on suppose que 'extension L/ K n’a qu'un nombre fini de sous-extensions.
a. Montrer que [L : K| est fini.
b. Si K est fini, prouver qu’il existe x avec L = K (x).

c. Si K est infini, montrer que pour tout x, y dans L, il existe X\ € K tel que K (z,y) =
K(x + A\y). En déduire qu’il existe z tel que L = K ().

Exercice 2.15 Soit p un nombre premier, L = F,(X,Y’) le corps des fractions rationnelles &
deux variables. On pose K =F,(X?,Y?) C L.

1. Montrer que [L : K] = p?, et que pour tout = dans L, 2P € K.
2. En déduire qu’il n’existe pas de z € L tel que L = K (z).



