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4. Groupes de Galois (suite)

Exercice 4.1 Soient K un corps, f ∈ K[X] un polynôme non constant et unitaire de degré n. On
note xi, 1 ≤ i ≤ n, ses racines dans une clôture algébrique de K. On rappelle que le discriminant
de f vaut ∆ = δ2 où δ =

∏
i<j

(xi − xj).

1. Montrer que ∆ = (−1)n(n−1)/2
n∏

i=1

f ′(xi).

2. Calculer ∆ pour f(X) = Xn + bX + c en fonction de n, b et c.

3. On suppose désormais f séparable et car(K) 6= 2. On identifie G = GalK(f) à un sous-groupe
de Sn. Montrer que pour tout σ ∈ G, σ(δ) = ε(σ) · δ où ε(σ) est la signature de σ.

4. Montrer que ∆ ∈ K.

5. Montrer que ∆ possède une racine carrée dans K si et seulement si G est isomorphe à un
sous-groupe de An.

6. Si δ /∈ K, on pose H = {σ ∈ G | σ est une permutation paire des racines de f}. Montrer que
H est un sous-groupe d’indice 2 de G et que si L est le corps des racines de f alors LH = K[δ].

7. Déterminer ∆ et Q[δ] pour le polynôme f = X3 − 2 sur Q.

Exercice 4.2 Soit L le corps de décompostion de Xn − a ∈ K[X], où 0 6= a ∈ K. On suppose que
la caractéristique de K ne divise pas n (par exemple car(K) = 0).

1. Montrer que L est une extension galoisienne de K.

2. Montrer que L = K[α, ξ] où αn = a et ξ est une racine primitive n-ième de l’unité.

3. Montrer que tout σ ∈ Gal(L/K) est caractérisé par son effet sur α et ξ, et qu’on a σ(α) = ξsα
et σ(ξ) = ξr, où r, s ∈ N et r est premier avec n.

4. Montrer qu’avec les notations précédentes, on a un homorphisme de groupes injectif :

Gal(L/K) −→ GL2(Z/nZ)

σ 7→
(

r s
0 1

)

5. Soit H =
{(

r s
0 1

)
|r, s ∈ N et (r, n) = 1

}
⊂ GL2(Z/nZ). Montrer que H possède un sous-

groupe normal cyclique d’ordre n, à quotient abélien. En déduire que Gal(L/K) possède un
sous-groupe normal cyclique d’ordre d, avec d/n, à quotient abélien.

6. Que se passe-t-il si ξ ∈ K ?

Exercice 4.3 Soit f ∈ Q[X] un polynôme irréductible de degré p premier > 2. On suppose que
l’équation f(X) = 0 est résoluble par radicaux sur Q. Montrer que le nombre de racines réelles de
f est 1 ou p.
Application : montrer que l’équation X7 + 7X4 − 7 = 0 n’est pas résoluble par radicaux.
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Exercice 4.4 Soit f(X) = X6 + 22X5 + 6X4 + 12X3 − 52X2 − 14X − 30.
1. Montrer que f est irréductible sur Q.
2. En réduisant modulo 5, montrer que G = GalQ(f) contient une transposition.
3. En réduisant modulo 3, montrer que G contient un 5-cycle.
4. Vérifier qu’un sous-groupe transitif de Sn qui contient une transposition et un n− 1-cycle est

égal à Sn. En déduire que G ' S6.

Exercice 4.5 Soit λ un entier non divisible par 5. On note µ = 5λ2−1 et f(X) = X5 +5µX−4µ.
1. Montrer que f est irréductible sur Q.
2. On note xi, 1 ≤ i ≤ 5, les racines de f dans C, et on identifie G = GalQ(f) à un sous-groupe

de S5.
Vérifier que f a une et une seule racine réelle et en déduire que G contient un produit de 2
transpositions disjointes.

3. Prouver que G est contenu dans A5.
On suppose désormais que λ2 ≡ 1 (mod 7).

4. a. En réduisant f modulo 7, montrer que G contient un 3-cycle.
b. En déduire que G = A5.

5. Soit L le corps des racines de f sur Q. Si M est une extension galoisienne de Q, contenue
dans L, prouver que

M = Q ou M = L.

6. On pose :
g(X) =

∏
1≤i<j≤5

(X − (xi + xj)).

a. Montrer que g ∈ Q[X] et que g est séparable de degré 10.
b. Quel est le corps des racines de g sur Q ? L’équation g(X) = 0 est-elle résoluble par

radicaux sur Q ?
c. Montrer que g est irréductible sur Q.

7. Soit H le sous-groupe de G engendré par les permutations (1, 2)(3, 4) et (1, 2)(3, 5). Montrer
que |H| ≥ 6, et en utilisant la question 6, trouver un élément primitif sur Q du corps des
invariants LH .

Exercice 4.6 Soit n un entier ≥ 3 et p un nombre premier impair ≥ n− 2.
1. Montrer qu’il existe f1, f2, f3 ∈ Z[X], f1 et f2 unitaires,

deg f1 = n− 1, deg f2 = 2, deg f3 ≤ n− 1,

avec f1 irréductible modulo 2, f2 irréductible modulo p, et tels que :

f(X) = pXf1(X)− (p− 1)
n−2∏
i=1

(X − i)f2(X) + 2pf3(X)

est irréductible sur Q. Prouver que GalQ(f) = Sn.
2. En déduire l’existence d’une extension L de degré n sur Q telle que pour tout sous-corps K

de L, on ait :
K = Q ou K = L.


