Théorie des ensembles

DM 3 – arithmétique des cardinaux.

Si vous n'arrivez pas à démontrer ce qui est demandé, vous pouvez (et devez...) le considérer comme établi pour les questions suivantes.

Exercice I. a. Nous avons vu que pour tout cardinal infini κ il existe une bijection $\varphi \colon \kappa \times \kappa \to \kappa$. Montrer qu'il existe une bijection $\psi \colon \kappa \times \kappa \to \kappa$ tel que, en outre, pour chaque $i < \kappa$ l'application $j \mapsto \psi(i,j)$ est strictement croissante. (On pourrait le faire en examinant la preuve donnée en cours du premier fait, ou comme une conséquence de ce fait.) En déduire que $\psi(i,j) \geq j$.

b. Soit μ un cardinal infini, et $\{\theta_i\}_{i<\mu}$ une suite croissante (faiblement) de cardinaux. Montrer que

$$\sum_{i < \mu} \theta_i = \mu \cdot \sup_i \theta_i = \max_i \mu, \sup_i \theta_i, \qquad \prod_{i < \mu} \theta_i = \left(\sup_i \theta_i\right)^{\mu}.$$

c. Soit κ un cardinal infini. Montrer que $\operatorname{cf}(\kappa)$ est le plus petit cardinal μ tel qu'il existe une suite croissante de cardinaux $\{\theta_i\}_{i<\kappa}$ avec $\theta_i<\kappa$ et $\sum_{i<\mu}\theta_i=\kappa$.

Exercice II. a. Supposons que λ est singulier. Montrer qu'il existe des cardinaux réguliers $\mu < \lambda$ et $\theta_i < \lambda$ pour $i < \mu$ tels que pour tout cardinal κ :

$$\kappa^{\lambda} = \left(\sup_{i} \kappa^{\theta_i}\right)^{\mu}.$$

b. À partir de maintenant, λ est régulier. Montrer que si $\lambda < \mathrm{cf}(\kappa)$ alors

$$\kappa^{\lambda} = \max \kappa, \sup_{\theta < \kappa} \theta^{\lambda}.$$

c. Montrer que si $\lambda \geq \kappa$ (et λ est régulier!) alors

$$\kappa^{\lambda} = \lambda^{\operatorname{cf}(\lambda)}.$$

d. Montrer que si $\mu = \operatorname{cf}(\kappa) < \lambda < \kappa$ alors κ est singulier, et il existe une suite de cardinaux $\theta_i < \kappa$ pour $i < \mu$ tels que

$$\kappa^{\lambda} = \max \mu^{\lambda}, \left(\sup_{i < \mu} \theta_{i}^{\lambda}\right)^{\mu}.$$

(On choisit $\theta_i < \kappa$ tels que $\kappa = \sum_{i < \mu} \theta_i$. Fixons une bijection entre κ et la réunion disjoint $\coprod_{i < \mu} \theta_i$. Alors pour toute application $f \colon \lambda \to \kappa$ nous obtenons une application $g \colon \lambda \to \mu$, et pour chaque $i < \mu$, une application $h_i \colon g^{-1}(\{i\}) \to \theta_i$...)

- e. Quel cas n'a-t-on pas traité?
- **f.** Petite récapitulation (à vérifier!) : pour tous λ et κ nous connaissons la valeur de κ^{λ} si nous connaissons :
 - 1. Les valeurs de θ^{μ} pour tout $\mu < \lambda$ (et tout θ).
 - 2. Les valeurs de θ^{λ} pour tout $\theta < \kappa$.
 - 3. L'application $\theta \mapsto \theta^{\mathrm{cf}(\theta)}$.

Conclure que la fonction $\theta \mapsto \theta^{\mathrm{cf}(\theta)}$ détermine la fonction $(\kappa, \lambda) \mapsto \kappa^{\lambda}$.