Théorie des ensembles

Corrigé exercice 2- Feuille 2.

Exercice 2.

1. On commence par montrer que si V est un ensemble transitif alors $\mathcal{P}(V)$ est encore un ensemble transitif. En effet, si $a \in b \in \mathcal{P}(V)$, alors $b \subseteq V$ par définition de $\mathcal{P}(V)$, donc on a $a \in V$ par définition de l'inclusion. Comme V est transitif, ceci entraîne que $a \subseteq V$, autrement dit $a \in \mathcal{P}(V)$. On a donc démontré que $(a \in b \in \mathcal{P}(V)) \Rightarrow (a \in \mathcal{P}(V))$, ce qui prouve que $\mathcal{P}(V)$ est transitif.

Utilisons cela pour prouver le résultat demandé par récurrence transfinie :

- $V_0 = \emptyset$ est transitif. On considère maintenant $\alpha > 0$ tel que V_β soit transitif pour tout $\beta < \alpha$.
- Si $\alpha = \beta + 1$, a :ors ce qu'on vient de démontrer entraîne que $V_{\alpha} = \mathcal{P}(V_{\beta})$ est transitif.
- Si α est limite, alors V_{α} est une réunion d'ensembles transitifs; une union d'ensembles transitifs est un ensemble transitif. On en déduit que V_{α} est bien un ensemble transitif.
- 2. Notons que si V est un ensemble transitif alors $V \subseteq \mathcal{P}(V)$; on en déduit par récurrence transfinie que $\beta \leq \alpha \Rightarrow V_{\beta} \subseteq V_{\alpha}$. La consruction entraı̂ne aussi que $\alpha \in V_{\alpha+1}$ pour tout α , par conséquent si $\beta < \alpha$ on a $\beta \in V_{\beta+1} \subseteq V_{\alpha}$. Montrons maintenant, par récurrence transfinie, qu'on a $\alpha \notin V_{\alpha}$ pour tout α :
 - $\emptyset \not\in \emptyset$;
 - Si $\alpha + 1 \in V_{\alpha+1}$ alors $\alpha \cup \{\alpha\} \in \mathcal{P}(V_{\alpha})$; par conséquent $\{\alpha\} \subseteq V_{\alpha}$, ce qui entraîne $\alpha \in V_{\alpha}$.
 - Si α est limite et $\beta \notin V_{\beta}$ pour tout $\beta < \alpha$, et $\alpha \in V_{\alpha}$, alors il doit exister $\beta < \alpha$ tel que $\alpha \in V_{\beta}$, et comme $\beta \in \alpha$ et V_{β} est transitif ceci entraîne que $\beta \in V_{\beta}$, contradiction. Ainsi, si $V_{\beta} \in V_{\alpha}$ on ne peut avoir $\alpha \leq \beta$ (sans quoi on aurait $\alpha \in V_{\alpha}$) et on a donc $\beta < \alpha$; de même, si $V_{\beta} \subseteq V_{\alpha}$ alors on ne peut pas avoir $\alpha < \beta$, et donc $\beta \leq \alpha$.
- 3. On a déjà fait le travail dans la question précédente, en montrant que $\alpha \in V_{\alpha+1}$ mais $\alpha \notin V_{\alpha}$.
- 4. Rappelons que l'axiome de fondation s'écrit : pour tout ensemble x il existe un ensemble y tel que $y \in x$ et $y \cap x = \emptyset$. Autrement dit, l'axiome de fondation affirme que dans tout ensemble x il existe $y \in x$ qui est minimal pour \in .
 - Commençons par supposer que pour tout ensemble x il existe un ordinal γ tel que $x \in V_{\gamma}$. Etant donné un ensemble x, fixons un tel γ . Alors tout $y \in x$ est aussi dans V_{γ} , donc tout $y \in x$ a un rang unique. On peut alors poser $\delta = \min\{rg(y) : y \in x\}$.
 - Il existe $y \in x$ tel que $rg(y) = \delta$. De plus, si $z \in y$ alors on a $z \in y \in V_{\delta+1} = \mathcal{P}(V_{\delta})$ donc $z \in V_{\delta}$, contredisant la minimalité de δ . Par conséquent y est minimal pour \in parmi les éléments de x, et l'axiome de fondation est vérifié.
 - Avant de prouver la réciproque, notons que si un ensemble x est tel que tout $y \in x$ appartient à un V_{α} , alors si on pose $\delta = \sup\{rg(y) \colon y \in X\}$, on a $y \in V_{\delta+1}$ pour tout

 $y \in V$, par conséquent $x \in V_{\delta+2}$. Considérons donc un ensemble x n'appartenant à aucun V_{α} ; alors il doit exister $y \in x$ n'appartenant à aucun V_{α} , et en répétant l'argument on obtient une suite $(y_i)_{i<\omega}$ telle que $y_{i+1} \in y_i$ pour tout i, ce qui contredit l'axiome de fondation.

Tout ceci est bel et bon, mais dans la démonstration ci-dessus on a utilisé l'axiome des choix dépendants; peut-on s'en passer? La réponse est oui : étant donné un ensemble x qui n'appartienne à aucun V_{α} , on peut définir, par récurrence, $V_0 = x$ et $V_{i+1} = \bigcup V_i$ (l'ensemble dont les éléments sont les éléments de V_i) puis poser $W = \bigcup V_i$. Alors W est un ensemble transitif, qui contient x. De plus, $\{y \in W : \exists \alpha y \in V_{\alpha} \text{ est un ensemble, par conséquent son complémentaire dans <math>W$ aussi. Ce dernier doit être non vide (il existe un élément de x qui n'est contenu dans aucun V_{α}), donc en invoquant l'axiome de fondation on peut trouver un élément de W qui soit \in -minimal et n'appartienne à aucun V_{α} . On arrive finalement à une contradiction : si $z \in y$ alors on doit avoir $z \in W$ puisque ce dernier est transitif, par conséquent la minimalité de y impose que z doit appartenir à un V_{α} . Ceci étant vrai pour tout $z \in y$, on en déduit que y appartient aussi à la réunion des V_{α} , contradiction.