Corrigé rapide du devoir 1

Exercice 1. On vérifie que pour toutes formules ϕ et ψ , $\neg \phi$ est équivalente $(\phi \downarrow \phi)$ et $\phi \land \psi$ est équivalente $(\phi \downarrow \psi) \downarrow (\phi \downarrow \psi)$. On conclut alors par induction sur les formules.

Exercice 2. On montre le résultat par induction sur les formules. Soient $\phi(\bar{y})$ et $\psi(\bar{z})$ des formules équivalentes respectivement à $Q_1x_1Q_2x_2\dots Q_nx_n\phi_0(\bar{x},\bar{y})$ et $Q_1'x_1'Q_2x_2'\dots Q_n'x_{n'}'\psi_0(\bar{x}',\bar{z})$ où les Q_i et Q_i' sont des quantificateurs, ϕ_0 et ψ_0 des formules sans quantificateurs, et $\{\bar{x}\}\cap\{\bar{y}\}=\emptyset$, $\{\bar{x}'\}\cap\{\bar{z}\}=\emptyset$.

Alors:

- $-\neg\phi(\bar{y})$ est équivalente à $\bar{Q}_1x_1\bar{Q}_2x_2\dots\bar{Q}_nx_n\neg\phi_0(\bar{x},\bar{y})$, où $\bar{\forall}=\exists$ et $\bar{\exists}=\forall$. (Pour cela on utilise récursivement le fait que $\neg Qx\theta$ est équivalente à $\bar{Q}x\neg\theta$.)
- Pour traiter le cas $\phi(\bar{y}) \wedge \psi(\bar{z})$, on renomme les variables x_i et x_i' de telles manières que $\{\bar{x}\} \cap \{\bar{x}'\} = \emptyset$ et que $\{\bar{x}\bar{x}'\} \cap \{\bar{y}\bar{z}\} = \emptyset$. Avec cette hypothèse supplémentaire, $\phi(\bar{y}) \wedge \psi(\bar{z})$ est équivalente à

$$Q_1x_1Q_2x_2\dots Q_nx_nQ_1'x_1'Q_2x_2'\dots Q_{n'}x_{n'}'(\phi_0(\bar{x},\bar{y})\wedge\psi_0(\bar{x}',\bar{z})).$$

(On utilise ici le fait que $Qx\theta(x,\bar{y}) \wedge \gamma(\bar{z})$ est équivalente à $Qx(\theta(x,\bar{y}) \wedge \gamma(\bar{z}))$ si x n'est pas une variable dans \bar{z} .)

 La disjonction se traite de la même manière que la conjonction et pour la quantification c'est évident.

Exercice 3. Par exemple $\mathcal{M} = \langle \mathbb{N}, S \rangle$ et $\mathcal{N} = \langle \mathbb{Z}, S \rangle$ où S est la fonction successeur (S(n) = n + 1).

Exercise 4. (a)
$$\forall y \forall z (x=y \cdot z \to ((x=y \land x \neq z) \lor (x \neq y \land x=z))).$$
 (b) $\exists z x=y+z^2.$

Exercice 5. 1. – axiomes de relations d'équivalences : $\forall x \ xEx, \ \forall x, y \ (xEy \iff yEx), \ \forall x, y, z \ ((xEy \land yEz) \rightarrow xEz).$

- -2 classes: $\exists x, y((\neg xEy) \land \forall z(zEx \lor zEy)).$
- les classes sont infinies : il faut ici une infinité d'axiomes ; pour chaque entier n > 0, on considère l'axiome qui dit que toute classe a plus de n éléments ; $\forall x \exists x_1, ..., x_n$ "distincts" $\land_i x_i E x$.
- 2. axiomes de relations d'équivalences.
 - une infinité de classes : pour chaque entiers n > 0, l'axiome $\exists x_1, ..., x_n \land_{i \neq j} \neg x_i E x_j$.
 - les classes sont infinies.

Exercice 6. Les deux premiers points sont faciles. Voici un exemple pour le troisième point : soit $\mathcal{M}_3 = \langle \mathbb{Q} \times \mathbb{Z}, \langle \rangle$ où \langle est l'ordre lexicographique. On prend pour \mathcal{M}_1 la sous-structure $\langle \mathbb{Q}^* \times \mathbb{Z}, \langle \rangle$ et \mathcal{M}_2 la sous-structure $\langle \mathbb{Q}^* \times \mathbb{Z} \cup \{0\} \times 2\mathbb{Z}, \langle \rangle$. Remarquons qu'il existe un isomorphisme de \mathcal{M}_2 sur \mathcal{M}_3 préservant \mathcal{M}_1 . Il est facile de voir que \mathcal{M}_2 n'est pas sous-structure élémentaire de \mathcal{M}_3 . Pour montrer que $\mathcal{M}_1 \prec \mathcal{M}_i$, il suffit de faire des va-etvients infinis au-dessus de n'importe quels uples \bar{m} de \mathcal{M}_1 . (Remarquons qu'il existe un isomorphisme de \mathcal{M}_2 sur \mathcal{M}_3 préservant \mathcal{M}_1 .)

Exercice 7. (a) Utiliser la formule $\forall y(xy = yx)$.

- (b) Supposons \mathcal{A} inductif. Soit m > 0 minimal tel que m.1 = 0. Alors σ l'application de $\mathbb{Z}/m\mathbb{Z}$ dans \mathcal{A} qui a \bar{i} associe i.1 est un morphisme d'anneau injectif. Pour la surjectivité il suffit d'utiliser le fait que \mathcal{A} est inductif avec la formule $\vee_{0 \leq i \leq n} (x = i.1)$.
- La réciproque est évidente : pour tout m > 0, $\mathbb{Z}/m\mathbb{Z}$ est inductif.
- (c) \mathbb{R} n'est pas inductif : on utilise ici la formule $\exists y(x=y^2)$ qui n'est satisfaite que par les réels positifs.
- (d) \mathbb{Z} n'est pas inductif : on utilise ici la formule $\exists y \exists z \exists t \exists u (x = y^2 + z^2 + t^2 + u^2)$.
- (e) Soit K un corps algébriquement clos de caractéristique 0. Une partie $D \subset K$ définissable est finie ou cofinie : en effet une partie atomique de K correspond aux racines d'un polynôme (éventuellement nul dans K[X]) et si D_1 et D_2 sont deux parties de K telles que chacune est finie ou cofinie alors c'est encore vraie pour le complémentaire de D_1 et pour l'union de D_1 et D_2 ; par élimination des quanteurs on en déduit que c'est vraie pour toute partie définissable. Supposons que D satisfait l'hypothèse d'induction $(0 \in D$ et pour tout $x \in D$, $x + 1 \in D$). Alors D est infini car K est de caractéristique 0. Si $D \neq K$ alors il existerait $x \notin D$ mais alors pour tout $n, x-n.1 \notin D$ et D ne serait pas cofini.