Devoir 1 à retourner le 19 octobre

Exercice 1. Soit $(\phi \downarrow \psi)$ une abbréviation pour $\neg(\phi \lor \psi)$. Démontrer que toute formule dans un langage L est équivalente à une formule qui n'utilise que \downarrow et \exists comme symboles logiques.

Exercice 2. Montrer que toute formule est équivalente à une formule **prénexe**, c'est-à-dire à une formule de la forme $Q_1x_1Q_2x_2...Q_nx_n\phi$ où les Q_i sont des quanteurs et ϕ est une formule sans quanteur.

Exercice 3. Donner un exemple de structures \mathcal{M} et \mathcal{N} tel que \mathcal{M} est une sous-structure de \mathcal{N} mais n'est pas élémentairement équivalente à \mathcal{N} .

Exercice 4. (a) Montrer que l'ensemble des nombres premiers est une partie définissable dans la structure (\mathbb{N}, \cdot) . A-t-on besoin de paramètres?

(b) Montrer que l'ordre sur \mathbb{R} est définissable sans paramètre dans la structure $(\mathbb{R}, +, \cdot)$.

Exercice 5. Soit L le langage réduit à une relation binaire E (et l'égalité).

- 1. Donner une axiomatisation (dans ce langage) de la théorie de la relation d'équivalence à deux classes infinies.
- 2. Donner une axiomatisation de la théorie de la relation d'équivalence à une infinité de classes toutes infinies.

Exercice 6. Soient $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \mathcal{M}_3$.

- Montrer que si $\mathcal{M}_1 \prec \mathcal{M}_2$ et $\mathcal{M}_2 \prec \mathcal{M}_3$ alors $\mathcal{M}_1 \prec \mathcal{M}_3$.
- Montrer que si $\mathcal{M}_1 \prec \mathcal{M}_3$ et $\mathcal{M}_2 \prec \mathcal{M}_3$ alors $\mathcal{M}_1 \prec \mathcal{M}_2$.
- Trouver un exemple tel que $\mathcal{M}_1 \prec \mathcal{M}_2$ et $\mathcal{M}_1 \prec \mathcal{M}_3$ mais $\mathcal{M}_2 \not\prec \mathcal{M}_3$.

Exercice 7. Un anneau $\mathcal{A} = \langle A, 0, 1, +, -, \cdot \rangle$ est dit inductif si pour toute formule $\phi(x)$ de L_{ann} à paranètres dans A,

$$\mathcal{A} \models (\phi(0) \land \forall x(\phi(x) \to \phi(x+1))) \to \forall x\phi(x).$$

- (a) Montrer qu'un anneau inductif est commutatif.
- (b) Soit \mathcal{A} un anneau tel qu'il existe n > 0 tel que n.1 = 0. Montrer que \mathcal{A} est inductif si et seulement s'il est isomorphe à l'anneau $\mathbb{Z}/m\mathbb{Z}$ pour un entier m > 0.
- (c) Montrer que le corps \mathbb{R} n'est pas inductif.
- (d) Montrer que l'anneau \mathbb{Z} n'est pas inductif. (On admettra que tout entier positif est somme de quatres carrés.)
- (e) Montrer qu'un corps algébriquement clos de caractéristique 0 est inductif. (On admettra que dans un corps algébriquement clos, toute formule est équivalente à une combinaison booléenne d'équations algébriques (voir chapitre 3 élimination des quanteurs).)