Devoir 3 à retourner le 23 novembre

Exercice 1. Montrer les propriétés suivantes de la clôture algébrique. Soient \mathcal{M} , $A \subset M$ et $B \subset M$.

- 1. $\operatorname{acl}(\operatorname{acl}(A)) = \operatorname{acl}(A) \supset A$
- 2. Si $A \subset B$ alors $acl(A) \subset acl(B)$.
- 3. Si $a \in \operatorname{acl}(A)$ alors il existe une partie finie $A_0 \subset A$ telle que $a \in \operatorname{acl}(A_0)$.

Exercice 2. Soient \mathcal{M} une structure ω -saturée, \mathcal{N} une extension élémentaire de \mathcal{M} et $(n_i)_{i \in \omega}$ une famille d'éléments de N alors il existe une famille $(m_i)_{i \in \omega}$ d'éléments de M tel que pour tout $k \in \omega$, $(m_0, ..., m_k)$ et $(n_0, ..., n_k)$ ont même type.

Exercice 3. Soit T la théorie de la relation d'équivalence à une infinité de classes.

- 1. Soient \mathcal{M} et \mathcal{N} deux modèles de T élémentairement équivalents. Montrer que pour tout $n \in \mathbb{N}^*$, \mathcal{M} et \mathcal{N} ont ou bien tous deux le même nombre fini de classes à n éléments, ou bien tous deux une infinité de classes à n éléments.
- 2. Soit \mathcal{M} un modèle ω -saturé de T. Montrer que si \mathcal{M} a des classes finies arbitrairement grandes alors \mathcal{M} a une infinité de classes infinies.
- 3. Déterminer l'ensemble des théories complètes contenant T. (Remarquer qu'il y en a 2^{ω} .)
- 4. Déterminer celles qui sont ω -catégoriques.
- 5. Déterminer celles qui sont κ -catégoriques pour un (tout) cardinal $\kappa > \omega$.

Exercice 4. On dit qu'une théorie complète T est menue si S(T) est dénombrable. Remarquer que si \mathcal{M} est structure dénombrable ω -saturée alors $\operatorname{Th}(\mathcal{M})$ est menue. Montrer que toute théorie complète, dénombrable et menue a un modèle ω -saturé dénombrable. (Pour cela, on remarquera que le nombre de types sur une partie finie est dénombrable et que le nombre de parties finies d'un ensemble dénombrable est dénombrable.)