Université Lyon I Master Recherche Théorie des modèles Épreuve d'examen Mardi 11 janvier 2005, 14h - 17h

Les notes du cours sont autorisées. Le sujet comporte trois exercices indépendants sur deux pages recto-verso.

Exercice 1. Soit le langage $L = \{R\}$ où R est une relation binaire. On appelle graphe une L-structure satisfaisant les deux axiomes suivants :

- $\forall x \neg R(x, x)$ (Antireflexivité),
- $\forall x \forall y \ R(x,y) \leftrightarrow R(y,x)$ (Symétrie).
 - (a) Soit G un graphe fini.

Montrer qu'il existe un graphe fini H contenant G ayant la propriété suivante : pour toute partie X de G, il existe $h \in H$ tel que

$$X = \{g \in G : H \models R(g, h)\}.$$

- (b) Considérons l'ensemble Σ des énoncés suivants :
- $\forall x \neg R(x, x),$
- $\forall x \forall y \ R(x,y) \leftrightarrow R(y,x),$
- pour chaque $n, m \geq 0$,

$$\forall x_1...\forall x_n \forall y_1...\forall y_m \left(\bigwedge_{i,j} x_i \neq y_j \right) \to \exists z \left(\bigwedge_i R(z,x_i) \land \bigwedge_j \neg R(z,y_j) \right).$$

Montrer que Σ est consistant. (Indication : en utilisant (a), on pourra construire un modèle de Σ à l'aide d'une chaîne de graphes finis).

(c) Soit T la théorie axiomatisée par $\Sigma.$

Montrer que tout modèle de T est infini.

- (d) Montrer que T est ω -catégorique.
- (e) Soit Γ le modèle dénombrable de T. (Ce graphe s'appelle le graphe aléatoire.)
 - -i- Montrer que Γ est homogène ; c'est-à-dire que tout isomorphisme partiel de Γ entre deux sous-graphes finis se prolonge en un automorphisme de Γ .
 - -ii- Montrer que Γ est universel ; c'est-à-dire que tout graphe fini est isomorphe à un sous-graphe de Γ .
 - -iii- Montrer que tout graphe homogène et universel est modèle de T.
- (f) Montrer que T est instable.

Exercice 2. Soient \mathcal{M} une L-structure fortement minimale et $\phi(\bar{x}, \bar{y})$ une formule de L sans paramètres tel que $\bar{x} = (x_1, ..., x_n)$ et $\bar{y} = (y_1, ..., y_l)$.

Le but de l'exercice est de montrer que pour tout entier $k \geq 0$, l'ensemble

$$\{\bar{b} \in M^l : \mathrm{RM}(\phi(\bar{x}, \bar{b})) = k\}$$

est définissable.

Fixons un entier k tel que $0 < k \le n$.

- (a) Soit $\theta(x_1,...,x_k,\bar{y})$ une formule sans paramètres.
 - -i- Soit $\bar{b} \in M^l$.

Montrer que $RM(\theta(x_1,...,x_k,\bar{b})) = k$ si et seulement si $\theta(x_1,...,x_k,\bar{b}) \in p^k$ où p^k est l'unique type de rang de Morley k dans $S_k(M)$.

- -ii- En déduire que l'ensemble $\{\bar{b} \in M^l : \text{RM}(\theta(x_1,...,x_k,\bar{b})) = k\}$ est définissable.
- (b) -i- Soit $\bar{b} \in M^l$ tel que $RM(\phi(x_1,...,x_n,\bar{b})) \geq k$. Montrer qu'il existe $1 \leq i_1 < i_2 < ... < i_{n-k} \leq n$ tel que

$$RM(\exists x_{i_1} \exists x_{i_2} ... \exists x_{i_{n-k}} \phi(x_1, ..., x_n, \bar{b})) = k.$$

- -ii- En déduire que l'ensemble $\{\bar{b} \in M^l : \mathrm{RM}(\phi(\bar{x}, \bar{b})) \geq k\}$ est définissable.
- (c) Conclure.

Exercice 3. Soit T la théorie de la relation d'équivalence E qui a, pour chaque entier n > 0, une et une seule classe de cardinal n.

- (a) Montrer que T est complète. (Indication : montrer qu'entre deux modèles ω -saturés de T, il existe toujours un va-et-vient.)
- (b) La théorie T élimine-t-elle les quantificateurs? (Justifiez votre réponse.)
- (c) Soit \mathcal{M} un modèle ω -saturée de T. Montrer que l'ensemble

$$X = \{b \in M : RM(E(x, b)) = 0\}$$

n'est pas définissable. (On pourra tout d'abord vérifier que $X = \operatorname{acl}(\emptyset)$.)