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Abstract. Spheres are known to be rigid geometric objects: they cannot be deformed

isometrically, i.e. while preserving the length of curves, in a twice differentiable way. An
unexpected result by J. Nash (Ann. of Math. 60: 383-396, 1954) and N. Kuiper (Indag.

Math. 17: 545-555, 1955) shows that this is no longer the case if one requires the deformations

to be only continuously differentiable. A remarkable consequence of their result makes
possible the isometric reduction of a unit sphere inside an arbitrarily small ball. In particular,

if one views the Earth as a round sphere the theory allows to reduce its diameter to that of
a terrestrial globe while preserving geodesic distances.

Here we describe the first explicit construction and visualization of such a reduced sphere.

The construction amounts to solve a non-linear PDE with boundary conditions. The result-
ing surface consists of two unit spherical caps joined by a C1 fractal equatorial belt. An

intriguing question then arises about the transition between the smooth and the C1 fractal

geometries. We show that this transition is similar to the one observed when connecting a
Koch curve to a line segment.

1. Introduction

Mathematics is an inexhaustible source of strange and extraordinary objects whose visual-
ization can be quite challenging. Among others we may cite the visualization of the projective
plane [6, 1], of fractals or limit sets [16, 17], or of the sphere eversion [15, 10]. Each of these
visualizations brought new ideas and unveiled properties that were hardly conceivable before.
The realization of an immersed projective plane by W. Boy was a visual answer to an erroneous
supposition of D. Hilbert. The search for an intelligible visualization of the sphere eversion led
W. Thurston to the discovery of the Theory of Corrugations, a qualitative version of convex
integration. The visualization of fractals has changed our perception of the world and deepened
the mathematical representation of nature.

Here we achieve the explicit construction and the first visualization of a paradoxical object
whose formal existence was proved in the mid-fifties by J. Nash and N. Kuiper [18, 14]: an
isometric reduced sphere. The existence of such a surface is in sharp contrast with the rigidity
of round spheres: every C2 map that preserves distances over the round unit sphere is the
restriction of a rigid motion [7, 12]. However, the works of J. Nash and N. Kuiper shows that
this rigidity breaks down when the map is of regularity C1. This result was recently extended
to C1,α maps for some α > 0 by Conti et al. [8] (see also Borisov [2, 3]). In this range of
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regularity, round spheres become flexible and can be reduced, i.e. sent isometrically inside a
ball of smaller radius.

Our approach relies on the theory of convex integration developed by Gromov [11, 19, 9].
It fills the gap between this deep piece of mathematics and explicit constructions amenable
to computation. We reduce a sphere isometrically by cutting out two antipodal caps of a
round unit sphere, bringing them closer and compressing the remaining equatorial belt to fit
in-between the boundaries of the caps. Although the translation of the caps is isometric, it is
far from obvious that the compression can be done isometrically and even less obvious that the
resulting belt connects continuously with the caps. This is accomplished by adapting the theory
of convex integration with a global point of view that avoids piecing together local processes.

In [4, 5] we build an isometric embedding of a flat torus and describe a new geometric
structure halfway between smooth surfaces and fractals that we have called C1-fractal. In
this paper we also address the question of how to connect the C1-fractal structure of the
compressed equatorial belt with the smooth caps to construct a C1 isometric reduced sphere.
This connection amounts to consider boundary conditions in the theory of convex integration.
Although this theory formally allows boundary conditions, its effective application and the
understanding of the resulting geometry remains a crucial issue for the implementation of
convex integration as an efficient procedure for solving partial differential relations.

In order to handle the boundary conditions, we introduce a phase shift and non-integral
corrugation numbers in the Convex Integration Formula as well as intermediate differential
relations defined over an increasing sequence of equatorial ribbons. It produces a sequence
of corrugated surfaces that C1 converges towards an isometric reduced sphere. Based on this
implementation we obtain the first rendered images of an isometric embedding of a unit sphere
inside a small ball. If one views the Earth as a round sphere the procedure makes it possible
to reduce its diameter to that of a terrestrial globe while preserving geodesic distances. Due
to numerical reasons and visual limitations, we chose to reduce the size by a factor of two.
As a matter of fact, the resulting geometry exhibits the same structure independently of the
reduction factor: the Gauss map of the equatorial belt can be expressed as the remainder of an
infinite product that fades out as we get closer to the boundary of the caps. Moving from one
of the caps toward the equator, corrugations of larger and larger amplitudes emerge creating
what we have called a C1 fractal expansion. See Theorem 13 and Figure 1. This remarkable
phenomenon explains the transition between the analytic regularity of the caps and the C1

regularity of the equatorial belt analogous to the transition between a line segment and a von
Koch curve. See Figure 10.

This paper is organized as follows. Our construction of a reduced isometric sphere starts
with an initial embedding that shortens distances as described in Section 2. After recalling the
Convex Integration process for curves, we describe in Section 4 how we extend this process to
surfaces with boundary conditions. We apply this two dimensional process to the equatorial
belt of our initial embedding. We discuss in Section 5 how far is the resulting embedding from
an isometric one. The Convex Integration process must be applied iteratively as explained in
Section 6, where we provide all the ingredients to construct a reduced isometric sphere. The
proof of convergence of the iterative process is the object of Sections 7 and 8. The transition
between the analytic caps and the C1 equatorial belt is examined in Section 9. This analysis
reveals the C1 fractal expansion.
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Figure 1. A walk from the boundary of the south polar cap to the equatorial
belt showing the C1 fractal expansion.

2. The Initial Map

The construction of a C1 isometric reduced sphere1 starts with an initial map f0 : S2 →
Br ⊂ R3 where Br is a ball of radius r < 1 centered at the origin and S2 denotes the unit
sphere. In this section, we describe sufficient conditions for the initial map f0 to allow our
convex integration process to handle boundary conditions. We first cut S2 into three parts:
two small spherical caps centered at the poles and a complementary equatorial belt B ⊂ S2.
Here, the caps are considered as closed sets so that B is open in S2. The map f0 vertically
translates each cap into Br. The restriction of f0 to the equatorial belt should satisfy the
following conditions.

(C1) f0|B has a C∞ regularity,

(C2) f0(B) is included in Br,

(C3) f0|B connects the two polar caps with a C1 regularity.

We also require a loop condition imposed by the technique of convex integration applied to the
construction of isometric maps. In order to express this condition we need some settings. We
shall denote by S0 := f0(S2) the initial surface and by R0 := f0(B) the shrunk central ribbon.
See Figure 2 for an illustration. We also consider the usual parameterization of the sphere:

h : (x, y) 7→ (cos y cosx, cos y sinx, sin y)

1Very recently, a formal construction of a deformed isometric sphere was obtained by considering isometric
extensions [13, Cor. 1.3]. However, one equator is left unchanged in this approach, which prevents the sphere
to be globally reduced.
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Figure 2. The map f0 : S2 → Br ⊂ R3. The shrunk central ribbon R0

is a surface of revolution generated by rotating a polynomial curve to satisfy
Conditions (C1)-(C4). The initial isometric error is E(f0) ≈ 1.17.

We introduce the parameter domain D := S1× ] − y∞, y∞[ where S1 = R/2πZ and y∞ is the

polar angle of the upper cap boundary. We denote by D̃ := R× ]− y∞, y∞[ its universal cover.
Remark that h(D) is the equatorial belt B. With a little abuse of notation we still denote by
f0 : D → R0 the map defining the central ribbon. We denote by If0 and Ih the first fundamental
forms of the maps f0 and h. Using the same notation for a bilinear form and its matrix, we
thus have

If0 =

(
〈∂f0∂x ,

∂f0
∂x 〉 〈

∂f0
∂x ,

∂f0
∂y 〉

〈∂f0∂x ,
∂f0
∂y 〉 〈

∂f0
∂y ,

∂f0
∂y 〉

)
and Ih =

(
cos2 y 0

0 1

)
where 〈·, ·〉 is the usual inner product. We next introduce the following constant linear forms

in D̃:

`1(w) =
1√
2

(X + Y ), `2(w) =
1√
2

(Y −X), `3(w) = Y(2.1)

where w = XeX + Y eY and (eX , eY ) is the canonical basis of R2. We shall use the same

notation `i for the field of linear forms in D̃ and its quotient in D. We denote by `i ⊗ `i
the degenerate bilinear form (w,w′) 7→ `i(w)`i(w

′), also called a primitive metric. Since any
symmetric bilinear form can be uniquely written as a linear combination of the `i⊗`is, we have
at every point (x, y):

Ih − If0 =

3∑
i=1

ρi(Ih − If0) `i ⊗ `i(2.2)

We call the real valued functions ρi(Ih − If0) : D → R the primitive coordinates of the bilinear
form Ih − If0 with respect to the `i ⊗ `is. Note that for any symmetric bilinear form B, we
easily show that

|ρ1(B)|, |ρ2(B)| 6
√

6

2
‖B‖ and |ρ3(B)| 6

√
2‖B‖(2.3)

Here and from now on, ‖ · ‖ denotes the Frobenius norm when applied to matrices. We can
now express the loop condition for the pair (f0, h):
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(C4) The primitive coordinates of Ih − If0 are strictly positive over D.

This last condition implies that f0 is strictly short over D, i.e. for every non-zero vector w we
have wtIhw > wtIf0w. As a consequence, for every curve γ : [0, 1]→ D, the length of f0 ◦ γ is
strictly less than the length of h ◦ γ. It will also be convenient (see Lemma 12) to assume that
the skew diagonal coefficients of If0 cancel everywhere. The next proposition states that this
is always possible.

Proposition 1. There exists an initial map f0 : D → R3 that satisfies Conditions (C1)-(C4).
Moreover, f0 can be chosen with a symmetry of revolution, i.e., of the form

f0(x, y) = (X(y) cos(x), X(y) sin(x), Z(y)),

where (X,Z) : [−y∞, y∞]→ R2 is a C∞ profile curve. In particular, 〈∂f0∂x ,
∂f0
∂y 〉 ≡ 0.

Our goal is to produce an isometric image of the unit sphere that lies inside the ball Br of
radius r < 1. This amounts to replace f0 by a map f : D → R3 such that the new central
ribbon f(D)

i) lies inside the ball Br,
ii) connects the two caps of S0 with a C1 regularity,
iii) is isometric to B.

Indeed, since the caps are isometric to their copies in S2, we only need to make the central
ribbon isometric to B. This will be the case if f and h have the same first fundamental forms,
i.e. If = Ih. We call E(f0) = supD ‖Ih − If0‖ the isometric error. Hence, f is an isometric
map if and only if E(f) = 0.

3. Proof of Proposition 1

Here we prove the existence of a profile curve γ = (X,Z) : [−y∞, y∞] → R2 as in the
proposition. After writing down the conditions that γ should satisfy, we construct a suitable
γ in three steps. We first cut the profile curve into three pieces and provide explicit formulas
for each piece. The resulting curve is piecewise C∞ with continuous connections and satisfies
the conditions on each piece. We next apply a convex integration process to the center piece
in order to get a C1 connection. We finally obtain a C∞ profile curve by regularization.
Let y∞ and η be such that

cos2 y∞ + (sin y∞ − η)2 < r2 and
sin y∞ − η

y∞
< cos y∞.(3.4)

The first inequality ensures that the vertical translations of the two caps by ±η are contained
in Br. The reason for the second inequality will appear below. A simple calculation shows that

Ih − If0 =

(
cos2 y −X2(y) 0

0 1−X ′2(y)− Z ′2(y)

)
and thus ρ1(Ih − If0) = cos2 y − X2(y), ρ2(Ih − If0) = cos2 y − X2(y) and ρ3(Ih − If0) =

sin2 y +X2(y)−X ′2(y)− Z ′2(y). Hence Conditions (C2) and (C4) are equivalent to

(3.5)

{
cos2 y > X2(y) > v2(y)− sin2 y where v2 = X ′2(y) + Z ′2(y).
X2 + Z2 < r2
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Condition (C3) is equivalent to

(3.6)


X(−y∞) = cos y∞
Z(−y∞) = η − sin(y∞)
X ′(−y∞) = sin y∞
Z ′(−y∞) = cos y∞.

and (3.7)


X(y∞) = cos y∞
Z(y∞) = sin(y∞)− η
X ′(y∞) = − sin y∞
Z ′(y∞) = cos y∞.

Step 1. A Taylor expansion at −y∞ implies that for some small enough δ > 0 the piece of
parabola γ1 : [−y∞, δ − y∞]→ R2 defined by{

X(y) = cos y∞ + (sin y∞)(y + y∞)− (cos y∞)(y + y∞)2

Z(y) = η − sin y∞ + (cos y∞)(y + y∞)

satisfies Equations (3.5) and (3.6). A symmetric formula holds on the interval [y∞ − δ, y∞]
leading to a curve γ3 : [y∞ − δ, y∞]→ R2 satisfying Equations (3.5) and (3.7). We then define
γ2 over the interval Iδ := [−(y∞ − δ), y∞ − δ] as the linear interpolation between γ1(δ − y∞)
and γ3(y∞−δ). This vertical line segment connects continuously with γ1 and γ3. Furthermore,
choosing δ smaller if needed, and using the second inequality in the above condition (3.4) we
easily infer that γ2 satisfies Equation (3.5). We denote by Xδ := cos y∞+(sin y∞)δ−(cos y∞)δ2

the constant abscissa of γ2.

Step 2. In order to obtain a C1 connection at γ1(δ− y∞) and γ3(y∞− δ) we shall use Lemma
17.3.1 in [9]. To this end we view Equation (3.5) as the differential relation

R = {(y,X,Z,U ,V) ∈ R× R2 × R2, cos2 y > X2 > U2 + V2 − sin2 y and X2 + Z2 < r2}.
We next consider a continuous interpolation ψ2 = (U ,V) : Iδ → R2 between ψ2(δ − y∞) :=
γ′1(δ−y∞) and ψ2(y∞−δ) := γ′3(y∞−δ). Up to renormalization we can assume that ‖ψ2(y)‖2 <
X2
δ + sin2 y for all y ∈ Iδ. It follows that (γ2, ψ2) is a short formal solution of R. According

to Lemma 17.3.1 in [9], we can construct a genuine solution γ̃2 of R such that its derivative
coincides with ψ2 at δ − y∞ and y∞ − δ. The concatenation γ of γ1, γ̃2 and γ3 is a C1 curve
that fulfills Conditions (3.5), (3.6) and (3.7).

Step 3. We finally apply some smoothing to γ to obtain a C∞ curve that still satisfies
Conditions (3.5), (3.6) and (3.7). The corresponding map f0 meets all the requirements (C1)-
(C4).

In practice we have chosen for γ a single Hermite cubic spline re-parametrized by another
Hermite cubic spline. The resulting profile curve has polynomial coordinates of degree nine and
we have checked numerically Conditions (C1)-(C4). See Figure 2.

4. Convex Integration along curves

As noted above the initial map f0 : D → R3 shortens distances, implying that its isometric
error is positive. Convex integration is a tool to reduce the isometric error by elongating a
family of curves. In this section, we detail the Convex Integration process for a family of curves

that foliates the universal cover D̃ of D. We first recall the Convex Integration Formula for one
curve established in [5]. This formula does not adapt to fit the boundary conditions. To take
them into account we introduce a phase shift and use non-integral corrugation numbers (see

Formula (4.10) and Lemma 2). The new formula creates a map D̃ → R3 that descends to the
quotient. We then show how to control its transverse derivative in Lemma 3.

Convex Integration for one curve. Given a curve γ : [0, 1] → D and a target speed
function r : [0, 1] → R>0 greater than the speed function of f0 ◦ γ, i.e. for all s ∈ [0, 1],
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‖(f0 ◦ γ)′(s)‖ 6 r(s), we shall construct a new curve Γ close to f0 ◦ γ such that ‖Γ′(s)‖ = r(s).
We consider the following formula whose origin stems from Convex Integration Theory [5]:

(4.8) s 7→ Γ(s) := f0(γ(0)) +

∫ s

0

r(σ)
(

cos θ t(γ(σ)) + sin θ n(γ(σ))
)
dσ,

where t(γ(σ)) is the unit vector tangent to the curve f0 ◦ γ and n(γ(σ)) is the normal to S0

at the point f0 ◦ γ(σ). Here, θ := θ(σ) = α(σ) cos(2πNσ) denotes the phase and N is a free
parameter of the formula called the corrugation number. The function α is given by

α(σ) := J−1
0

(
‖(f0 ◦ γ)′(σ)‖

r(σ)

)
(4.9)

where J0(x) =
∫ 1

0
cos(x cos 2πu)du is the Bessel function of order zero, J−1

0 is the inverse of
the restriction of J0 to the interval [0, z], and z ≈ 2.4 is the smallest positive root of J0. Since
J0 6 1 the argument of the right member of (4.9) must be smaller or equal to 1. In other words,
the shortness condition ‖(f0 ◦ γ)′(s)‖ 6 r(s) is imposed by the Convex Integration Formula.
The corrugated curve Γ is the integral of a vector that oscillates N times along f0 ◦ γ. Because
the norm of this vector is r(s) the curve Γ has the required target speed. The particular choice
for α ensures that Γ is close to f0 ◦ γ as illustrated on Figure 3. See [5] for more details.

Figure 3. Left: the vector r(cos θ t(u) + sin θ n(u)) attached at each point of
f0 ◦ γ oscillates N times. Right: the resulting corrugated curve Γ.

Boundary condition. Our approach consists in applying the Convex Integration Formula

(4.8) to a family of curves γp : [0, 1] → D̃ that foliates the domain D̃ and such that p = γp(0)

runs through the south boundary of D̃ while γp(1) lies on the north boundary. However,
this construction would create corrugations parallel to the boundaries of the domain (see Equa-
tion 5.16 and Lemma 4) and the isometric error would not be reduced in the horizontal direction
(see Lemma 5). To overcome this difficulty, we propose below to shift the phase in Formula (4.8)
by translating the parameter domain of each curve γp.

Convex Integration with phase shift. It is convenient to define the family of curves (γp)p
as the flow lines of a (lift of a) smooth vector field w over D. We suppose here that this vector
field is nowhere horizontal, in other words w = XeX + Y eY with Y 6= 0, say Y > 0. Denoting

by w̃ its lift over D̃ it follows that for every point p = (x,−y∞) on the south boundary of D̃ the

flow line of w̃ starts at p and joins the north boundary of D̃. Let γp : [ap, bp]→ D̃ be this flow
line with the initial condition γp(ap) = p. When p runs through the south boundary, the family

(γp)p of flow lines foliates D̃ and every γp cuts each latitude {y = const} exactly once. We
apply the Convex Integration Formula (4.8) to the one-parameter family of curves (γp)p and

to a target speed function r : D̃ → R>0 satisfying the shortness condition ‖(w · f0)([q])‖ 6 r(q)
for all q ∈ D̃, and descending to the quotient over D. Since the isometric error cancels along
the south and north boundaries of D we also impose the equality ‖(w · f0)([p])‖ = r(p) along
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those boundaries. We thus produce a new map F̃ : D̃ → R3:

F̃ ◦ γp(s) := f0([p]) +

∫ s

ap

r(γp(σ))
(

cos θ t(γp(σ)) + sin θ n(γp(σ))
)
dσ,(4.10)

where [p] is the canonical projection of p in D and θ := α(σ) cos(2πNσ). In this last formula,
the corrugation number N is independent of p and

α(σ) := J−1
0

(
‖(f0 ◦ γp)′(σ)‖

r(γp(σ))

)
.(4.11)

See Figure 4. Given the vector field w, we emphasize that the lower bound ap in the domain of

Figure 4. Left, each curve in D̃ is sent by the initial embedding f0 to a short
curve in R3 (only a portion is represented). Right, we apply the one dimen-
sional convex integration to each curve in the family to obtain a corrugated

surface F̃ (D̃).

definition [ap, bp] of the flow line γp can be chosen arbitrarily. In particular, when p 7→ ap is C∞

then so is the map (x, s) 7→ γ(x, s) = γ(x,−y∞)(s). In order to have an appropriate control over

the transversal derivatives of F̃ it appears crucial to impose a constant direction to the partial
derivative ∂γ

∂x . This can only be achieved by choosing p → ap to be affine. See Lemmas 4 and
5 and their proof.

Lemma 2. Suppose that ap is an affine function of p and let ∆ = ap+2πeX − ap. If N∆ ∈ Z,

then F̃ descend to the quotient on D.

Proof. Let q = γp(s). Note that q+2πeX = γp+2πeX (s+∆) since w̃ is invariant by a translation
of vector 2πeX and ap+2πeX = ap + ∆. For short, we write eiθ(p, σ) for cos θ t(γp(σ)) +
sin θ n(γp(σ)). We thus have

F̃ (q + 2πeX) = f0([p+ 2πeX ]) +

∫ s+∆

ap+2πeX

r(γp+2πeX (σ))eiθ(p+ 2πeX , σ)dσ

The change of variables u = σ −∆ gives

F̃ (q + 2πeX) = f0([p]) +

∫ s

ap

r(γp+2πeX (u+ ∆))eiθ(p+ 2πeX , u+ ∆)du

On the one hand, γp+2πeX (u + ∆) = γp(u) + 2πeX so that r(γp+2πeX (u + ∆)) = r(γp(u)),
t(γp+2πeX (u+ ∆)) = t(γp(u)) and n(γp+2πeX (u+ ∆)) = n(γp(u)). On the other hand,

θ(p+ 2πeX , u+ ∆) = αp+2πeX (u+ ∆) cos
(
2πN(u+ ∆)

)
= αp(u) cos(2πNu+ 2πN∆).

Hence, if N∆ is an integer, we conclude that F̃ (q + 2πeX) = F̃ (q). �
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Under the hypothesis in the lemma, we obtain a quotient map F : D → R3 whose effect is
to corrugate R0 in the direction w so that each curve s 7→ F ◦ [γp(s)] has the desired speed. In
other words, γ′p(s)

tIF γ
′
p(s) and r2(γp(s)) coincide. An important feature of convex integration

is that we can enforce F to be as close as desired to f0. In fact we have the following C0 density
Formula, see [5, Lemma 1],

‖F − f0‖∞ = O(
1

N
).(4.12)

We cannot expect such a closeness formula for the differentials dF and df0. However, the vector
field ν = ∂γ

∂x descends to the quotient and gives a vector field, still denoted by ν, along which
an analogous formula holds true.

Lemma 3. We have

‖ν · F − ν · f0‖∞ = O(
1

N
)

where ν · F is the derivative dF (ν) of F in direction ν.

Proof. Let κ(x, σ)dσ be the integrant in Formula (4.10). Recalling that p = (x,−y∞) =
γ(x, ap), we write

F̃ ◦ γ(x, s) = f0([p]) +

∫ s

ap

κ(x, σ)dσ = f0([γ(x, ap)]) +

∫ s

ap

κ(x, σ)dσ

We have
(
ν · F̃

) (
γ(x, s)

)
= ∂

∂x

(
F̃ ◦ γ(x, s)

)
, hence(

ν · F̃
) (
γ(x, s)

)
= A(x, s) +B(x),

where

A(x, s) := (ν · f0)
(
[γ(x, ap)]

)
+

∫ s

ap

∂

∂x
κ(x, σ)dσ

and

B(x) :=
∂ap
∂x

(
(w · f0)

(
[γ(x, ap)]

)
− κ(x, ap)

)
.

We observe that for every x, A(x, s) is a Convex Integration formula similar to (4.8) applied to
ν · f0 instead of f0. By the C0 density Formula (4.12) we obtain∥∥A(x, s)− (ν · f0)

(
[γ(x, s)]

)∥∥
∞ = O(

1

N
).

Since r(p) = ‖(w · f0)([p])‖ for every p = γ(x, ap) along the south boundary of D̃, it results
from (4.11) that κ(x, ap) = (w · f0)

(
[γ(x, ap)]

)
. We conclude that B(x) = 0. �

5. Reducing the primitive coordinates

In order to reduce the isometric error E(f0) we shall build three maps fi : D → R3, i = 1, 2, 3,
so as to reduce the three primitive coordinates of Ih − If0 , see Equation (2.2). Each map fi
is constructed in two steps. The first step builds a map Fi from fi−1 by applying our Convex
Integration Formula (4.10). Because this map does not connect the two polar caps, we interpo-
late between Fi and fi−1 in a second step to get a smooth map fi. We call the applications of
these two steps a CI process. In this section we only consider the first step of the CI process and
show that the ith primitive coordinate of Ih− IFi can be made arbitrarily small, see Lemma 5.

The family (γp)p of curves is given by the flow curves of a vector field wi to be defined below
and the target speed by:

r =
√
‖wi · fi−1‖2 + ρi(5.13)
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where ρi = ρi(Ih − Ifi−1
) is the ith primitive coordinate of Ih − Ifi−1

. Note that the shortness
condition implies that ρi must be non-negative. We introduce for i = 1, 2, 3, the intermediate
metrics

µi := Ifi−1
+ ρi(Ih − Ifi−1

) `i ⊗ `i = ρi(Ih)`i ⊗ `i +
∑

j∈{1,2,3},j 6=i

ρj(Ifi−1
)`j ⊗ `j ,(5.14)

and the constant vector fields vi in the direction of ker `i:

v1 =
1√
2

(
−1
1

)
, v2 = − 1√

2

(
1
1

)
, v3 =

(
−1
0

)
(5.15)

We define wi as the vector field µi-orthogonal to vi with the normalization `i(wi) = 1.
Our goal is to construct Fi such that µi = IFi up to O(1/Ni). Because vi ∈ ker `i, we have
µi(vi, .) = Ifi−1

(vi, .). It ensues that vi · Fi should be vi · fi−1 up to O(1/Ni). We achieve this
condition thanks to Lemma 3 by choosing the map p 7→ ap so that ν = ∂γ/∂x is proportional
to vi. This choice actually fixes ap:

Lemma 4. ν ∈ ker `i ⇐⇒ ap = `i(p− (0, 0)) + const.

In particular, this eliminates the naive choice ap = 0, or more generally ap = const, for i = 1
or 2. Here, we use the notation p− (0, 0) for the vector with the same coordinates as point p.

Proof. Let w̃i be the lift of wi in D̃. From
∂γp
∂s = w̃i(γp) and `i(w̃i) = 1 we obtain `i(

∂γp
∂s ) = 1

and by integrating between ap and s:

`i(γp(s)− p) = s− ap
since γp(ap) = p. Differentiating with respect to x, the above relation leads to

`i

(
∂γp
∂x
− eX

)
= −∂ap

∂x

Hence,
∂γp
∂x ∈ ker `i is equivalent to

∂ap
∂x = `i(eX). We conclude by integrating this last relation,

recalling that p− (0, 0) = xeX − y∞eY . �

Taking const = 0 in Lemma 4, we fix the parametrization of each γp by the initial condition:

γp(ap) = p with ap := `i(p− (0, 0)).

Note that `i(p− (0, 0)) is the algebraic distance of p to the line through (0, 0) in the direction
vi. This way, for any straight line parallel to ker `i all the flow curves cut this line with the
same parameter s. More precisely, we have

s = `i(γp(s)− (0, 0)).(5.16)

Looking at (4.10), we call the set of points γp(s) for which the phase θ cancels the ridge lines of
our corrugated map Fi. Equation (5.16) tells us that the ridge lines are straight lines parallel
to vi. See Figure 5.
We finally choose the corrugation number Ni satisfying the hypothesis of Lemma 2.

Lemma 5. Suppose that wi is nowhere horizontal, then ν = ∂γ/∂x does not vanish and is
proportional to vi. In particular, one has

‖vi · Fi − vi · fi−1‖∞ = O(1/Ni).

Proof of Lemma 5. Recall from Lemma 3 that ‖ν ·Fi− ν · fi−1‖∞ = O( 1
Ni

) where ν = ∂γ
∂x . Let

w̃i be the lift of wi in D̃ and let Φ be the flow of w̃i. Recalling that p = (0, 0) + xeX − y∞eY ,
we have in particular Φ(p, 0) = p and Φ(p, s − ap) = γ(x, s). Note that Φs(p) := Φ(p, s) is a

local diffeomorphism and by definition ∂Φ
∂s = w̃i. By differentiating s = `i(γ(x, s)− (0, 0)) with
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(0, 0)

p = γp(ap)

γp

ap

s

γp(s)

v1

(0, 0)

p

γp

ap

s
γp(s)

v2

(0, 0)

p

γp

ap

s

γp(s)

v3

Figure 5. A curve γp for each direction v1, v2 and v3 of the ridge lines.

respect to x we obtain `i(
∂γ
∂x ) = 0. In other words ν ∝ vi. It thus remains to prove that ν does

not cancel. On the one hand, we have

∂γ

∂x
=

∂

∂x
Φ(p, s− ap) = dΦs−ap · eX −

∂ap
∂x

w̃i(5.17)

By differentiating ap = `i(p− (0, 0)) with respect to x we obtain
∂ap
∂x = `i(eX). Whence,

∂γ

∂x
= dΦs−ap·eX − `i(eX)w̃i

On the other hand, we trivially have dΦs−ap · w̃i = w̃i. By hypothesis, eX and w̃i are indepen-
dent. Since Φs is a local diffeomorphism for every s, we infer that dΦs−ap·eX and dΦs−ap·w̃i
are also independent. In turn, we conclude from (5.17) that ∂γ

∂x 6= 0. �

Lemma 6. Suppose that wi is nowhere horizontal, then

‖µi − IFi‖ = O(1/Ni) and ρi(Ih − IFi) = O(1/Ni).

Proof. We first show that µi(u1, u2)−IFi(u1, u2) = O(1/Ni) for u1, u2 ∈ {vi, wi}. By definition
r2 = µi(wi, wi), in other words IFi(wi, wi) = µi(wi, wi). We compute

IFi(vi, vi)− µi(vi, vi) = IFi(vi, vi)− Ifi−1
(vi, vi) = 〈vi · Fi − vi · fi−1, vi · Fi + vi · fi−1〉

which is O(1/Ni) by Lemma 5. Since wi and vi are µi-orthogonal, we have

IFi(wi, vi)− µi(wi, vi) = IFi(wi, vi) = 〈wi · Fi, vi · Fi〉
By differentiating (4.10) with respect to s we get that wi ·Fi is a linear combination of wi ·fi−1

and the normal to the surface fi−1. Using that 〈wi · fi−1, vi · fi−1〉 = µi(wi, vi) = 0 it follows
that 〈wi · Fi, vi · fi−1〉 = 0. We can thus write

IFi(wi, vi)− µi(wi, vi) = 〈wi · Fi, vi · Fi − vi · fi−1〉 = O(1/Ni)

We conclude that ‖µi − IFi‖ = O(1/Ni). We can now write,

ρi(Ih − IFi) = ρi(Ih − µi) +O(1/Ni)

By considering the ith primitive coordinate of each member in (5.14) we obtain ρi(µi) = ρi(Ih),
whence the desired result: ρi(Ih − IFi) = O(1/Ni). �

6. Iterative construction

The effect of convex integration is to replace fi−1 by a map Fi whose first fundamental form
is close to µi. Considering the first step in the CI process, we note that the first primitive
coordinate of Ih − IF1

cancels. However, the second step of the CI process consists in interpo-
lating F1 and f0 to build f1. This interpolation perturbs the primitive coordinates of Ih − If1
and in particular its first coordinate may be negative. A similar phenomenon holds for the two
subsequent CI processes. In the end, the loop condition (C4) may not be satisfied by the pair
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(f3, h). This would prevent us from applying other CI processes to further reduce the isometric
error. To overcome this difficulty we replace the target metric Ih by an increasing sequence of
linearly interpolated metrics

Ik := τ2
k If0 + (1− τ2

k )Ih

that converges toward Ih, where (τk)k>0 is a strictly decreasing sequence of numbers converging
to 0 with τ0 = 1. Note that If0 < Ik < Ih over D. After three convex integrations with respect
to I1, the difference I1−If3 may have negative primitive coordinates, but by choosing sufficiently
large corrugation numbers, this difference will be small enough so that I2−If3 will have positive
primitive coordinates away from the boundary ∂D of D. This would allows us to iterate the
process, reducing the isometric error with respect to I2, I3,. . . until it vanishes in the limit.
Nevertheless, in the present construction there is yet another issue: because Ih = If0 along ∂D
we must have I1 = Ih along this boundary and it may happen again that the second and third
primitive coordinates of I1− If1 are negative in the vicinity of ∂D. This would prevent us from
building f2 over the entire domain D. We bypass this second difficulty by considering a nested
sequence of equatorial sub-ribbons of D

D0,3 ⊂ D1,1 ⊂ D1,2 ⊂ D1,3 ⊂ . . . ⊂ Dk,1 ⊂ Dk,2 ⊂ Dk,3 ⊂ . . . ⊂ D
of the form Dk,i := S1× ] − yk,i, yk,i[ where y0,3 < y1,1 < y1,2 < y1,3 < y2,1 . . . are chosen
such that ‖Ih − If0‖ 6 τ2

k on D \ Dk,3 (this is possible since Ih − If0 = 0 on ∂D and by
continuity). In particular, (yk,3)k converges to y∞. We next replace each Ik by three altered
metrics Ik,1, Ik,2, Ik,3 defined by

Ik,i(x, y) := (1− λk,i(|y|))If0(x, y) + λk,i(|y|)Ik(x, y)

where 0 6 λk,i 6 1 is an interpolating function with support [0,
yk,i−1+yk,i

2 ] and such that
λk,i(y) = 1 if and only if 0 6 y 6 yk,i−1. See Fig 6. For future reference, we set yk,i− 1

2
=

 ,ikλ

y
k,i−1 _

2

1y
− ,ik  ,i

y
k

1

y
k,i−1 _

2

1y
− ,ik  ,i

y
k

χ
k,i

1

Figure 6. Left, the interpolating function λk,i is defined over [0, yk,i]. Right,
the C∞ function χk,i.

yk,i−1+yk,i
2 . Remark that

• Ik,i = If0 over D \ (S1 × [−yk,i− 1
2
, yk,i− 1

2
]),

• Ik,i = Ik over Dk,i−1,
• Ik,i < Ik,i+1 over (S1×]− yk,i+ 1

2
, yk,i+ 1

2
[) \ (S1 × [−yk,i−1, yk,i−1]).

See Figure 7.
The sequence of metrics (Ik,i)k,i is increasing. Formally, for k < ` or for k = ` and i < j, we

have

If0 6 Ik,i 6 I`,j 6 Ih over D.(6.18)

We now recursively build a sequence of maps fk,i converging towards an isometric map and
satisfying fk,i = f0 over D \ Dk,i, for i = 1, 2, 3 and k > 1. Here and below we use the usual
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Ih

I2

I1

If
0

D1,2

D1,1

D 0,3

I1,1

I1,2

I1,3

D1,3

D

Figure 7. The nested domains and the interpolated metrics.

circular convention ∗k,0 = ∗k−1,3. We perform a convex integration process on the domain Dk,i
from an embedding fk,i−1 with the target metric µk,i (to be defined below) derived from Ik,i in
the direction wk,i. In Lemma 12 at the end of Section 8 we prove that wk,i is never horizontal.
As for D, the boundary of Dk,i is composed of two latitudes, one in each hemisphere. Given a
point p = (x,−yk,i) on the south boundary of Dk,i, we consider the flow line of wk,i starting
at p. This flow line is never horizontal and crosses the domain to reach its north boundary.

We denote by γp : [ap, bp]→ D̃k,i the flow line of the lift w̃k,i of wk,i with the initial condition

wk,i

k,iD

ui

(0,0)

pp p(a  )=

(b )p p

p(0)

γ

γ

γ

Figure 8. A flow line of wk,i in the parametric domain Dk,i.

γp(ap) = p, where ap = `i(p−(0, 0)). Here, bp is such that γp(bp) belongs to the north boundary

of D̃k,i. See Fig 8. Replacing the curve γ of Formula (4.8) by γp leads to our formula for the

corrugated map F̃k,i : D̃k,i → R3:

F̃k,i ◦ γp(s) := fk,i−1([p]) +

∫ s

ap

r(γp(σ))
(

cos θ t(γp(σ)) + sin θ n(γp(σ))
)
dσ,(6.19)

where t(γp(σ)) is the unit vector tangent to the curve fk,i−1 ◦ [γp] and n(γp(σ)) is the normal
to the surface fk,i−1(Dk,i) at the point fk,i−1([γp(σ)]). Here, θ := θ(p, σ) = αp(σ) cos(2πNk,iσ)
with

αp(σ) := J−1
0

(
‖(fk,i−1 ◦ [γp])

′(σ)‖
r(γp(σ))

)
,

and r(γp(σ)) is the target speed
√
µk,i(wk,i, wk,i) at the point [γp(σ)].
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Lemma 7. If 2πNk,i`i(eX) ∈ Z, then F̃k,i descend to the quotient on Dk,i.

Proof. The lemma follows from Lemma 2, noting that ap = `i(p − (0, 0)) implies ap+2πeX =
ap + 2π`i(eX). �

From now on we choose Nk,i so that the condition in Lemma 7 is fulfilled and we denote
by Fk,i : Dk,i → R3 the resulting quotient map. Since the resulting map Fk,i is only defined
over Dk,i we then perform the second step of the CI process by defining fk,i with the following
interpolation formula:

(6.20) fk,i(x, y) := (1− χk,i(|y|))Fk,i(x, y) + χk,i(|y|)fk,i−1(x, y).

where 0 6 χk,i 6 1 is a plateau function with support ]yk,i− 1
2
, yk,∞[ satisfying

0 < χk,i(y) < 1 =⇒ y ∈ ]yk,i− 1
2
, yk,i[,

see Figure 6. We point out that the restriction of fk,i over D \ Dk,i is equal to f0 and that
fk,i = Fk,i in Dk,i−1. In particular, fk,i connects in a C1 manner to the north and south caps
along ∂D.

7. The Stage Theorem and the Convergence towards a Reduced Sphere

In this section and the following one we state and prove the convergence of the sequence
(fk,3)k towards an isometric map.

Lemma 8. We have ‖fk,i − Fk,i‖C1 = O(1/Nk,i). In particular, ‖Ifk,i − IFk,i‖ = O(1/Nk,i).

Proof. We detail the proof for k = 1. The general case follows easily. We have f1,i − F1,i =
χ1,i(f1,i−1−F1,i). From (4.12) we directly obtain ‖f1,i−1−F1,i‖C0 = O(1/N1,i). For any vector
field U we have

U · f1,i − U · F1,i = (U · χ1,i)(f1,i−1 − F1,i) + χ1,i(U · f1,i−1 − U · F1,i)

= O(1/N1,i) + χ1,i(U · f1,i−1 − U · F1,i)

When U = vi the second term in the right hand side is a O(1/N1,i) by Lemmas 5 and 12. When
U = w1,i this second term vanishes since we either have χ1,i = 0 or w1,i ·f1,i−1 = w1,i ·F1,i. The
latter equality can be seen by noting that χ1,i 6= 0 implies that the target metric I1,i is equal
to If0 . Hence, the target speed in Formula (5.13) is equal to the initial speed ‖w1,i ·f1,i−1‖ and
consequently the restrictions of F1,i and f1,i−1 over the flow lines of w1,i are translates of each
other. �

The introduction of the nested domains D1,i and intermediate metrics I1,i allows us to control
the additional error due to the interpolation step and provide the necessary slackness to iterate
the CI process. Indeed, to compute f1,1 we apply a CI process over D1,1 with the target metric

(7.21) µ1,1 = ρ1(I1,1)`1 ⊗ `1 + ρ2(If0)`2 ⊗ `2 + ρ3(If0)`3 ⊗ `3 = If0 + ρ1(I1,1 − If0)`1 ⊗ `1
For the next CI process, we target the metric

µ1,2 = If1,1 + ρ2(I1,2 − If1,1)`2 ⊗ `2.

Hence, to process F1,2 we need that ρ2(I1,2) > ρ2(If1,1) over D1,2. We first show how to ensure
this inequality over D1,2 \ D1,1 by a convenient choice of convex integration and interpolation
parameters. We have

ρ2(I1,2) = (1− λ1,2)ρ2(If0) + λ1,2ρ2(I1) over D1,2 \ D1,1.
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Recalling that I1 is a linear interpolation of If0 and Ih we also have that ρ2(I1) > ρ2(If0). Since
If1,1 = If0 over D1,2 \ D1,1, we deduce that ρ2(I1,2) > ρ2(If1,1). We now check this inequality
over D1,1. From Equation (7.21) and Lemma 6, one has

ρ2(If1,1) = ρ2(If1,1 − IF1,1
) + ρ2(µ1,1) + ρ2(IF1,1

− µ1,1)(7.22)

= ρ2(If1,1 − IF1,1
) + ρ2(If0) +O(1/N1,1).

Since I1,2 = I1 over D1,1 and ρ2(I1) > ρ2(If0) over D, we get

ρ2(I1,2) > ρ2(If0) over D1,1 ∪ ∂D1,1.(7.23)

By the interpolation formula, f1,1 and F1,1 are identical over D1,1 \ Z1,1, where Z1,1 is the
blending region of F1,1 with f0:

Z1,1 := D1,1 \ (S1 × [−y1, 12
, y1, 12

]).

It follows from Equation (7.22) that ρ2(If1,1) = ρ2(If0)+O(1/N1,1) overD1,1\Z1,1. By (7.23) we
conclude that ρ2(I1,2) > ρ2(If1,1) over the same domain. Over Z1,1, we have I1,1 = If0 = µ1,1,
whence:

ρ2(If1,1) = ρ2(If1,1 − µ1,1) + ρ2(µ1,1)

= ρ2(If1,1 − µ1,1) + ρ2(If0).

By Lemma 8, we have If1,1 − IF1,1
= O(1/N1,1). It follows from Lemma 6 that If1,1 − µ1,1 =

O(1/N1,1) and thus ρ2(If1,1) can be made arbitrarily close to ρ2(If0). By (7.23) we conclude
ρ2(I1,2) > ρ2(If1,1) as desired.

By a convenient choice of N1,1 we can thus iterate the process to build f1,2. Similarly, a
convenient choice of N1,2 and N1,3 allows to build f1,3 and to ensure the loop condition for the
pair (f1,3, I2). More generally, recalling that ‖Ih − If0‖ 6 τ2

k on D \ Dk,3, we can prove the
following theorem (see Section 8):

Theorem 9 (Stage Theorem). Assume that for i = 1, 2, 3, ρi(Ik,1) > ρi(fk−1,3) over Dk,1. We
can choose Nk,1, Nk,2 and Nk,3 such that fk,3 satisfies

(1) for i = 1, 2, 3, ρi(Ik+1,1) > ρi(Ifk,3) over Dk+1,1,

(2) ‖Ik,3 − Ifk,3‖
1/2
∞ 6 Cτk−1,

(3) ‖dfk,3 − dfk−1,3‖∞ 6 C ′τk−1,

where C,C ′ are constants independent of k.

Note that from (4.12) the difference ‖fk,3 − fk−1,3‖∞ can be made arbitrarily small.

Corollary 10. If
∑
τk < +∞ then any sequence (fk,3) (glued with f0 along ∂D) satisfy-

ing condition (1-3) of the Stage Theorem C1 converges towards an isometric map f∞ of S2.
Furthermore for any ε > 0 we can enforce that ‖f∞ − f0‖∞ < ε.

Proof. Because
∑
τk < +∞ the sequence (dfk,3)k is Cauchy. The sequence (fk,3)k is obviously

converging on ∂D, hence is C1 converging towards a C1 map f∞. Now, by taking the limit
on both sides of point (2) of the Stage Theorem we conclude that f∞ is an isometric map.
Moreover, the control of the difference ‖fk,3 − fk−1,3‖∞ in the Stage Theorem allows us to
enforce ‖f∞ − f0‖∞ < ε. �

Viewing S2 as the surface of the Earth, the map f∞ thus fits the Earth isometrically inside
any ball containing S0 = f0(S2) in its interior, see Figure 9. These rendered images were
obtained from a discretization of f1,3. The underlying computations were performed on a 16
core CPU with 64 Gb of RAM and took 2h46mn. We used a regular grid of size 4, 000×20, 000
to sample each embedding fk,j . The following table gives the improvement of the metric at
each of the three first steps.
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Figure 9. Left, an isometric sphere. Right, the reduced sphere is placed at
the center of the original round sphere. Rendered images obtained after three
steps and visualizing the image of f1,3. Note that the difference between the
image of f1,3 and f∞ is imperceptible since the amplitude of the corrugations
decrease dramatically.

k j Nk,j N∗k,j ave(sup)‖Ih − Ifk,j‖ ave(sup)‖Ik,j − Ifk,j‖
0 - - - 0.90 (1.17 ) -
1 1 4.72 21 0.83 (1.03 ) 0.14 (0.24 )
1 2 31.96 142 0.73 (0.95 ) 0.07 (0.16 )
1 3 334.92 997 0.66 (0.94 ) 0.03 (0.18 )

Note that the corrugation number Nk,j is a real number but the number of visible ridge lines on
the whole sphere is an integer denoted by N∗k,j in the table. The last two columns indicate the

average (maximum) isometric error. For the last column, we observe that the isometric error
is relative to the I1,j which are only equal over a subdomain (see Figure 7). The comparison of
the maximum error is thus not very meaningful. The average value clearly decreases, showing
the good approximation of the metric I1 over D0,3.

8. Proof of the Stage Theorem

We write fk,i = IC(fk,i−1,Dk,i, Nk,i) to emphasize the dependency of the process on Dk,i
and Nk,i. We set Dk,i := Ik,i − Ifk,i−1

and write

Dk,i =

3∑
j=1

ρj(Dk,i)`j ⊗ `j

for its decomposition in the basis (`1 ⊗ `1, `2 ⊗ `2, `3 ⊗ `3). We also define

µk,i := Ifk,i−1
+ ρi(Dk,i)`i ⊗ `i.

Theorem 11 (Step theorem). Assume that ρi(Dk,i) > 0 over Dk,i. We have

(1) ‖fk,i − fk,i−1‖∞ = O( 1
Nk,i

)

(2) ‖dfk,i − dfk,i−1‖∞ 6 Ck,i
Nk,i

+ 2
√

7‖ρi(Dk,i)‖1/2



AN EXPLICIT ISOMETRIC REDUCTION OF THE UNIT SPHERE INTO AN ARBITRARILY SMALL BALLDEDICATED TO THE MEMORY OF DAVID SPRING17

(3) ‖µk,i − Ifk,i‖∞ 6
C′k,i
Nk,i

,

where Ck,i and C ′k,i do not depend on Nk,i.

Proof. Point (1) is a direct consequence of (4.12) and (6.20). For Point (2) we have

‖U · fk,i − U · fk,i−1‖ 6 ‖U · fk,i − U · Fk,i‖+ ‖U · Fk,i − U · fk,i−1‖

for U = wk,i or U = vi, and by Lemma 8:

‖U · fk,i − U · Fk,i‖ 6
C1

Nk,i
(8.24)

where C1 is a constant that depends on the parameters at the step k, i. On the other hand, we
have by a direct application of Lemma 4 in [5]:

‖wk,i · Fk,i − wk,i · fk,i−1‖ 6
√

7‖ρi(Dk,i)‖1/2.(8.25)

We also have

‖vi · Fk,i − vi · fk,i−1‖ 6
C2

Nk,i
(8.26)

from Lemma 5. Putting (8.24), (8.25) and (8.26) together we obtain Point (2), similarly as in
Lemma of [5]. For Point (3), we write

µk,i − Ifk,i = (µk,i − IFk,i) + (IFk,i − Ifk,i)

and conclude thanks to Lemmas 6 and 8. �

We now turn to the proof of the Stage Theorem.

Proof of Theorem 9. From the Step theorem we know that ‖µk,1 − Ifk,1‖ = O( 1
Nk,1

). In order

to apply a second step we need to prove that ρ2(Dk,2) > 0 over Dk,2. Let Errk,1 = µk,1− Ifk,1 .
From the definition of the Dk,i we have

Dk,2 = Dk,1 + Ik,2 − Ik,1 + Errk,1 − ρ1(Dk,1)`1 ⊗ `1(8.27)

whence

ρ2(Dk,2) = ρ2(Dk,1) + ρ2(Ik,2 − Ik,1) + ρ2(Errk,1).(8.28)

• Over Dk,0, we have Ik,2 = Ik,1 and ρ2(Dk,1) > 0. Choosing Nk,1 such that ρ2(Errk,1) <
ρ2(Dk,1) thus ensures that ρ2(Dk,2) > 0.

• Over Dk,1 \ Dk,0, the sum ρ2(Dk,1) +ρ2(Ik,2− Ik,1) is strictly positive. Indeed, the two
terms are non-negative, ρ2(Dk,1) only cancels on the boundary of Dk,1 while ρ2(Ik,2 −
Ik,1) is strictly positive on this boundary. Choosing Nk,1 such that ρ2(Errk,1) is small
enough we ensure that ρ2(Dk,2) > 0.
• OverDk,2\Dk,1, we have Errk,1 = Dk,1 = 0 and ρ2(Ik,2−Ik,1) > 0 whence ρ2(Dk,2) > 0.

We thus apply a second convex integration to obtain fk,2 = IC(fk,1,Dk,2, Nk,2). Similar

arguments show that ρ3(Dk,3) > 0 provided that N−1
k,1 and N−1

k,2 are small enough. We can

eventually perform a third convex integration to get fk,3 = IC(fk,2,Dk,3, Nk,3).
We now prove point (1) of the theorem. Putting Errk,i = µk,i − Ifk,i , we first observe that

Errk,i = (Ifk,i−1
− Ifk,i) + ρi(Dk,i)`i ⊗ `i

and

µk,i = Ik,i −
∑
j 6=i

ρj(Dk,i)`j ⊗ `j .
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Whence for j 6= i, ρj(Errk,i) = ρj(Ifk,i−1
− Ifk,i). We also have ρi(µk,i) = ρi(Ik,i), so that

ρi(Errk,i) = ρi(Ik,i − Ifk,i). We have

Dk+1,1 = Ik+1,1 − Ifk,3
= (Ik+1,1 − Ik,1) + (Ik,1 − Ifk,1) + (Ifk,1 − Ifk,2) + (Ifk,2 − Ifk,3).

We deduce

ρ1(Dk+1,1) = ρ1(Ik+1,1 − Ik,1) + ρ1(Errk,1) + ρ1(Errk,2) + ρ1(Errk,3)

Note that each Errk,i vanishes over D \ Dk,3 and can be made arbitrarily small over Dk,3 by
a convenient choice of the Nk,i. Since the ρi(Ik+1,1 − Ik,1) are strictly positive over Dk+1,1

we conclude that ρ1(Dk+1,1) > 0 over Dk+1,1. Similar arguments show that ρ2(Dk+1,1) and
ρ3(Dk+1,1) are strictly positive over Dk+1,1.

We now prove point (2). We write Ik,3 − Ifk,3 = (Ik,3 − Ik+1,1) +Dk+1,1 and focus on Dk+1,1.
Recall from (8.27) that for i = 1, 2, 3,

Dk,i+1 = Dk,i + Ik,i+1 − Ik,i + Errk,i − ρi(Dk,i)`i ⊗ `i,

where by convention Dk,4 := Dk+1,1 and Ik,4 := Ik+1,1. By summation we get

Dk+1,1 = Dk,1 + (Ik+1,1 − Ik,1)−
3∑
i=1

ρi(Dk,i)`i ⊗ `i +

3∑
i=1

Errk,i

= Ik+1,1 − Ik,1 +

3∑
i=1

Errk,i − ρ2(Dk,2 −Dk,1)`2 ⊗ `2 − ρ3(Dk,3 −Dk,1)`3 ⊗ `3.

The last two terms ρ2(Dk,2−Dk,1)`2⊗`2 and ρ3(Dk,3−Dk,1)`3⊗`3 can be bounded as follows.
From the definition of Errk,i we may write

Errk,1 = Ik,1 − ρ2(Dk,1)`2 ⊗ `2 − ρ3(Dk,1)`3 ⊗ `3 +Dk,2 − Ik,2
= Ik,1 − Ik,2 + ρ1(Dk,2)`1 ⊗ `1 + ρ2(Dk,2 −Dk,1)`2 ⊗ `2 + ρ3(Dk,2 −Dk,1)`3 ⊗ `3.

We deduce from (2.3) that |ρ2(Dk,2 −Dk,1)| 6
√

6
2 (‖Errk,1‖+ ‖Ik,2 − Ik,1‖). Similarly,

Errk,2 = Ik,2 − Ik,3 + ρ1(Dk,3 −Dk,2)`1 ⊗ `1 + ρ2(Dk,3)`2 ⊗ `2 + ρ3(Dk,3 −Dk,2)`3 ⊗ `3
and by summation, we obtain

Errk,1 + Errk,2 − (Ik,1 − Ik,3) = (∗)`1 ⊗ `1 + (∗)`2 ⊗ `2 + ρ3(Dk,3 −Dk,1)`3 ⊗ `3.

Whence |ρ3(Dk,3 − Dk,1)| 6
√

2(‖Errk,1‖ + ‖Errk,2‖ + ‖Ik,3 − Ik,1‖). Back to our initial
objective, we can now write

‖Ik,3 − Ifk,3‖ 6 ‖Ik,3 − Ik+1,1‖+ ‖Dk+1,1‖ 6 I + E

where

I = ‖Ik,3 − Ik+1,1‖+ ‖Ik+1,1 − Ik,1‖+

√
6

2
‖Ik,2 − Ik,1‖+

√
2‖Ik,3 − Ik,1‖

and

E =

3∑
i=1

‖Errk,i‖+

√
6

2
‖Errk,1‖+

√
2(‖Errk,1‖+ ‖Errk,2‖).

By the interpolation formula of the metrics we have over Dk,0:

‖Ik+1,1 − Ik,3‖ = ‖Ik+1,1 − Ik,1‖ = ‖Ik+1 − Ik‖ 6 τ2
k‖Ih − If0‖ and Ik,1 = Ik,2 = Ik,3.
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It follows that I 6 2τ2
k‖Ih − If0‖. Over D \ Dk,0, we have:

‖Ik+1,1 − Ik,3‖, ‖Ik+1,1 − Ik,1‖, ‖Ik,2 − Ik,1‖, ‖Ik,3 − Ik,1‖ 6 ‖Ih − If0‖ 6 τ2
k−1

where the last inequality comes from the choice of the domain Dk,0. We conclude that the
inequality

I 6 C2

2
τ2
k−1 with C2 = 2 max(2 +

√
6

2
+
√

2, 2‖Ih − If0‖)

holds over D. By point (3) of the Step Theorem, we can choose Nk,1, Nk,2 and Nk,3 so that

E 6 C2

2 τ
2
k−1. This concludes the proof of point (2).

It remains to prove point (3) of the theorem. We first write

‖dfk,3 − dfk,0‖ 6
3∑
i=1

‖dfk,i − dfk,i−1‖.

From point (2) of the Step Theorem we deduce that

‖dfk,3 − dfk,0‖ 6
3∑
i=1

O(
1

Nk,i
) + 2

√
7

3∑
i=1

‖ρi(Dk,i)‖1/2.

Recall that ‖ρ1(Dk,1)‖ 6
√

6
2 ‖Dk,1‖ =

√
6

2 ‖Ik,1−Ifk,0‖. For ρ2(Dk,2) we have by Formula (8.28)
and by the subadditivity of the square root:

‖ρ2(Dk,2)‖1/2 6 ‖ρ2(Dk,1)‖1/2 + ‖ρ2(Ik,2 − Ik,1)‖1/2 + ‖ρ2(Errk,1)‖1/2

6

(
3

2

)1/4

(‖Dk,1‖1/2 + ‖Ik,2 − Ik,1‖1/2 + ‖Errk,1‖1/2).

Arguing as for point (2), we have by a convenient choice of Nk,1 and some appropriate constant
C1,

‖ρ2(Dk,2)‖1/2 6 C1(‖Dk,1‖1/2 + τk−1).

A similar computation shows that

‖ρ3(Dk,3)‖1/2 6 C2(‖Dk,1‖1/2 + τk−1).

Altogether we get

‖dfk,3 − dfk,0‖ 6
3∑
i=1

O(
1

Nk,i
) + C3(‖Ik,1 − Ifk,0‖1/2 + τk−1).

Choosing the Nk,i large enough, we eventually get

‖dfk,3 − dfk,0‖ 6 C4(‖Ik,1 − Ifk,0‖1/2 + τk−1) and

‖Ik,1 − Ifk,0‖1/2 6 ‖Ik,1 − Ik−1,3‖1/2 + ‖Ik−1,3 − Ifk,0‖1/2 6 ‖Ik,1 − Ik−1,3‖1/2 + C5τk−2.

where we used point (2) for the last inequality. We also get from the proof of this point
that ‖Ik,1 − Ik−1,3‖1/2 6 C6τk−2 with C6 = max(1, ‖Ih − If0‖1/2). We finally conclude that
‖dfk,3 − dfk,0‖ 6 C ′τk−1. �

We end this section by showing that wk,i is nowhere horizontal.

Lemma 12. If the corrugation numbers are chosen large enough, the vector field wk,i is never
horizontal, i.e. eX and wk,i are everywhere independent on Dk,i.
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Proof. For conciseness we put w = wk,i and µ = µk,i. Let us write w = XeX + Y eY . It is
enough to prove that Y is strictly positive. For i = 3, this condition is trivially satisfied since
by definition of `3 we have on the one hand `3(w) = Y (see Section 2) and by definition of w
we have on the other hand `3(w) = 1 (see Section 6). For i = 1, 2 we compute(

X
Y

)
=

1

EG− F 2

(
G −F
−F E

)(
µX
µY

)
(8.29)

where µX = µ(w, eX) and µY = µ(w, eY ) and E,F,G are the coefficients of the matrix of µ in
the basis (eX , eY ). We thus want to prove

−FµX + EµY > 0.(8.30)

Recall from Section 5 that µ(w, vi) = 0 and `i(w) = 1. For i = 1, µ(w, v1) = 0 implies

µX = µY while `1(w) = 1 gives X + Y =
√

2. From (8.29) we derive µX
E−2F+G
EG−F 2 =

√
2. Since

E − 2F + G = µ(eX − eY , eX − eY ) > 0 we deduce µX > 0. Condition (8.30) thus reduces
to E > F . For i = 2 similar arguments lead to E > −F . The two conditions are implied
by E > |F |. We now prove by induction that this holds true for every (k, i). Recall from
Proposition 1 that the F coefficient of the matrix If0 vanishes everywhere. This is also true
for Ih, hence for all the interpolated matrices Ik,i. In particular, E > |F | = 0 for all those
matrices. Recall from (7.21) that µ1,1 = If0 + ρ1(I1,1 − If0)`1 ⊗ `1, whence

µ1,1 = If0 +
1

2
ρ1(I1,1 − If0)

(
1 1
1 1

)
.

Since ρ1(I1,1− If0) > 0, the inequality E0 > |F0| = 0 implies E(µ1,1) > |F (µ1,1)| (with obvious
notations). It follows that each flow line of w1,1 joins the south boundary to the north boundary
of D1,1. We can thus apply the CI process to build f1,1. From Point (3) in the Step theorem
we can choose N1,1 large enough so that E(If1,1) > |F (If1,1)|. From the definition of µ1,2:

µ1,2 = If1,1 + ρ2(I1,2 − If1,1)`2 ⊗ `2 = If1,1 +
1

2
ρ2(I1,2 − If1,1)

(
1 −1
−1 1

)
we directly obtain E(µ1,2) > |F (µ1,2)|. Inductively, the same arguments show that for Nk,i
large enough we have E(µk,i+1) > |F (µk,i+1)|. �

9. From C∞ to C1 fractal structures

We denote by vk,i the normalized derivative of fk,i in the direction vi and by nk,i the unit
normal to fk,i. We also set v⊥k,i := vk,i × nk,i. Obviously, there exists a matrix Ck,i ∈ SO(3)
such that

(v⊥k,i vk,i nk,i)
t = Ck,i · (v⊥k,i−1 vk,i−1 nk,i−1)t.

As usual we use the circular convention ∗k,0 = ∗k−1,3. Here, (a b c)t stands for the transpose
of the matrix with column vectors a,b and c. The matrix Ck,i encodes the effect of one
corrugation on the map fk,i−1 and is thus called a corrugation matrix. We set

R(k, i) =

∞∏
`=k+1

 3∏
j=1

C`,j

 3∏
j=i

Ck,j .

The Gauss map n∞ of the limit embedding f∞ := lim
k→+∞

fk,3 can thus be expressed as

nt∞ = (0 0 1) ·R(k, i) · (v⊥k,i−1 vk,i−1 nk,i−1)t.(9.31)

Together with the description of the asymptotic behaviour of Ck,i, the above expression involving
an infinite product of matrices was recognized in [4] as a generalized Riesz product and termed
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C1 fractal structure. In the present case, we have a new phenomenon that arises from the
boundary condition.

Figure 10. Schematic view of successive corrugations over the sequence of domains.

Theorem 13 (C1 fractal expansion). The Gauss map n∞ of the limit embedding f∞ :=
lim

k→+∞
fk,3 over the domain Dk,i \ Dk,i−1, where k > 1 and i ∈ {1, 2, 3}, is given by

nt∞ = (0 0 1) ·R(k, i) · (v⊥0,i v0,i n0)t

where v0,i is the normalized derivative of f0 in the direction vi, the vector n0 is the unit normal
to f0, and v⊥0,i := v0,i × n0.

Proof. The theorem is a direct consequence of Formula (9.31) noting that fk,i−1 = f0 over
Dk,i \ Dk,i−1. �

The C1 fractal expansion theorem allows us to describe the transition between the smooth
structure of the polar caps and the C1 fractal structure of the equatorial belt. At the center
of the equatorial belt, the limit Gauss map is extracted from the infinite product of rotation
matrices R(1, 1) applied to an initial frame. As we get closer to the boundary of D, this infinite
product is replaced by its successive remainders R(k, i). As illustrated in Figure 1 moving
from the boundary of the polar caps towards the equator, new corrugations arise with larger
and larger amplitudes. An analogous phenomenon occurs with the von Koch curve. In the
recursive construction from an initial line segment, each step amounts to add a piecewise linear
corrugation over a larger and larger central subsegment (See Figure 10). Walking from an
endpoint of the resulting von Koch curve towards its center we observe a C0 fractal structure
with an expansion phenomenon.

10. Conclusion

Our constructions of a reduced sphere, and previously of an isometric embedding of a flat
torus [4], naturally raise the question of their generalization to arbitrary Riemannian surfaces.
The constructions are based upon convex integration processes that apply to family of flow
lines that foliate pieces of surfaces. As opposed to the torus, the sphere has no global foliation.
This explains why we chose to cut the sphere into a central ribbon (topologically, a cylinder)
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and two caps. The initial short embedding of the central ribbon was further chosen so that
the isometric default fits into the convex region spanned by three primitive metrics. This is
a crucial point in our construction in Section 5. Since both the flow lines and the isometric
default change at each CI process, this would a priori impose a new decomposition of the sphere
at each step leading to a potentially increasing number of pieces. We resolved this point by
proving that we could use a unique decomposition for the whole process, see Lemma 12 and
point (1) in the Stage Theorem. Working with a single decomposition greatly simplifies the
pasting of the different pieces and brought out the C1 fractal expansion phenomenon.

On surfaces of genus two or more one could similarly resort on a decomposition into elemen-
tary pieces but the existence of a single decomposition that would fulfill the above conditions
on flow lines and isometric default is a real issue. The convex integration process should prob-
ably be reviewed or drastically simplified before one could describe an effective construction.
Producing isometric embeddings of general Riemannian surfaces remains a challenge.
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