Université Claude Bernard Lyon 1

M1 EADM – Géométrie

Corrigé du partiel du 15 novembre 2012

Les documents et les calculettes sont interdits. Il sera tenu compte de la qualité de la rédaction pour l'attribution d'une note.

Les questions. – Les questions sont indépendantes les unes des autres. Chaque question rapporte 2 points.

1.— Montrer que si $\overrightarrow{f} = kId$, $k \neq 1$, alors f est une homothétie dont on déterminera le rapport et le centre.

Rép.— Montrons d'abord que f a un point fixe. Soient O et M deux points quelconques, la formule de Grassmann s'écrit

$$f(M) = f(O) + \overrightarrow{f}(\overrightarrow{OM})$$

soit encore

$$M' = O' + k\overrightarrow{OM} = O' + k\overrightarrow{OO'} + k\overrightarrow{O'M}$$

d'où

$$\overrightarrow{O'M'} - k\overrightarrow{O'M} = k\overrightarrow{OO'}$$

et M est fixe si et seulement si

$$\overrightarrow{O'M'} = \frac{k}{1-k}\overrightarrow{OO'}.$$

On note I l'unique point fixe de f caractérisé par la relation

$$\overrightarrow{O'I} = \frac{k}{1-k}\overrightarrow{OO'}.$$

On a

$$M' = I + \overrightarrow{f}(\overrightarrow{IM}) \Rightarrow IM' = \overrightarrow{f}(\overrightarrow{IM}) = k\overrightarrow{IM}$$

et f est une homothétie de centre I et de rapport k.

2.— Montrer que si le sous-espace affine $Fix\ f$ des points fixes d'une isométrie plane f est une droite, alors f est une réflexion par rapport à $D = Fix\ f$.

Rép.— Soient $N \in D$ et $M \notin D$. Puisque f est une isométrie, M'N' = MN et comme $N \in D$ on a aussi M'N' = M'N. En fin de compte, M'N = MN et donc N appartient à la médiatrice Δ de [M, M']. Ainsi D = Fix $f \subset \Delta$ et pour des questions de dimension $D = \Delta$. En particulier M' est le symétrique de M par rapport à D et f est une réflexion.

3.— Soit s une réflexion du plan et r une rotation plane. Montrer que $\forall k \in \mathbb{N}$ on a $s \circ r^k \circ s = r^{-k}$.

Rép.— La composée $s \circ r$ est une isométrie indirecte, d'après la classification des isométries planes ce ne peut être qu'une réflexion et donc $(s \circ r)^2 = id$. Par conséquent $s \circ r \circ s = r^{-1}$ et en itérant cette relation $s \circ r^k \circ s = r^{-k}$.

4.— Soit $T = \{A, B, C, D\}$ un tétraèdre régulier. Montrer que le cardinal de l'ensemble des isométries affines qui conservent T est inférieur ou égal à 24.

Rép.— Une telle isométrie permute les points A, B, C et D. Or une isométrie de l'espace est une application affine, elle est entièrement déterminée par l'image de quatre points affinement indépendants. Il ne peut donc y avoir au plus que 4! = 24 isométries qui laissent T invariant.

5.— Soient A, B et M trois points distincts d'un cercle de centre O. Montrer que $2(\overrightarrow{MA}, \overrightarrow{MB}) = (\overrightarrow{OA}, \overrightarrow{OB})$ (égalité de mesures d'angles orientés de vecteurs).

Rép.— Dans le triangle MAO on a

$$(\overrightarrow{MA}, \overrightarrow{MO}) + (\overrightarrow{AO}, \overrightarrow{AM}) + (\overrightarrow{OM}, \overrightarrow{OA}) = \pi \quad [2\pi].$$

Ce triangle est isocèle donc $(\overrightarrow{MA}, \overrightarrow{MO}) = (\overrightarrow{AO}, \overrightarrow{AM})$ [2 π] d'où

$$2(\overrightarrow{MA},\overrightarrow{MO})+(\overrightarrow{OM},\overrightarrow{OA})=\pi\quad [2\pi].$$

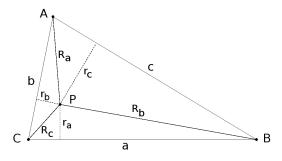
Les mêmes considérations dans le triangle MBO conduisent à

$$2(\overrightarrow{MO},\overrightarrow{MB})+(\overrightarrow{OB},\overrightarrow{OM})=\pi \quad [2\pi].$$

En sommant

$$2(\overrightarrow{MA}, \overrightarrow{MB}) + (\overrightarrow{OB}, \overrightarrow{OA}) = 0 \quad [2\pi].$$

Le problème. – (10 pts) Soit P un point à l'intérieur d'un triangle ABC. On appelle a, b, c les longueurs des trois côtés; r_a , r_b , r_c les distances de P au côtés et R_a , R_b , R_c les longueurs PA, PB, PC.



- 1) On suppose que $P \in BC$. Montrer que :
 - i) Aire $(ABC) = \frac{1}{2}(br_b + cr_c)$. ii) $aR_a \ge br_b + cr_c$.

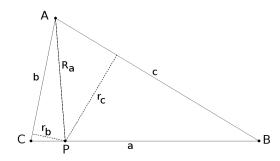
 $\mathbf{R\acute{e}p.}-\,\,\mathrm{i})$ On a

$$Aire(ABC) = Aire(APC) + Aire(APB) = \frac{1}{2}br_b + \frac{1}{2}cr_c.$$

ii) Soit H le projeté orthogonal de A sur BC. On a

$$Aire(ABC) = a.AH \le a.AP = a.R_a$$

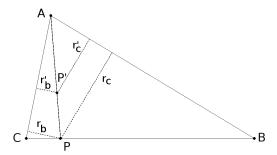
d'où : $\frac{1}{2}a.R_a \ge \frac{1}{2}br_b + \frac{1}{2}cr_c$.



- 2) En utilisant une homothétie de centre A, montrer que $a.R_a \geq br_b + cr_c$ pour tout P dans ABC.
- **Rép.** Soit P' dans ABC. On suppose $P' \notin (BC)$ et on note $P = (AP') \cap (BC)$. Soit h l'homothétie de centre A et de rapport AP'/AP. On note aussi $R'_a := AP'$ $(R_a = AP)$. On a donc

$$\frac{r_a'}{r_a} = \frac{r_b'}{r_b} = \frac{R_a'}{R_a}.$$

Par conséquent, si $a.R_a \ge br_b + cr_c$ alors $a.R_a' \ge br_b' + cr_c'$.



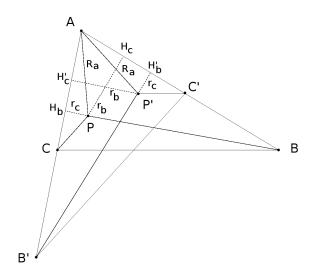
3) En utilisant l'image de P par la réflexion par rapport à la bissectrice de l'angle en A, montrer que pour tout P dans ABC on a

$$aR_a \ge br_{\mathbf{c}} + cr_{\mathbf{b}}$$
.

Rép.— Soit s la réflexion par rapport à la bissectrice de l'angle en A. Notons H_b (resp. H_c) le projeté orthogonal de P sur (AC) (resp. sur (AB)). Puisque l'axe de la réflexion est la bissectrice de l'angle en A, les images B' = s(B) et C' = s(C) sont sur les droites (AC) et (AB). Si P' est l'image de P par s. L'image de $H_b \in (AC)$ est donc un point H'_b sur (AB). Puisque s est une isométrie,

$$\angle PH_bA = \angle P'H'_bA = \text{ angle droit }.$$

Donc H_b' est le projeté orthogonal de P' sur (AB) et $P'H_b' = r_b'$. Il s'en suit que $r_c = r_b'$. De même $r_b = r_c'$. La relation $aR_a \ge br_b + cr_c$ devient $aR_a' \ge br_b' + cr_c'$ soit encore $aR_a \ge br_c + cr_b$.



4) Déduire de la question précédente que :

$$R_a + R_b + R_c \ge \frac{b^2 + c^2}{bc} r_a + \frac{c^2 + a^2}{ca} r_b + \frac{a^2 + b^2}{ab} r_c$$

puis établir l'inégalité d'Erdös-Mordell:

$$R_a + R_b + R_c \ge 2(r_a + r_b + r_c).$$

Rép.- On écrit

$$R_a \geq \frac{b}{a}r_c + \frac{c}{a}r_b$$

$$R_b \geq \frac{c}{b}r_a + \frac{a}{b}r_c$$

$$R_c \geq \frac{b}{a}r_a + \frac{a}{a}r_b$$

et on somme

$$R_a + R_b + R_c \ge \left(\frac{c}{b} + \frac{b}{c}\right)r_a + \left(\frac{c}{a} + \frac{a}{c}\right)r_b + \left(\frac{b}{a} + \frac{a}{b}\right)r_c$$

d'où

$$R_a + R_b + R_c \ge \frac{b^2 + c^2}{bc} r_a + \frac{c^2 + a^2}{ca} r_b + \frac{a^2 + b^2}{ab} r_c.$$

De $(a-b)^2 \geq 0$ on déduit $a^2+b^2 \geq 2ab$ et donc $\frac{a^2+b^2}{ab} \geq 2$. Il en découle

$$R_a + R_b + R_c \ge 2(r_a + r_b + r_c).$$

5) Montrer que cette inégalité est une égalité si et seulement si ABC est un triangle équilatéral de centre P.

Rép.- L'inégalité

$$R_a + R_b + R_c \ge \left(\frac{c}{b} + \frac{b}{c}\right)r_a + \left(\frac{c}{a} + \frac{a}{c}\right)r_b + \left(\frac{b}{a} + \frac{a}{b}\right)r_c$$

est une égalité si et seulement si les trois inégalités

$$R_a \geq \frac{b}{a}r_c + \frac{c}{a}r_b$$

$$R_b \geq \frac{c}{b}r_a + \frac{a}{b}r_c$$

$$R_c \geq \frac{b}{a}r_a + \frac{a}{a}r_b$$

sont des égalités. Or, d'après le raisonnement de la question 1, on a $R_a = \frac{b}{a}r_c + \frac{c}{a}r_b$ si et seulement si (AP) est une hauteur. Donc,

$$R_a + R_b + R_c = \left(\frac{c}{b} + \frac{b}{c}\right)r_a + \left(\frac{c}{a} + \frac{a}{c}\right)r_b + \left(\frac{b}{a} + \frac{a}{b}\right)r_c$$

si et seulement si P est l'orthocentre de ABC.

De plus $a^2 + b^2 = 2ab$ si et seulement si a = b. Donc

$$R_a + R_b + R_c = 2(r_a + r_b + r_c)$$

si et seulement si ABC est un triangle équilatéral et P est son orthocentre.

6) On suppose que ABC est équilatéral et $P \in ABC$. Que vaut le minimum de $P \longmapsto R_a + R_b + R_c$?

Rép.- Notons que, dans un triangle quelconque

$$Aire(ABC) = Aire(ABP) + Aire(ACP) + Aire(ABC) = \frac{1}{2}(a.r_a + b.r_b + c.r_c)$$

or, dans un triangle équilatéral a=b=c et $Aire(ABC)=a^2\frac{\sqrt{3}}{4}$ ainsi

$$a\frac{\sqrt{3}}{2} = r_a + r_b + r_c.$$

Ainsi, pour tout $P \in ABC$,

$$R_a + R_b + R_c \ge a \frac{\sqrt{3}}{2}$$

et si P = orthocentre

$$R_a + R_b + R_c = a\frac{\sqrt{3}}{2}.$$

Le minimum de $P \longmapsto R_a + R_b + R_c$ est donc $a^{\sqrt{3}}$.

7) On suppose de nouveau que le triangle ABC est quelconque. Montrer que

$$R_a.R_b.R_c > 8r_a.r_b.r_c$$

(Indication : on pourra commencer par montrer que si x > 0 et y > 0 alors $x + y \ge 2\sqrt{xy}$).

Rép.– En posant $x=\alpha^2$ et $y=\beta^2$, la relation $x+y\geq 2\sqrt{xy}$ devient $\alpha^2+\beta^2\geq 2\alpha\beta$, c'est-à-dire $(\alpha-\beta)^2\geq 0$. Ainsi

$$\begin{array}{ccccc} R_a & \geq & \frac{b}{a}r_c + \frac{c}{a}r_b & \geq & 2\sqrt{\frac{bc}{a^2}r_cr_b} \\ R_b & \geq & \frac{c}{b}r_a + \frac{a}{b}r_c & \geq & 2\sqrt{\frac{ac}{b^2}r_cr_a} \\ R_c & \geq & \frac{b}{c}r_a + \frac{a}{c}r_b & \geq & 2\sqrt{\frac{ab}{c^2}r_br_a} \end{array}$$

et par conséquent

 $R_a.R_b.R_c \ge 8r_a.r_b.r_c.$