Université Claude Bernard Lyon 1

M1 MEEF – Géométrie

Partiel du 13 octobre 2014 - durée 2h

Les documents et les calculettes sont interdits. Il sera tenu compte de la qualité de la rédaction pour l'attribution d'une note.

Les questions. – Les questions sont indépendantes les unes des autres. Chaque question rapporte 2 points.

- 1.— Si f et g sont deux applications affines, montrer que $\overrightarrow{f \circ g} = \overrightarrow{f} \circ \overrightarrow{g}$.
- **2.** Soit g une application affine. On suppose que $g \circ t_{\overrightarrow{\mathcal{U}}} = t_{\overrightarrow{\mathcal{U}}} \circ g$. Montrer que $\overrightarrow{\mathcal{U}} \in Ker(\overrightarrow{g} id)$.
- **3.** Montrer que si le sous-espace affine $Fix\ f$ des points fixes d'une isométrie plane f est une droite, alors f est une réflexion par rapport à $D=Fix\ f$.
- **4.** Soit $f: E \longrightarrow E$ une isométrie. Montrer que $Ker(\overrightarrow{f}-id) \perp Im(\overrightarrow{f}-id)$.
- **5.** Soit $f: E \longrightarrow E$ une isométrie, F = Fix f, $A \in E \setminus F$, A' = f(A), H l'hyperplan médiateur de [A, A'] et s_H la réflexion hyperplane d'hyperplan H. Montrer que Fix g où $g = s_H \circ f$ contient F et A.

Le problème. – (10 pts)

- 1) Soient E un espace affine et $\varphi: E \longrightarrow \mathbb{R}$ une forme affine ¹ non constante.
- a) Montrer que $\overrightarrow{\varphi}: \overrightarrow{E} \longrightarrow \mathbb{R}$ est non constante et que son noyau ker $\overrightarrow{\varphi}$ est un hyperplan vectoriel de \overrightarrow{E}
 - b) Montrer que $H := \{ M \in E \mid \varphi(M) = 0 \}$ est non vide.
 - c) Montrer que H est un hyperplan affine de direction $\overrightarrow{H} = \ker \overrightarrow{\varphi}$.

^{1.} Autrement dit, une application affine à valeur dans \mathbb{R} .

2) Soit $\overrightarrow{u} \in \overrightarrow{H}$ un vecteur non nul. On pose

$$\begin{array}{ccc} t: & E & \longrightarrow & E \\ & M & \longmapsto & M' = M + \varphi(M) \overrightarrow{u} \end{array}$$

Une telle application s'appelle une transvection d'hyperplan H.

- a) Montrer que t est une application affine.
- b) Montrer que t est injective.

3) Montrer que tout application affine $f: E \longrightarrow E$ qui est injective est bijective. En déduire que t est bijective.

4) On considère la transvection

$$\begin{array}{cccc} \overline{t}: & E & \longrightarrow & E \\ & M & \longmapsto & M' = M - \varphi(M) \overrightarrow{u}. \end{array}$$

Déterminer $t \circ \bar{t}$ et $\bar{t} \circ t$.

5) Soit $\overrightarrow{v} \in \overrightarrow{E}$. On note $T_{\overrightarrow{v}}$ la translation de vecteur \overrightarrow{v} . Montrer que

- a) Fix t = H.
- b) $t(T_{\overrightarrow{v}}(H)) \subset T_{\overrightarrow{v}}(H)$.

6) On appelle transvection vectorielle toute application de la forme

$$\overrightarrow{t}: \overrightarrow{E} \longrightarrow \overrightarrow{E}$$

$$\overrightarrow{v} \longmapsto \overrightarrow{v} + \overrightarrow{\varphi}(\overrightarrow{v})\overrightarrow{u}$$

où $\overrightarrow{\varphi}:\overrightarrow{E}\longrightarrow\mathbb{R}$ est une forme linéaire.

- a) Les transvections affines sont-elles caractérisées par le fait que leurs parties linéaires sont des transvections vectorielles? Justifier.
- b) Soit $f: E \longrightarrow E$ une application affine ayant au moins un point fixe et dont la partie linéaire est une transvection vectorielle. Montrer que f est une transvection affine.

7) Soit $f: E \longrightarrow E$ une application affine qui fixe tous les points d'un hyperplan H et qui conserve globalement tous les plans parallèles à H.

- i) Montrer que \overrightarrow{f} est l'identité sur \overrightarrow{H}
- ii) Montrer que le rang de $\overrightarrow{f} \overrightarrow{id}$ est 1.

- iii) Montrer que pour tout $\overrightarrow{v} \in \overrightarrow{E}$, $(\overrightarrow{f} \overrightarrow{id})(\overrightarrow{v}) \in \overrightarrow{H}$. Suggestion.— On pourra considérer un point A de $T_{\overrightarrow{v}}(H)$ et son image A' par f.
- iv) Déduire de ii) et de iii) qu'il existe une forme linéaire $\overrightarrow{\varphi}:\overrightarrow{E}\longrightarrow\mathbb{R}$ et un vecteur $\overrightarrow{u}\in\overrightarrow{H}$ non nul tel que pour tout

$$\forall \ \overrightarrow{v} \in \overrightarrow{E}, \quad (\overrightarrow{f} - \overrightarrow{id})(\overrightarrow{v}) = \overrightarrow{\varphi}(\overrightarrow{v})\overrightarrow{u}.$$

v) Montrer que f est une transvection.