Université Claude Bernard Lyon 1

M1G – Géométrie

Contrôle final du 10 janvier 2018 - 2 heures

Les documents sont autorisés mais les calculettes et les portables sont interdits. Il sera tenu compte de la qualité de la rédaction pour l'attribution d'une note.

Cinq exercices d'applications directes du cours (2pts chacun). –

Exercice 1. – Soit $\varphi \in]0,\pi[$. On considère la courbe paramétrée suivante, appelée spirale conique hyperbolique :

$$\gamma: \mathbb{R}_+^* \longrightarrow \mathbb{R}^3$$

$$t \longmapsto (x(t) = \frac{\cos t}{t}, y(t) = \frac{\sin t}{t}, z(t) = \frac{\cot \varphi}{t})$$

- 1) Montrer que γ est régulière.
- 2) Montrer que le support de γ est inclus dans un cône de révolution C que l'on déterminera.

Exercice 2. – Soit a > 0. On considère la surface paramétrée donnée par

$$f: [0, 2\pi] \times [0, a] \longrightarrow \mathbb{R}^3$$

$$(u, v) \longmapsto (v \cos u, v \sin u, \frac{v^2}{2})$$

et on note S son support.

- 1) La surface paramétrée f est-elle régulière?
- 2) Calculer l'aire du support de f

Exercice 3. Soit $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^3 + 3y^2z^2 + x - 1 = 0\}.$

- 1) Montrer que S est une sous-variété de \mathbb{R}^3 .
- 2) Donner les coordonnées d'une normale au point (-1,1,1).

Exercice 4.— Soient S le support d'une surface paramétrée régulière et $n:S\longrightarrow \mathbb{S}^2$ une normale unitaire à S. On considère une courbe $\bar{\gamma}:I\longrightarrow S$ tracée sur la surface.

1) En dérivant la fonction $t \mapsto \langle \bar{\gamma}', n \circ \bar{\gamma} \rangle$ montrer que

$$\langle \bar{\gamma}'', n \circ \bar{\gamma} \rangle = II(\bar{\gamma}', \bar{\gamma}')$$

où II est la seconde forme fondamentale de f.

2) On suppose que la courbe $\bar{\gamma}$ est asymptotique. Montrer que la composante normale de $\bar{\gamma}''$ est nulle.

Exercice 5.— On suppose que les coefficients E et G de la première forme fondamentale d'une paramétrisation $(u, v) \longrightarrow f(u, v)$ vérifient E(u, v) = 1, G(u, v) = 1.

- 1) On suppose que $F(u, v) = \varphi(u)$ avec pour tout $u, |\varphi(u)| < 1$. Montrer que la courbure de Gauss de la surface est nulle.
- 2) On suppose que $F(u, v) = e^{-(u+v)}$ avec u > 0 et v > 0. Déterminer la courbure de Gauss et en déduire que la courbure moyenne de la surface ne s'annule jamais.

Problème. – Soit $f: \mathcal{U} \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ une paramétrisation C^{∞} régulière d'une sous-variété $S = f(\mathcal{U})$ de \mathbb{R}^3 et $N = \frac{f_u \wedge f_v}{\|f_u \wedge f_v\|}$ une normale unitaire. ¹ Le but de ce problème est de découvrir et de prouver les formules de Minkowski².

1) On note $O = (0,0,0) \in \mathbb{R}^3$ l'origine de \mathbb{R}^3 . Soit

$$h: \quad \mathcal{U} \subset \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}$$
$$p = (u, v) \quad \longmapsto \quad -\langle f(u, v), N(u, v) \rangle.$$

Montrer que h(p) est au signe près la distance de l'origine O au plan tangent en f(p) de S. Indication: On pourra projeter le point O sur la droite normale à S en f(p).

2) Soit $g: \mathcal{U} \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ une application C^{∞} quelconque et α la 1-forme différentielle de \mathcal{U} définie par

$$\alpha_n(X) = \langle g(p), df_n(X) \rangle$$

où $p \in \mathcal{U}$ et $X \in \mathbb{R}^2$.

- i) Écrire α sous la forme Pdu + Qdv et déterminer P et Q.
- ii) Montrer que $d\alpha = (\langle g_u, f_v \rangle \langle g_v, f_u \rangle) du \wedge dv$.
- iii) En déduire que pour tout $(X,Y)\in\mathbb{R}^2\times\mathbb{R}^2$ on a

$$d\alpha(X,Y) = \langle dg(X), df(Y) \rangle - \langle dg(Y), df(X) \rangle$$

Indication (valable également pour le reste des questions) : Il suffit de le montrer 3 pour $(X,Y)=(e_u,e_u),(e_u,e_v)$ et (e_v,e_v) .

3) On note E, F et G les coefficients de la première forme fondamentale de f dans la base (f_u, f_v) et $dS = \sqrt{EG - F^2} du \wedge dv$ la 2-forme d'aire de f. Soit ω^0 la 2-forme différentielle sur \mathcal{U} définie par

$$\omega_n^0(X,Y) = \langle df_n(X) \wedge df_n(Y), N(p) \rangle$$

pour tout $p \in \mathcal{U}$ et tout $(X,Y) \in \mathbb{R}^2 \times \mathbb{R}^2$. Montrer que $\omega^0 = dS$ (on rappelle que d'après le cours $\|df_p(e_u) \wedge df_p(e_v)\| = \sqrt{EG - F^2}$).

4) Soit ω^1 la 2-forme différentielle sur \mathcal{U} définie par

$$\omega_p^1(X,Y) = \langle df_p(X) \wedge dN_p(Y) - df_p(Y) \wedge dN_p(X), N(p) \rangle$$

pour tout $p \in \mathcal{U}$ et tout $(X,Y) \in \mathbb{R}^2 \times \mathbb{R}^2$. Montrer que $\omega^1 = -2H\omega^0$ où H est la courbure moyenne de f et en déduire que $\omega^1 = -2HdS$.

Indication: On rappelle que $N_u = -a_{11}f_u - a_{21}f_v$ et $N_v = -a_{12}f_u - a_{22}f_v$ où les coefficients a_{ij} sont ceux de la matrice de l'opérateur de Weingarten dans la base (f_u, f_v) .

^{1.} On note comme toujours f_u pour $\frac{\partial f}{\partial u}$ et f_v pour $\frac{\partial f}{\partial v}$.

^{2.} Ces formules sont la clé de nombreux résultats en théorie des surfaces. Plus d'info dans le tome V du Spivak.

^{3.} Comme d'habitude $e_u = (1,0)$ et $e_v = (0,1)$.

5) On s'intéresse de nouveau à la 1-forme différentielle α de la question 2 mais on particularise l'application g en choisissant $g=f\wedge N$. Ainsi pour tout $p\in\mathcal{U}$, tout $X\in\mathbb{R}^2$, la 1-forme α s'écrit maintenant

$$\alpha_p(X) = \langle f(p) \wedge N(p), df_p(X) \rangle.$$

Montrer que $d\alpha = -2\omega^0 - \omega^1$ et en déduire que $d\alpha = -2dS + 2hHdS$. Pour les calculs, on rappelle que $\langle a, b \wedge c \rangle = \langle b, c \wedge a \rangle$.

On suppose désormais que $f: \mathcal{U} \longrightarrow S$ est bijective sauf peut-être sur un sous-ensemble de mesure nulle. On suppose en outre que S est compacte sans bord $(\partial S = \emptyset)$.

6) Soit $n: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ une application qui factorise N au dessus de \mathcal{U} c'est-à-dire telle que $N(p) = n \circ f(p)$ pour tout $p \in \mathcal{U}$. On considère la 1-forme différentielle de \mathbb{R}^3 définie par

$$\beta_x(V) = \langle x \wedge n(x), V \rangle$$

pour tout $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ et tout $V \in \mathbb{R}^3$.

- i) Montrer que $f^*\beta = \alpha$ où $\alpha = \langle f \wedge N, df \rangle$ (question 5).
- ii) En écrivant la formule de Stokes sur S avec $d\beta$, montrer que

$$Aire(S) = \int_{\mathcal{U}} hHdS$$

C'est la première formule de Minkowski.

Questions bonus

À ne traiter que si vous avez résolu les questions précédentes

7) Soient ω^2 et ω^3 les deux 2-formes différentielles sur \mathcal{U} définies par

$$\omega_p^2(X,Y) = \langle dN_p(X) \wedge dN_p(Y), N(p) \rangle$$

et

$$\omega_p^3(X,Y) = \langle dN_p(X) \wedge dN_p(Y), f(p) \rangle$$

pour tout $p \in \mathcal{U}$ et tout $(X, Y) \in \mathbb{R}^2 \times \mathbb{R}^2$.

- i) Montrer que $\omega^2 = K\omega^0$ où K est la courbure de Gauss de f et en déduire que $\omega^2 = KdS$.
- ii) Montrer que $\omega^3 = -KhdS$.
- 8) Soit λ la 1-forme de ${\mathcal U}$ définie par

$$\lambda_p(X) = \langle f(p) \wedge N(p), dN_p(X) \rangle$$

pour tout $p \in \mathcal{U}$ et tout $X \in \mathbb{R}^2$.

- i) Montrer que $d\lambda = 2HdS 2hKdS$.
- ii) Montrer que $f^*\mu = \lambda$ où μ est la 1-forme différentielle de \mathbb{R}^3 définie par $\mu_x(V) = \langle x \wedge n, dn_x(V) \rangle, x \in \mathbb{R}^3, V \in \mathbb{R}^3$.
- iii) Montrer que

$$\int_{\mathcal{U}} HdS = \int_{\mathcal{U}} hKdS.$$

C'est la seconde formule de Minkowski.