L1: Nash-Kuiper Theorem

Vincent Borrelli

Institut Camille Jordan - Université Claude Bernard Lyon 1

Isometric embeddings

Definition.- A map $f:\left(M^{n}, g\right) \xrightarrow{C^{1}} \mathbb{E}^{q}=\left(\mathbb{R}^{q},\langle.,\rangle.\right)$ is isometric if $f^{*}\langle.,\rangle=$.$g .$

Isometric embeddings

Definition.- A map $f:\left(M^{n}, g\right) \xrightarrow{C^{1}} \mathbb{E}^{q}=\left(\mathbb{R}^{q},\langle.,\rangle.\right)$ is isometric if $f^{*}\langle.,\rangle=$.$g .$

- In coordinates, the condition $f^{*}\langle.,\rangle=$.$g reduces to a system of$ $n(n+1) / 2$ equations

$$
\left\langle\frac{\partial f}{\partial x_{i}}, \frac{\partial f}{\partial x_{j}}\right\rangle=g_{i j}
$$

of the q unknown functions $f:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(f_{1}, \ldots, f_{q}\right)$ with $0 \leq i \leq j \leq n$.

Isometric embeddings

Definition.- A map $f:\left(M^{n}, g\right) \xrightarrow{C^{1}} \mathbb{E}^{q}=\left(\mathbb{R}^{q},\langle.,\rangle.\right)$ is isometric if $f^{*}\langle.,\rangle=$.$g .$

- In coordinates, the condition $f^{*}\langle.,\rangle=$.$g reduces to a system of$ $n(n+1) / 2$ equations

$$
\left\langle\frac{\partial f}{\partial x_{i}}, \frac{\partial f}{\partial x_{j}}\right\rangle=g_{i j}
$$

of the q unknown functions $f:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(f_{1}, \ldots, f_{q}\right)$ with $0 \leq i \leq j \leq n$.

- The number

$$
s_{n}=\frac{n(n+1)}{2}
$$

is called the Janet dimension.

Schläfli Conjecture

Ludwig Schläfli
Schläfli Conjecture (1873).- Any n dimensional C^{ω} Riemannian manifold admits locally an isometric embedding into $\mathbb{E}^{s_{n}}$.

Historical perpective

Janet-Cartan Theorem (1926-27).- Any n dimensional C^{ω} Riemannian manifold admits locally an isometric embedding into \mathbb{E}^{q} with $q=s_{n}$.

Historical perpective

Janet-Cartan Theorem (1926-27).- Any n dimensional C^{ω} Riemannian manifold admits locally an isometric embedding into \mathbb{E}^{q} with $q=s_{n}$.

Whitney Theorem (1936).- Any n dimensional differentiable manifold admits an embedding into $\mathbb{R}^{2 n}$.

Historical perpective

Janet-Cartan Theorem (1926-27).- Any n dimensional C^{ω} Riemannian manifold admits locally an isometric embedding into \mathbb{E}^{q} with $q=s_{n}$.

Whitney Theorem (1936).- Any n dimensional differentiable manifold admits an embedding into $\mathbb{R}^{2 n}$.

Nash-Kuiper C^{1} Embedding Theorem (1954-1955).- Statement in a couple of minutes...

Historical perpective

Nash C^{∞} Embedding Theorem (1956).- Any C^{∞} compact Riemannian manifold admits a C^{∞} isometric embedding into \mathbb{E}^{9} with $q=s_{n}+4 n$.

- Newton Iterative Method $+C^{1}$ Isometric Embedding Theorem

Historical perpective

Nash C^{∞} Embedding Theorem (1956).- Any C^{∞} compact Riemannian manifold admits a C^{∞} isometric embedding into \mathbb{E}^{q} with $q=s_{n}+4 n$.

- Newton Iterative Method $+C^{1}$ Isometric Embedding Theorem
- In 1960, J. T. Schwartz observes that the Nash's proof hides an Implicit Function Theorem on Fréchet spaces, the so called Nash-Moser (or Newton-Nash-Moser) Theorem.

Historical perpective

Nash C^{∞} Embedding Theorem (1956).- Any C^{∞} compact Riemannian manifold admits a C^{∞} isometric embedding into \mathbb{E}^{9} with $q=s_{n}+4 n$.

- Newton Iterative Method $+C^{1}$ Isometric Embedding Theorem
- In 1960, J. T. Schwartz observes that the Nash's proof hides an Implicit Function Theorem on Fréchet spaces, the so called Nash-Moser (or Newton-Nash-Moser) Theorem.
- In 1990, M. Günther provides a proof of the Nash C^{∞} Embedding Theorem by using the "classical" tool of contractions.

Historical perpective

Nash C^{∞} Embedding Theorem (1956).- Any C^{∞} compact Riemannian manifold admits a C^{∞} isometric embedding into \mathbb{E}^{9} with $q=s_{n}+4 n$.

- Newton Iterative Method $+C^{1}$ Isometric Embedding Theorem
- In 1960, J. T. Schwartz observes that the Nash's proof hides an Implicit Function Theorem on Fréchet spaces, the so called Nash-Moser (or Newton-Nash-Moser) Theorem.
- In 1990, M. Günther provides a proof of the Nash C^{∞} Embedding Theorem by using the "classical" tool of contractions.

Theorem (Gromov, Rokhlin, Greene 1970).- Any C $^{\infty}$ compact Riemannian manifold admits locally a C^{∞} isometric embedding into \mathbb{E}^{q} with $q=s_{n}+n$.

Historical perpective

Theorem (Poznyak, 1973).- Any C^{∞} compact Riemannian surface admits locally a C^{∞} isometric embedding into \mathbb{E}^{4}.

Historical perpective

Theorem (Poznyak, 1973).- Any C^{∞} compact Riemannian surface admits locally a C^{∞} isometric embedding into \mathbb{E}^{4}.

Theorem (Gromov 1986, Gunther 1989).- In the Nash C^{∞} Embedding Theorem, we can take

$$
q=\max \left\{s_{n}+2 n, s_{n}+n+5\right\} .
$$

- Remark that if $n=2$ then $s_{2}=3$ and $q=\max \{7,10\}=10$.

Historical perpective

Theorem (Poznyak, 1973).- Any C^{∞} compact Riemannian surface admits locally a C^{∞} isometric embedding into \mathbb{E}^{4}.

Theorem (Gromov 1986, Gunther 1989).- In the Nash C^{∞} Embedding Theorem, we can take

$$
q=\max \left\{s_{n}+2 n, s_{n}+n+5\right\}
$$

- Remark that if $n=2$ then $s_{2}=3$ and $q=\max \{7,10\}=10$.

Theorem (Gromov 1989).- Any C^{∞} compact Riemannian surface admits a C^{∞} isometric embedding into \mathbb{E}^{5}.

Nash-Kuiper Theorem

John Nash and Nicolaas Kuiper
Definition.- A map $f:\left(M^{n}, g\right) \xrightarrow{C^{1}} \mathbb{E}^{q}$ is said (strictly) short if $f^{*}\langle.,.\rangle \leq K g$ with $0<K<1$.

Nash-Kuiper Theorem

Theorem (1954-55).- Let M^{n} be a compact manifold and $f_{0}:\left(M^{n}, g\right) \xrightarrow{C^{1}} \mathbb{E}^{q}, q>n$, be a short embedding. Then, for every $\epsilon>0$, there exists a C^{1}-isometric embedding $f:\left(M^{n}, g\right) \longrightarrow \mathbb{E}^{q}$ such that $\left\|f-f_{0}\right\|_{C^{0}} \leq \epsilon$.

Nash-Kuiper Theorem

Theorem (1954-55).- Let M^{n} be a compact manifold and $f_{0}:\left(M^{n}, g\right) \xrightarrow{C^{1}} \mathbb{E}^{q}, q>n$, be a short embedding. Then, for every $\epsilon>0$, there exists a C^{1}-isometric embedding $f:\left(M^{n}, g\right) \longrightarrow \mathbb{E}^{q}$ such that $\left\|f-f_{0}\right\|_{C^{0}} \leq \epsilon$.

- The assumption about the compacity is not essential but allows to simplify the statement of the theorem.

Nash-Kuiper Theorem

Theorem (1954-55).- Let M^{n} be a compact manifold and $f_{0}:\left(M^{n}, g\right) \xrightarrow{C^{1}} \mathbb{E}^{q}, q>n$, be a short embedding. Then, for every $\epsilon>0$, there exists a C^{1}-isometric embedding $f:\left(M^{n}, g\right) \longrightarrow \mathbb{E}^{q}$ such that $\left\|f-f_{0}\right\|_{C^{0}} \leq \epsilon$.

- The assumption about the compacity is not essential but allows to simplify the statement of the theorem.
- Nash proved the case $q \geq n+2$ in 1954 and Kuiper improved the Nash's proof to the case $q=n+1$ in 1955.

Nash-Kuiper Theorem

Theorem (1954-55).- Let M^{n} be a compact manifold and $f_{0}:\left(M^{n}, g\right) \xrightarrow{C^{1}} \mathbb{E}^{q}, q>n$, be a short embedding. Then, for every $\epsilon>0$, there exists a C^{1}-isometric embedding $f:\left(M^{n}, g\right) \longrightarrow \mathbb{E}^{q}$ such that $\left\|f-f_{0}\right\|_{C^{0}} \leq \epsilon$.

- The assumption about the compacity is not essential but allows to simplify the statement of the theorem.
- Nash proved the case $q \geq n+2$ in 1954 and Kuiper improved the Nash's proof to the case $q=n+1$ in 1955.
- The C^{0}-closeness condition appears latter (Kuiper, 1959).

Some puzzling corollaries

Corollary (Nash-Kuiper).- Any Riemannian compact manifold M^{n} admits a C^{1} isometric embedding into $\mathbb{E}^{2 n}$.

Some puzzling corollaries

Corollary (Nash-Kuiper).- Any Riemannian compact manifold M^{n} admits a C^{1} isometric embedding into $\mathbb{E}^{2 n}$.

Corollary (Nash-Kuiper).- Any flat torus $T^{n}=\mathbb{E}^{n} / \wedge$ admits a C^{1} isometric embedding into \mathbb{E}^{n+1}.

Some puzzling corollaries

Corollary (Nash-Kuiper).- Any Riemannian compact manifold M^{n} admits a C^{1} isometric embedding into $\mathbb{E}^{2 n}$.

Corollary (Nash-Kuiper).- Any flat torus $T^{n}=\mathbb{E}^{n} / \Lambda$ admits a C^{1} isometric embedding into \mathbb{E}^{n+1}.

Corollary (Nash-Kuiper).- Let $x \in M^{n}$ be any point of a Riemannian manifold. There exists a neighborhood $V(x)$ of x which admits C^{1} isometric embedding into \mathbb{E}^{n+1}.

Some puzzling corollaries

Corollary (Nash-Kuiper).- Any Riemannian compact manifold M ${ }^{n}$ admits a C^{1} isometric embedding into $\mathbb{E}^{2 n}$.

Corollary (Nash-Kuiper).- Any flat torus $T^{n}=\mathbb{E}^{n} / \Lambda$ admits a C^{1} isometric embedding into \mathbb{E}^{n+1}.

Corollary (Nash-Kuiper).- Let $x \in M^{n}$ be any point of a Riemannian manifold. There exists a neighborhood $V(x)$ of x which admits C^{1} isometric embedding into \mathbb{E}^{n+1}.

Corollary (Existence of reduced spheres, 1959 ?).- Let $0<r<1$. There exists a C^{1} isometric embedding of the unit sphere $\mathbb{S}^{n} \subset \mathbb{E}^{n+1}$ inside a ball $B(r) \subset \mathbb{E}^{n+1}$.

Some puzzling corollaries

Corollary (Nash-Kuiper).- Any Riemannian compact manifold M ${ }^{n}$ admits a C^{1} isometric embedding into $\mathbb{E}^{2 n}$.

Corollary (Nash-Kuiper).- Any flat torus $T^{n}=\mathbb{E}^{n} / \Lambda$ admits a C^{1} isometric embedding into \mathbb{E}^{n+1}.

Corollary (Nash-Kuiper).- Let $x \in M^{n}$ be any point of a Riemannian manifold. There exists a neighborhood $V(x)$ of x which admits C^{1} isometric embedding into \mathbb{E}^{n+1}.

Corollary (Existence of reduced spheres, 1959 ?).- Let $0<r<1$. There exists a C^{1} isometric embedding of the unit sphere $\mathbb{S}^{n} \subset \mathbb{E}^{n+1}$ inside a ball $B(r) \subset \mathbb{E}^{n+1}$.

Corollary (Gromov 1989).- It is possible to perform an eversion of the 2 -sphere through C^{1} isometric immersions.

Strategy of the proof (compact case)

- Let $\Delta=g-f_{0}^{*}\langle.,$.$\rangle be the isometric default. Since f_{0}$ is strictly short, Δ is a metric.

Strategy of the proof (compact case)

- Let $\Delta=g-f_{0}^{*}\langle.,$.$\rangle be the isometric default. Since f_{0}$ is strictly short, Δ is a metric.
- We construct a sequence of maps $\left(f_{k}\right)_{k \in \mathbb{N}^{*}}$ such that

$$
\left\|g-f_{k}^{*}\langle., .\rangle\right\|_{C^{0}} \leq \frac{\|\Delta\|_{C^{0}}}{2^{k}}
$$

Strategy of the proof (compact case)

- Let $\Delta=g-f_{0}^{*}\langle.,$.$\rangle be the isometric default. Since f_{0}$ is strictly short, Δ is a metric.
- We construct a sequence of maps $\left(f_{k}\right)_{k \in \mathbb{N}^{*}}$ such that

$$
\left\|g-f_{k}^{*}\langle., .\rangle\right\|_{C^{0}} \leq \frac{\|\Delta\|_{C^{0}}}{2^{k}}
$$

- Each f_{k} is built iteratively from f_{k-1}. The parameters of the construction allow to insure that for all k,

$$
\left\|f_{k+1}-f_{k}\right\|_{C^{0}} \leq \frac{1}{2^{k}} \text { and }\left\|d f_{k+1}-d f_{k}\right\|_{C^{0}} \leq \frac{C}{2^{k / 2}}
$$

with $C>0$. Therefore, the limit f_{∞} is a C^{1} isometric map.

Strategy of the proof (compact case)

- Let $\Delta=g-f_{0}^{*}\langle.,$.$\rangle be the isometric default. Since f_{0}$ is strictly short, Δ is a metric.
- We construct a sequence of maps $\left(f_{k}\right)_{k \in \mathbb{N}^{*}}$ such that

$$
\left\|g-f_{k}^{*}\langle., .\rangle\right\|_{C^{0}} \leq \frac{\|\Delta\|_{C^{0}}}{2^{k}}
$$

- Each f_{k} is built iteratively from f_{k-1}. The parameters of the construction allow to insure that for all k,

$$
\left\|f_{k+1}-f_{k}\right\|_{C^{0}} \leq \frac{1}{2^{k}} \text { and }\left\|d f_{k+1}-d f_{k}\right\|_{C^{0}} \leq \frac{C}{2^{k / 2}}
$$

with $C>0$. Therefore, the limit f_{∞} is a C^{1} isometric map.

- Each f_{k} is an embedding and we show by using the C^{0}-closeness property that the limit still is an embedding.

Step 1 : Decomposition of Δ

- It is enough to work locally since the use of a partition of unity $\left(\mathcal{U}_{\alpha}, \psi_{\alpha}\right)$ allows to move from a local construction to a global one.

Step 1 : Decomposition of Δ

- It is enough to work locally since the use of a partition of unity $\left(\mathcal{U}_{\alpha}, \psi_{\alpha}\right)$ allows to move from a local construction to a global one.
- We choose the \mathcal{U}_{α} 's so that for each $\alpha, \overline{\mathcal{U}}_{\alpha}$ is compact and each chart extends to $\overline{\mathcal{U}}_{\alpha}$.

Step 1 : Decomposition of Δ

- It is enough to work locally since the use of a partition of unity $\left(\mathcal{U}_{\alpha}, \psi_{\alpha}\right)$ allows to move from a local construction to a global one.
- We choose the \mathcal{U}_{α} 's so that for each $\alpha, \overline{\mathcal{U}}_{\alpha}$ is compact and each chart extends to $\overline{\mathcal{U}}_{\alpha}$.
- On $\overline{\mathcal{U}}_{\alpha}$, the isometric default induces a map $\Delta: \overline{\mathcal{U}}_{\alpha} \rightarrow \mathcal{S}_{2}^{+}\left(\mathbb{R}^{n}\right)$.

Step 1 : Decomposition of Δ

- It is enough to work locally since the use of a partition of unity $\left(\mathcal{U}_{\alpha}, \psi_{\alpha}\right)$ allows to move from a local construction to a global one.
- We choose the \mathcal{U}_{α} 's so that for each $\alpha, \overline{\mathcal{U}}_{\alpha}$ is compact and each chart extends to $\overline{\mathcal{U}}_{\alpha}$.
- On $\overline{\mathcal{U}}_{\alpha}$, the isometric default induces a map $\Delta: \overline{\mathcal{U}}_{\alpha} \rightarrow \mathcal{S}_{2}^{+}\left(\mathbb{R}^{n}\right)$.
- The space $\mathcal{S}_{2}^{+}\left(\mathbb{R}^{n}\right)$ of positive definite symetric bilinear forms on \mathbb{R}^{n} is an open convex cone of dimension s_{n}.

Step 1 : Decomposition of Δ

- It is enough to work locally since the use of a partition of unity $\left(\mathcal{U}_{\alpha}, \psi_{\alpha}\right)$ allows to move from a local construction to a global one.
- We choose the \mathcal{U}_{α} 's so that for each $\alpha, \overline{\mathcal{U}}_{\alpha}$ is compact and each chart extends to $\overline{\mathcal{U}}_{\alpha}$.
- On $\overline{\mathcal{U}}_{\alpha}$, the isometric default induces a map $\Delta: \overline{\mathcal{U}}_{\alpha} \rightarrow \mathcal{S}_{2}^{+}\left(\mathbb{R}^{n}\right)$.
- The space $\mathcal{S}_{2}^{+}\left(\mathbb{R}^{n}\right)$ of positive definite symetric bilinear forms on \mathbb{R}^{n} is an open convex cone of dimension s_{n}.
- The first step is to write the isometric default as a sum of squares of linear forms:

$$
\Delta(x)=\sum_{j=1}^{P_{0}} \rho_{j}(x) \ell_{j} \otimes \ell_{j}
$$

with $\rho_{j}(x) \geq 0, j \in\left\{1, \ldots, P_{0}\right\}$ and $x \in \mathcal{U}_{\alpha}$.

Step 1 : Decomposition of Δ

- To do so, we choose a locally finite covering of $\mathcal{S}_{2}^{+}\left(\mathbb{R}^{n}\right)$ by open simplices and a partition of unity $\left(\varphi_{\sigma}\right)$ subordinated to that covering. Note that, by locally finite, we mean that every point has a neighborhood that intersects a finite number of simplices.

Step 1 : Decomposition of Δ

- Furthermore we require this finite number to be uniformly bounded, say by W (we admit the existence of such a covering).

Step 1 : Decomposition of Δ

- Each simplex σ has $s_{n}+1$ vertices $V_{\sigma, 0}, \ldots, V_{\sigma, s_{n}}$ and each vertex has a decomposition as a sum of n squares of linear forms

$$
V_{\sigma, \tau}=\sum_{i=1}^{n} \ell_{\sigma, \tau, i} \otimes \ell_{\sigma, \tau, i}
$$

Step 1 : Decomposition of Δ

- We then write Δ as a sum of squares of linear forms:

$$
\begin{aligned}
\Delta(x)= & \sum_{\sigma} \varphi_{\sigma}(\Delta(x)) \Delta(x)=\sum_{\sigma} \varphi_{\sigma}(\Delta(x)) \sum_{\tau} \alpha_{\sigma, \tau}(x) V_{\sigma, \tau} \\
& =\sum_{\sigma} \varphi_{\sigma}(\Delta(x)) \sum_{\tau} \alpha_{\sigma, \tau}(x) \sum_{i=1}^{n} \ell_{\sigma, \tau, i} \otimes \ell_{\sigma, \tau, i}
\end{aligned}
$$

Step 1 : Decomposition of Δ

- Since $\Delta\left(\overline{\mathcal{U}}_{\alpha}\right)$ is compact, it intersects a finite number of simplices $Q\left(\Delta, \overline{\mathcal{U}}_{\alpha}\right)$. Reindexing the above sum, we obtain

$$
\Delta(x)=\sum_{j=1}^{P_{0}} \rho_{j}(x) \ell_{j}^{2}
$$

with $P_{0}=\left(s_{n}+1\right) n Q\left(\Delta, \overline{\mathcal{U}}_{\alpha}\right)$.

Step 1 : Decomposition of Δ

- A crucial observation is that, for each $x \in \overline{\mathcal{U}}_{\alpha}$ the decomposition

$$
\Delta(x)=\sum_{j=1}^{P_{0}} \rho_{j}(x) \ell_{j}^{2}
$$

has at most $\left(s_{n}+1\right) n W$ non vanishing coefficients $\rho_{j}(x)$.

Step 2 : Iterations

- We build from f_{0} a sequence of maps

$$
f_{1,1}, \ldots, f_{1, P_{0}}=f_{1}
$$

such that

$$
g-f_{1, i}^{*}\langle\cdot, .\rangle \simeq \frac{1}{4} \sum_{j=1}^{i} \rho_{j} \ell_{j}^{2}+\sum_{j=i+1}^{P_{0}} \rho_{j} \ell_{j}^{2}
$$

In particular

$$
\begin{gathered}
g-f_{1, P_{0}}^{*}\langle., .\rangle \simeq \frac{1}{4} \Delta \\
\left\|g-f_{1}^{*}\langle., .\rangle\right\|_{C^{0}} \leq \frac{1}{2}\|\Delta\|_{C^{0}}
\end{gathered}
$$

Step 2 : Iterations

- The maps build by Nash are given iteratively by the formula

$$
f_{1, i}=f_{1, i-1}+\frac{\sqrt{3 \rho_{i}}}{2 N_{1, i}}\left(\cos \left(N_{1, i} \ell_{i}\right) \mathbf{u}+\sin \left(N_{1, i} \ell_{i}\right) \mathbf{v}\right)
$$

where $\mathbf{u}=\mathbf{u}_{1, i}$ and $\mathbf{v}=\mathbf{v}_{1, i}$ are two orthogonal unit normal vectors. We have :

$$
f_{1, i}^{*}\langle., .\rangle-f_{1, i-1}^{*}\langle., .\rangle=\frac{3}{4} \rho_{i} \ell_{i}^{2}+O\left(1 / N_{1, i}\right)
$$

Step 2 : Iterations

- Therefore

$$
g-f_{1, P_{0}}^{*}\langle\cdot, .\rangle=\frac{1}{4} \Delta+\sum_{j=1}^{P} O\left(1 / N_{1, j}\right)
$$

and if the $N_{1, j}$'s are large enough :

$$
\left\|g-f_{1, P_{0}}^{*}\langle\cdot, .\rangle\right\|_{C^{0}} \leq \frac{\|\Delta\|_{C^{0}}}{2}
$$

Step 2 : Iterations

«Actually the condition $q \geq n+2$ might be replaced by $q \geq n+1$. This would come from use of a less easily controlled perturbation process needing only one direction normal to the imbedding. " Nash, 1954

Step 2 : Iterations

- The maps built by Kuiper are given iteratively by the formula

$$
f_{1, i}=f_{1, i-1}-\frac{3 \rho_{i}}{16 N_{1, i}} \sin \left(2 N_{1, i} \ell_{i}\right) \mathbf{t}+\frac{\sqrt{3 \rho_{i}}}{\sqrt{2} N_{1, i}} \sin \left(N_{1, i} \ell_{i}-\frac{3 \rho_{i}}{16} \sin \left(2 N_{1, i} \ell_{i}\right)\right) \mathbf{w}
$$

where $\mathbf{t}=\mathbf{t}_{1, i-1}$ is a (convenient) unit tangent vector and $\mathbf{w}=\mathbf{w}_{1, i-1} \mathrm{a}$ unit normal vector. We have

$$
f_{1, i}^{*}\langle\ldots, .\rangle-f_{1, i-1}^{*}\langle\ldots, .\rangle=\frac{3}{4} \rho_{i} \ell_{i}^{2}+\text { extra unexpected terms }+O\left(1 / N_{1, i}\right)
$$

Step 2 : Iterations

- The maps built by Kuiper are given iteratively by the formula

$$
f_{1, i}=f_{1, i-1}-\frac{3 \rho_{i}}{16 N_{1, i}} \sin \left(2 N_{1, i} \ell_{i}\right) \mathbf{t}+\frac{\sqrt{3 \rho_{i}}}{\sqrt{2} N_{1, i}} \sin \left(N_{1, i} \ell_{i}-\frac{3 \rho_{i}}{16} \sin \left(2 N_{1, i} \ell_{i}\right)\right) \mathbf{w}
$$

where $\mathbf{t}=\mathbf{t}_{1, i-1}$ is a (convenient) unit tangent vector and $\mathbf{w}=\mathbf{w}_{1, i-1} \mathrm{a}$ unit normal vector. We have

$$
f_{1, i}^{*}\langle., .\rangle-f_{1, i-1}^{*}\langle., .\rangle=\frac{3}{4} \rho_{i} \ell_{i}^{2}+O\left(\rho_{i}^{2}\right)+O\left(1 / N_{1, i}\right)
$$

Step 2 : Iterations

« Our proof follows Nash' proof with the exception of a different kind of one step device : a strain. This strain however requires considerations concerning the convergence of the process which are even more delicate then those required with Nash' one step device. We therefore give a complete proof independent of Nash' paper »

Kuiper, 1955

Step 2 : Iterations

- The passing from the codimension 2 to the codimension 1 shows a real technical problem.

Step 2 : Iterations

- The passing from the codimension 2 to the codimension 1 shows a real technical problem.
- This problem can be settled by substituting a Convex Integration to the Kuiper formula (we shall see how latter).
- The new map $f_{1, i}$ thus defined is such that

$$
f_{1, i}^{*}\langle\cdot, .\rangle-f_{1, i-1}^{*}\langle\cdot, .\rangle=\frac{3}{4} \rho_{i} \ell_{i}^{2}+O\left(1 / N_{1, i}\right)
$$

Step 3 : Convergence

- We re-do all the process starting with f_{1} and decomposing the new isometric default as a sum of P_{1} squares of linear forms

$$
\Delta_{1}(x)=g-f_{1}^{*}\langle., .\rangle=\sum_{j=1}^{P_{1}} \rho_{1, j}(x) \ell_{1, j}^{2}
$$

and then redoing P_{1} iterations to obtain $f_{2}:=f_{1, P_{1}}$. And so on...

Step 3 : Convergence

- We re-do all the process starting with f_{1} and decomposing the new isometric default as a sum of P_{1} squares of linear forms

$$
\Delta_{1}(x)=g-f_{1}^{*}\langle., .\rangle=\sum_{j=1}^{P_{1}} \rho_{1, j}(x) \ell_{1, j}^{2}
$$

and then redoing P_{1} iterations to obtain $f_{2}:=f_{1, P_{1}}$. And so on...

- If the $N_{k, i}$'s are large enough, the resulting sequence of maps satisfies:

$$
\left\|g-f_{k}^{*}\langle\cdot, .\rangle\right\|_{C^{0}} \leq \frac{\|\Delta\|_{C^{0}}}{2^{k}}
$$

Step 3 : Convergence

- A direct computation shows that the sequence $\left(f_{k}\right)$ is C^{1} converging. Nash :

$$
f_{k, i}=f_{k, i-1}+\frac{\sqrt{3 \rho_{k, i}}}{2 N_{k, i}}\left(\cos \left(N_{k, i} \ell_{k, i}\right) \mathbf{u}+\sin \left(N_{k, i} \ell_{k, i}\right) \mathbf{v}\right)
$$

Kuiper :

$$
\begin{aligned}
f_{k, i}= & f_{k, i-1}-\frac{3 \rho_{k, i}}{16 N_{k, i}} \sin \left(2 N_{k, i} \ell_{k, i}\right) \mathbf{t} \\
& +\frac{\sqrt{3 \rho_{k, i}}}{\sqrt{2} N_{k, i}} \sin \left(N_{k, i} \ell_{k, i}-\frac{3 \rho_{k, i}}{16} \sin \left(2 N_{k, i} \ell_{k, i}\right)\right) \mathbf{w}
\end{aligned}
$$

(here again $\mathbf{u}=\mathbf{u}_{1, i}$ and $\mathbf{v}=\mathbf{v}_{1, i}$ are two orthogonal unit normal vectors of $\left.f_{k, i-1}\right)$.

Step 3 : Convergence

- A direct computation shows that the sequence $\left(f_{k}\right)$ is C^{1} converging. Nash :

$$
f_{k, i}=f_{k, i-1}+\frac{\sqrt{3 \rho_{k, i}}}{2 N_{k, i}}\left(\cos \left(N_{k, i} \ell_{k, i}\right) \mathbf{u}+\sin \left(N_{k, i} \ell_{k, i}\right) \mathbf{v}\right)
$$

Kuiper :

$$
\begin{aligned}
f_{k, i}= & f_{k, i-1}-\frac{3 \rho_{k, i}}{16 N_{k, i}} \sin \left(2 N_{k, i} \ell_{k, i}\right) \mathbf{t} \\
& +\frac{\sqrt{3 \rho_{k, i}}}{\sqrt{2} N_{k, i}} \sin \left(N_{k, i} \ell_{k, i}-\frac{3 \rho_{k, i}}{16} \sin \left(2 N_{k, i} \ell_{k, i}\right)\right) \mathbf{w}
\end{aligned}
$$

(here again $\mathbf{u}=\mathbf{u}_{1, i}$ and $\mathbf{v}=\mathbf{v}_{1, i}$ are two orthogonal unit normal vectors of $\left.f_{k, i-1}\right)$.

- Thus the limit map f_{∞} is C^{1} isometric.

Step 4 : The limit map f_{∞} is an embedding

- The image of $f_{1,1}$ is a graph above f_{0} (lying in a normal neiborhood of f_{0}), therefore $f_{1,1}$ is an embedding. For the same reason, each f_{k} is an embedding.

Step 4 : The limit map f_{∞} is an embedding

- The image of $f_{1,1}$ is a graph above f_{0} (lying in a normal neiborhood of f_{0}), therefore $f_{1,1}$ is an embedding. For the same reason, each f_{k} is an embedding.
- Let x_{1} and x_{2} be two distinct points of M and let $k>0$, we put

$$
d_{k}\left(x_{1}, x_{2}\right):=\operatorname{dist}\left(f_{k}\left(x_{1}\right), f_{k}\left(x_{2}\right)\right)
$$

Since $\left\|f_{k+1}-f_{k}\right\|_{C_{0}} \leq \frac{1}{2^{k}}$ we have

$$
\operatorname{dist}\left(f_{\infty}\left(x_{i}\right)-f_{k}\left(x_{i}\right)\right) \leq \frac{1}{2^{k-1}}
$$

and thus

$$
d_{k}\left(x_{1}, x_{2}\right)-\frac{1}{2^{k-2}} \leq \operatorname{dist}\left(f_{\infty}\left(x_{1}\right), f_{\infty}\left(x_{2}\right)\right)=d_{\infty}\left(x_{1}, x_{2}\right)
$$

Step 4 : The limit map f_{∞} is an embedding

- We shall show that, for every couple of distinct points $\left(x_{1}, x_{2}\right)$, there exists k such that $d_{k}\left(x_{1}, x_{2}\right)-\frac{1}{2^{k-2}}>0$. This will imply that f_{∞} is an embedding.

Step 4 : The limit map f_{∞} is an embedding

- We shall show that, for every couple of distinct points $\left(x_{1}, x_{2}\right)$, there exists k such that $d_{k}\left(x_{1}, x_{2}\right)-\frac{1}{2^{k-2}}>0$. This will imply that f_{∞} is an embedding.
- Let $\left(f_{k, i}\right)_{i \in\left\{1, \ldots, P_{k}\right\}}$ be the sequence joining f_{k} to f_{k+1}. We first observe that

$$
\lim _{N_{k, i+1} \rightarrow+\infty}\left\|f_{k, i+1}-f_{k, i}\right\|_{C^{0}}=0
$$

implies

$$
\lim _{N_{k, i+1} \rightarrow+\infty}\left\|d_{k, i+1}(., .)-d_{k, i}(., .)\right\|_{C^{0}}=0
$$

Thus, for every k and every i, there exists $N_{k, i+1}$ such that

$$
d_{k, i+1} \geq\left(\frac{2}{3}\right)^{1 / P_{k}} d_{k, i}
$$

Step 4 : The limit map f_{∞} is an embedding

- As a consequence $d_{k+1} \geq \frac{2}{3} d_{k}$ for every k and

$$
d_{k} \geq\left(\frac{2}{3}\right)^{k} d_{0}
$$

Step 4 : The limit map f_{∞} is an embedding

- As a consequence $d_{k+1} \geq \frac{2}{3} d_{k}$ for every k and

$$
d_{k} \geq\left(\frac{2}{3}\right)^{k} d_{0}
$$

- We deduce

$$
d_{k}\left(x_{1}, x_{2}\right)-\frac{1}{2^{k-2}} \geq d_{0}\left(x_{1}, x_{2}\right)\left(\frac{2}{3}\right)^{k}-4\left(\frac{1}{2}\right)^{k}
$$

Step 4 : The limit map f_{∞} is an embedding

- As a consequence $d_{k+1} \geq \frac{2}{3} d_{k}$ for every k and

$$
d_{k} \geq\left(\frac{2}{3}\right)^{k} d_{0}
$$

- We deduce

$$
d_{k}\left(x_{1}, x_{2}\right)-\frac{1}{2^{k-2}} \geq d_{0}\left(x_{1}, x_{2}\right)\left(\frac{2}{3}\right)^{k}-4\left(\frac{1}{2}\right)^{k}
$$

- If k is large enough, the right term is positive, hence $d_{\infty}\left(x_{1}, x_{2}\right)>0$. Thus, the $\operatorname{map} f_{\infty}$ is an embedding.

Step 4 : The limit map f_{∞} is an embedding

- As a consequence $d_{k+1} \geq \frac{2}{3} d_{k}$ for every k and

$$
d_{k} \geq\left(\frac{2}{3}\right)^{k} d_{0}
$$

- We deduce

$$
d_{k}\left(x_{1}, x_{2}\right)-\frac{1}{2^{k-2}} \geq d_{0}\left(x_{1}, x_{2}\right)\left(\frac{2}{3}\right)^{k}-4\left(\frac{1}{2}\right)^{k}
$$

- If k is large enough, the right term is positive, hence $d_{\infty}\left(x_{1}, x_{2}\right)>0$. Thus, the map f_{∞} is an embedding.
- We have proved the Nash-Kuiper Theorem

The outrageously simple idea

John Nash
The isometric default must be reduced iteratively and not all at once.

The outrageously simple idea

By considering

$$
\left.f_{1, i}=f_{1, i-1}+\frac{\sqrt{1 \rho_{1, i}}}{N_{1, i}}\left(\cos N_{k, i} \ell_{1, i}\right) \mathbf{u}+\sin \left(N_{1, i} \ell_{1, i}\right) \mathbf{v}\right)
$$

instead of

$$
\left.f_{1, i}=f_{1, i-1}+\frac{\sqrt{3 \rho_{1, i}}}{2 N_{1, i}}\left(\cos N_{1, i} \ell_{1, i}\right) \mathbf{u}+\sin \left(N_{1, i} \ell_{1, i}\right) \mathbf{v}\right)
$$

it is obviously possible to kill the whole isometric default in each direction $\ell_{1, i}$ up to a $O\left(1 / N_{1, i}\right)$:

$$
f_{1, i}^{*}\langle\cdot, .\rangle-f_{1, i-1}^{*}\langle, .,\rangle=1 \times \rho_{i} \ell_{i}^{2}+O\left(1 / N_{1, i}\right)
$$

to get a map f_{1} approximately isometric

$$
g-f_{1}^{*}\langle., .\rangle=\sum_{i=1}^{P_{0}} O\left(1 / N_{1, i}\right) .
$$

The outrageously simple idea

BUT

This leads to a dead end. Indeed there is no control on the sign of $O\left(1 / N_{1, i}\right)$ and consequently f_{1} is no longer a short map in general. It lengthens some curves and the helix deformation can not reduce their length.

The outrageously simple idea

BUT

This leads to a dead end. Indeed there is no control on the sign of $O\left(1 / N_{1, i}\right)$ and consequently f_{1} is no longer a short map in general. It lengthens some curves and the helix deformation can not reduce their length.

NASH

bypasses this difficulty with an iterative approach, dividing the isometric default by 2 at each step rather than trying to reduce it to zero all at once.

That's all folks!

John Nash

