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Isometric embeddings

Definition.– A map f : (Mn,g)
C1
−→ Eq = (Rq, 〈., .〉) is isometric if

f ∗〈., .〉 = g.

• In coordinates, the condition f ∗〈., .〉 = g reduces to a system of
n(n + 1)/2 equations

〈 ∂f
∂xi

,
∂f
∂xj
〉 = gij

of the q unknown functions f : (x1, ...., xn) 7→ (f1, ..., fq) with
0 ≤ i ≤ j ≤ n.

• The number
sn =

n(n + 1)

2
is called the Janet dimension.
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Schläfli Conjecture

Ludwig Schläfli

Schläfli Conjecture (1873).– Any n dimensional Cω Riemannian
manifold admits locally an isometric embedding into Esn .
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Historical perpective

Janet-Cartan Theorem (1926-27).– Any n dimensional Cω

Riemannian manifold admits locally an isometric embedding into Eq

with q = sn.

Whitney Theorem (1936).– Any n dimensional differentiable manifold
admits an embedding into R2n.

Nash-Kuiper C1 Embedding Theorem (1954-1955).– Statement in a
couple of minutes...
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Historical perpective

Nash C∞ Embedding Theorem (1956).– Any C∞ compact
Riemannian manifold admits a C∞ isometric embedding into Eq with
q = sn + 4n.

• Newton Iterative Method +C1 Isometric Embedding Theorem

• In 1960, J. T. Schwartz observes that the Nash’s proof hides an Implicit
Function Theorem on Fréchet spaces, the so called Nash-Moser (or
Newton-Nash-Moser) Theorem.

• In 1990, M. Günther provides a proof of the Nash C∞ Embedding
Theorem by using the "classical" tool of contractions.

Theorem (Gromov, Rokhlin, Greene 1970).– Any C∞ compact
Riemannian manifold admits locally a C∞ isometric embedding into Eq

with q = sn + n.
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Historical perpective

Theorem (Poznyak, 1973).– Any C∞ compact Riemannian surface
admits locally a C∞ isometric embedding into E4.

Theorem (Gromov 1986, Gunther 1989).– In the Nash C∞

Embedding Theorem, we can take

q = max{sn + 2n, sn + n + 5}.

• Remark that if n = 2 then s2 = 3 and q = max{7,10} = 10.

Theorem (Gromov 1989).– Any C∞ compact Riemannian surface
admits a C∞ isometric embedding into E5.
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Nash-Kuiper Theorem

John Nash and Nicolaas Kuiper

Definition.– A map f : (Mn,g)
C1
−→ Eq is said (strictly) short if

f ∗〈., .〉 ≤ Kg with 0 < K < 1.
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Nash-Kuiper Theorem

Theorem (1954-55).– Let Mn be a compact manifold and

f0 : (Mn,g)
C1
−→ Eq, q > n, be a short embedding. Then, for every

ε > 0, there exists a C1-isometric embedding f : (Mn,g) −→ Eq such
that ‖f − f0‖C0 ≤ ε.

• The assumption about the compacity is not essential but allows to
simplify the statement of the theorem.

• Nash proved the case q ≥ n + 2 in 1954 and Kuiper improved the
Nash’s proof to the case q = n + 1 in 1955.

• The C0-closeness condition appears latter (Kuiper, 1959).
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Some puzzling corollaries

Corollary (Nash-Kuiper).– Any Riemannian compact manifold Mn

admits a C1 isometric embedding into E2n.

Corollary (Nash-Kuiper).– Any flat torus T n = En/Λ admits a C1

isometric embedding into En+1.

Corollary (Nash-Kuiper).– Let x ∈ Mn be any point of a Riemannian
manifold. There exists a neighborhood V (x) of x which admits C1

isometric embedding into En+1.

Corollary (Existence of reduced spheres, 1959?).– Let 0 < r < 1.
There exists a C1 isometric embedding of the unit sphere Sn ⊂ En+1

inside a ball B(r) ⊂ En+1.

Corollary (Gromov 1989).– It is possible to perform an eversion of
the 2-sphere through C1 isometric immersions.
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Strategy of the proof (compact case)
• Let ∆ = g − f ∗0 〈., .〉 be the isometric default. Since f0 is strictly short,
∆ is a metric.

•We construct a sequence of maps (fk )k∈N∗ such that

‖g − f ∗k 〈., .〉‖C0 ≤
‖∆‖C0

2k

• Each fk is built iteratively from fk−1. The parameters of the
construction allow to insure that for all k ,

‖fk+1 − fk‖C0 ≤
1
2k and ‖dfk+1 − dfk‖C0 ≤

C
2k/2

with C > 0. Therefore, the limit f∞ is a C1 isometric map.

• Each fk is an embedding and we show by using the C0-closeness
property that the limit still is an embedding.
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Step 1 : Decomposition of ∆
• It is enough to work locally since the use of a partition of unity
(Uα, ψα) allows to move from a local construction to a global one.

•We choose the Uα’s so that for each α, Uα is compact and each chart
extends to Uα.

• On Uα, the isometric default induces a map ∆ : Uα → S+2 (Rn).

• The space S+2 (Rn) of positive definite symetric bilinear forms on Rn

is an open convex cone of dimension sn.

• The first step is to write the isometric default as a sum of squares of
linear forms :

∆(x) =

P0∑
j=1

ρj(x)`j ⊗ `j

with ρj(x) ≥ 0, j ∈ {1, ...,P0} and x ∈ Uα.
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Step 1 : Decomposition of ∆

• To do so, we choose a locally finite covering of S+2 (Rn) by open
simplices and a partition of unity (ϕσ) subordinated to that covering.
Note that, by locally finite, we mean that every point has a
neighborhood that intersects a finite number of simplices.
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Step 1 : Decomposition of ∆

• Furthermore we require this finite number to be uniformly bounded,
say by W (we admit the existence of such a covering).
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Step 1 : Decomposition of ∆

• Each simplex σ has sn + 1 vertices Vσ,0, ...,Vσ,sn and each vertex has
a decomposition as a sum of n squares of linear forms

Vσ,τ =
n∑

i=1

`σ,τ,i ⊗ `σ,τ,i
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Step 1 : Decomposition of ∆

•We then write ∆ as a sum of squares of linear forms :

∆(x) =
∑
σ

ϕσ(∆(x))∆(x) =
∑
σ

ϕσ(∆(x))
∑
τ

ασ,τ (x)Vσ,τ

=
∑
σ

ϕσ(∆(x))
∑
τ

ασ,τ (x)
n∑

i=1

`σ,τ,i ⊗ `σ,τ,i
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Step 1 : Decomposition of ∆

• Since ∆(Uα) is compact, it intersects a finite number of simplices
Q(∆,Uα). Reindexing the above sum, we obtain

∆(x) =

P0∑
j=1

ρj(x)`2j

with P0 = (sn + 1)nQ(∆,Uα).
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Step 1 : Decomposition of ∆

• A crucial observation is that, for each x ∈ Uα the decomposition

∆(x) =

P0∑
j=1

ρj(x)`2j

has at most (sn + 1)nW non vanishing coefficients ρj(x).
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Step 2 : Iterations

•We build from f0 a sequence of maps

f1,1, ..., f1,P0 = f1

such that

g − f ∗1,i〈., .〉 '
1
4

i∑
j=1

ρj`
2
j +

P0∑
j=i+1

ρj`
2
j

In particular

g − f ∗1,P0
〈., .〉 ' 1

4
∆

=⇒
‖g − f ∗1 〈., .〉‖C0 ≤

1
2
‖∆‖C0

Vincent Borrelli L1 - Nash-Kuiper Theorem



Step 2 : Iterations

• The maps build by Nash are given iteratively by the formula

f1,i = f1,i−1 +

√
3ρi

2N1,i

(
cos(N1,i `i) u + sin(N1,i `i) v

)
where u = u1,i and v = v1,i are two orthogonal unit normal vectors. We
have :

f ∗1,i〈., .〉 − f ∗1,i−1〈., .〉 =
3
4
ρi`

2
i + O(1/N1,i)
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Step 2 : Iterations

• Therefore

g − f ∗1,P0
〈., .〉 =

1
4

∆ +
P∑

j=1

O(1/N1,j)

and if the N1,j ’s are large enough :

‖g − f ∗1,P0
〈., .〉‖C0 ≤

‖∆‖C0

2
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Step 2 : Iterations

« Actually the condition q ≥ n + 2 might be replaced by q ≥ n + 1. This
would come from use of a less easily controlled perturbation process
needing only one direction normal to the imbedding. » Nash, 1954
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Step 2 : Iterations

• The maps built by Kuiper are given iteratively by the formula

f1,i = f1,i−1−
3ρi

16N1,i
sin(2N1,i `i)t+

√
3ρi√

2N1,i
sin
(
N1,i `i−

3ρi

16
sin(2N1,i `i)

)
w

where t = t1,i−1 is a (convenient) unit tangent vector and w = w1,i−1 a
unit normal vector. We have

f ∗1,i〈., .〉 − f ∗1,i−1〈., .〉 =
3
4
ρi`

2
i + extra unexpected terms + O(1/N1,i)
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Step 2 : Iterations

• The maps built by Kuiper are given iteratively by the formula

f1,i = f1,i−1−
3ρi

16N1,i
sin(2N1,i `i)t+

√
3ρi√

2N1,i
sin
(
N1,i `i−

3ρi

16
sin(2N1,i `i)

)
w

where t = t1,i−1 is a (convenient) unit tangent vector and w = w1,i−1 a
unit normal vector. We have

f ∗1,i〈., .〉 − f ∗1,i−1〈., .〉 =
3
4
ρi`

2
i + O(ρ2

i ) + O(1/N1,i)
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Step 2 : Iterations

« Our proof follows Nash’ proof with the exception of a different kind of
one step device : a strain. This strain however requires considerations
concerning the convergence of the process which are even more
delicate then those required with Nash’ one step device. We therefore
give a complete proof independent of Nash’ paper » Kuiper, 1955
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Step 2 : Iterations

• The passing from the codimension 2 to the codimension 1 shows a
real technical problem.

• This problem can be settled by substituting a Convex Integration to
the Kuiper formula (we shall see how latter).

• The new map f1,i thus defined is such that

f ∗1,i〈., .〉 − f ∗1,i−1〈., .〉 =
3
4
ρi`

2
i + O(1/N1,i)
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Step 3 : Convergence

•We re-do all the process starting with f1 and decomposing the new
isometric default as a sum of P1 squares of linear forms

∆1(x) = g − f ∗1 〈., .〉 =

P1∑
j=1

ρ1,j(x)`21,j

and then redoing P1 iterations to obtain f2 := f1,P1 . And so on...

• If the Nk ,i ’s are large enough, the resulting sequence of maps
satisfies :

‖g − f ∗k 〈., .〉‖C0 ≤
‖∆‖C0

2k
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Step 3 : Convergence

• A direct computation shows that the sequence (fk ) is C1 converging.

Nash :

fk ,i = fk ,i−1 +

√
3ρk ,i

2Nk,i

(
cos(Nk,i `k ,i) u + sin(Nk,i `k ,i) v

)
Kuiper :

fk ,i = fk ,i−1 −
3ρk ,i

16Nk,i
sin(2Nk,i `k ,i)t

+

√
3ρk ,i√
2Nk,i

sin
(
Nk,i `k ,i −

3ρk ,i

16
sin(2Nk,i `k ,i)

)
w

(here again u = u1,i and v = v1,i are two orthogonal unit normal
vectors of fk ,i−1).

• Thus the limit map f∞ is C1 isometric.
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Step 4 : The limit map f∞ is an embedding
• The image of f1,1 is a graph above f0 (lying in a normal neiborhood of
f0), therefore f1,1 is an embedding. For the same reason, each fk is an
embedding.

• Let x1 and x2 be two distinct points of M and let k > 0, we put

dk (x1, x2) := dist(fk (x1), fk (x2)).

Since ‖fk+1 − fk‖C0 ≤
1
2k we have

dist(f∞(xi)− fk (xi)) ≤ 1
2k−1

and thus

dk (x1, x2)− 1
2k−2 ≤ dist(f∞(x1), f∞(x2)) = d∞(x1, x2)

Vincent Borrelli L1 - Nash-Kuiper Theorem



Step 4 : The limit map f∞ is an embedding
• The image of f1,1 is a graph above f0 (lying in a normal neiborhood of
f0), therefore f1,1 is an embedding. For the same reason, each fk is an
embedding.

• Let x1 and x2 be two distinct points of M and let k > 0, we put

dk (x1, x2) := dist(fk (x1), fk (x2)).

Since ‖fk+1 − fk‖C0 ≤
1
2k we have

dist(f∞(xi)− fk (xi)) ≤ 1
2k−1

and thus

dk (x1, x2)− 1
2k−2 ≤ dist(f∞(x1), f∞(x2)) = d∞(x1, x2)

Vincent Borrelli L1 - Nash-Kuiper Theorem



Step 4 : The limit map f∞ is an embedding

•We shall show that, for every couple of distinct points (x1, x2), there
exists k such that dk (x1, x2)− 1

2k−2 > 0. This will imply that f∞ is an
embedding.

• Let (fk ,i)i∈{1,...,Pk} be the sequence joining fk to fk+1. We first observe
that

lim
Nk,i+1→+∞

‖fk ,i+1 − fk ,i‖C0 = 0

implies
lim

Nk,i+1→+∞
‖dk ,i+1(., .)− dk ,i(., .)‖C0 = 0

Thus, for every k and every i , there exists Nk ,i+1 such that

dk ,i+1 ≥
(

2
3

)1/Pk

dk ,i
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Step 4 : The limit map f∞ is an embedding

• As a consequence dk+1 ≥ 2
3dk for every k and

dk ≥
(

2
3

)k

d0

•We deduce

dk (x1, x2)− 1
2k−2 ≥ d0(x1, x2)

(
2
3

)k

− 4
(

1
2

)k

• If k is large enough, the right term is positive, hence d∞(x1, x2) > 0.
Thus, the map f∞ is an embedding.

•We have proved the Nash-Kuiper Theorem
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The outrageously simple idea

John Nash

The isometric default must be reduced iteratively and not all at once.
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The outrageously simple idea
By considering

f1,i = f1,i−1 +

√
1ρ1,i

N1,i

(
cos Nk ,i `1,i) u + sin(N1,i `1,i) v

)
instead of

f1,i = f1,i−1 +

√
3ρ1,i

2N1,i

(
cos N1,i `1,i) u + sin(N1,i `1,i) v

)
it is obviously possible to kill the whole isometric default in each
direction `1,i up to a O(1/N1,i) :

f ∗1,i〈., .〉 − f ∗1,i−1〈., .〉 = 1× ρi`
2
i + O(1/N1,i)

to get a map f1 approximately isometric

g − f ∗1 〈., .〉 =

P0∑
i=1

O(1/N1,i).

Vincent Borrelli L1 - Nash-Kuiper Theorem



The outrageously simple idea

BUT

This leads to a dead end. Indeed there is no control on the sign of
O(1/N1,i) and consequently f1 is no longer a short map in general. It
lengthens some curves and the helix deformation can not reduce their
length.

NASH

bypasses this difficulty with an iterative approach, dividing the
isometric default by 2 at each step rather than trying to reduce it to
zero all at once.
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That’s all folks !

John Nash
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