L2: From Nash-Kuiper to Gromov

Vincent Borrelli

Institut Camille Jordan - Université Claude Bernard Lyon 1

An incredible result

«At first, I looked at one of Nash's papers and thought it was just nonsense [...] It was incredible. It could not be true but it was true ».

An incredible

«I was thinking about this for several years, trying to understand the mechanism behind [the Nash's proof] "

An inspirational source

The Nash's proof was an inspirational source for the Gromov's Convex Integration Theory

Back to the Nash-Kuiper's proof

The step 2 problem.- Let

- $f_{0}: \mathcal{U} \subset \mathbb{R}^{n} \rightarrow \mathbb{E}^{q}$ be an immersion,
- $\rho: \mathcal{U} \rightarrow \mathbb{R}_{\geq 0}$
- $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a linear form,
- $\epsilon>0$

Find $f: \mathcal{U} \rightarrow \mathbb{E}^{q}$ such that :
i) $f^{*}\langle.,\rangle=.f_{0}^{*}\langle.,\rangle+.\rho \ell \otimes \ell$
ii) $\left\|f-f_{0}\right\|_{C^{0}}<\epsilon$

Back to the Nash-Kuiper's proof

The step 2 problem (rephrasing+codimension at least 2).- Let

- $f_{0}:[0,1]^{n} \rightarrow \mathbb{E}^{q}$ be an immersion with $q \geq n+2$,
- $\rho:[0,1]^{n} \rightarrow \mathbb{R}_{\geq 0}$
- $\ell=d x_{1}$
- $\epsilon>0$

Find $f:[0,1]^{n} \rightarrow \mathbb{E}^{q}$ such that :
i) $f^{*}\langle.,\rangle=.f_{0}^{*}\langle.,\rangle+.\rho d x_{1} \otimes d x_{1}$
ii) $\left\|f-f_{0}\right\|_{C^{0}}<\epsilon$

Solution

- If we apply condition i) to $\left(\partial_{1}, \partial_{1}\right)$ we obtain

$$
f^{*}\left\langle\partial_{1}, \partial_{1}\right\rangle=f_{0}^{*}\left\langle\partial_{1}, \partial_{1}\right\rangle+\rho d x_{1}\left(\partial_{1}\right) d x_{1}\left(\partial_{1}\right)
$$

i.e.

$$
\left\|\partial_{1} f(x)\right\|^{2}=\left\|\partial_{1} f_{0}(x)\right\|^{2}+\rho(x)
$$

Solution

- If we apply condition $i)$ to $\left(\partial_{1}, \partial_{1}\right)$ we obtain

$$
f^{*}\left\langle\partial_{1}, \partial_{1}\right\rangle=f_{0}^{*}\left\langle\partial_{1}, \partial_{1}\right\rangle+\rho d x_{1}\left(\partial_{1}\right) d x_{1}\left(\partial_{1}\right)
$$

i.e.

$$
\left\|\partial_{1} f(x)\right\|^{2}=\left\|\partial_{1} f_{0}(x)\right\|^{2}+\rho(x)
$$

- We first build a map $\partial_{1} f(x)$ satisfying the above equation and then we define f to be a primitive of that map :

$$
f(x)=f_{0}\left(0, x_{2}, \ldots, x_{n}\right)+\int_{0}^{x_{1}} \partial_{1} f\left(u, x_{1}, \ldots, x_{n}\right) d u
$$

Solution

- To define $\partial_{1} f$ we follow the Nash's approach. Given two unit normal vectors of t_{0} :

$$
\mathbf{u}, \mathbf{v}:[0,1]^{n} \rightarrow \mathbb{E}^{q}
$$

such that $\langle\mathbf{u}, \mathbf{v}\rangle=0$, we look for a solution $\partial_{1} f$ behaving as a tangent vector to an helix.

Convex Integration

- We put

$$
\partial_{1} f(x)=\sqrt{\rho(x)} e^{i \theta(x)}+\partial_{1} f_{0}(x)
$$

where $e^{i \theta}:=\cos \theta \mathbf{u}+\sin \theta \mathbf{v}$ and $\theta:[0,1]^{n} \longrightarrow \mathbb{R}$ will be chosen latter.

Convex Integration

- Since (u,v) are unit normal vectors, we have

$$
\partial_{1} f(x)=\sqrt{\rho(x)} e^{i \theta(x)}+\partial_{1} f_{0}(x) \Longrightarrow\left\|\partial_{1} f(x)\right\|^{2}=\rho(x)+\left\|\partial_{1} f_{0}(x)\right\|^{2}
$$

Convex Integration

- A possible choice for θ is

$$
\theta(x)=2 \pi N x_{1}
$$

where $N \in \mathbb{N}^{*}$ is a free parameter (= the number of spirals).

C^{0}-density

- For every $x \in[0,1]^{n}$ we set

$$
\begin{aligned}
f(x) & :=f_{0}\left(0, x_{2}, \ldots, x_{n}\right)+\int_{0}^{x_{1}} \sqrt{\rho\left(u, x_{2}, \ldots, x_{n}\right)} e^{i 2 \pi N u}+\partial_{1} f_{0}\left(u, x_{2}, \ldots, x_{n}\right) \mathrm{d} u \\
& =f_{0}(x)+\int_{0}^{x_{1}} \sqrt{\rho\left(u, x_{2}, \ldots, x_{n}\right)} e^{i 2 \pi N u} \mathrm{~d} u
\end{aligned}
$$

C^{0}-density

- For every $x \in[0,1]^{n}$ we set

$$
\begin{aligned}
f(x) & :=f_{0}\left(0, x_{2}, \ldots, x_{n}\right)+\int_{0}^{x_{1}} \sqrt{\rho\left(u, x_{2}, \ldots, x_{n}\right)} e^{i 2 \pi N u}+\partial_{1} f_{0}\left(u, x_{2}, \ldots, x_{n}\right) \mathrm{d} u \\
& =f_{0}(x)+\int_{0}^{x_{1}} \sqrt{\rho\left(u, x_{2}, \ldots, x_{n}\right)} e^{i 2 \pi N u} \mathrm{~d} u
\end{aligned}
$$

- Since $\int_{0}^{1} e^{i 2 \pi u} d u=0$, we have (see the lemma below)

$$
\left\|f-f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right) \quad \text { and } \quad\left\|\partial_{j} f-\partial_{j} f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right)
$$

for every $j \geq 2$.

C^{0}-density

- For every $x \in[0,1]^{n}$ we set

$$
\begin{aligned}
f(x) & :=f_{0}\left(0, x_{2}, \ldots, x_{n}\right)+\int_{0}^{x_{1}} \sqrt{\rho\left(u, x_{2}, \ldots, x_{n}\right)} e^{i 2 \pi N u}+\partial_{1} f_{0}\left(u, x_{2}, \ldots, x_{n}\right) \mathrm{d} u \\
& =f_{0}(x)+\int_{0}^{x_{1}} \sqrt{\rho\left(u, x_{2}, \ldots, x_{n}\right)} e^{i 2 \pi N u} \mathrm{~d} u
\end{aligned}
$$

- Since $\int_{0}^{1} e^{i 2 \pi u} d u=0$, we have (see the lemma below)

$$
\left\|f-f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right) \quad \text { and } \quad\left\|\partial_{j} f-\partial_{j} f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N}\right)
$$

for every $j \geq 2$.

- Thus, if N is large enough, f fulfills the C^{0}-closeness condition ii).

A useful lemma

Lemma.- Let $f:[a, b] \rightarrow \mathbb{E}^{q}$ be a C^{1} function and $h: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous T-periodic function then

$$
\int_{a}^{b} f(s) h(N s) d s=\left(\int_{a}^{b} f(s) d s\right)\left(\frac{1}{T} \int_{0}^{T} h(s) d s\right)+O\left(\frac{1}{N}\right)
$$

In particular, if $\bar{h}=0$, then

$$
\int_{a}^{b} f(s) h(N s) d s=O\left(\frac{1}{N}\right)
$$

A useful lemma

Proof.- Let $g=h-\bar{h}$. We have

$$
\begin{aligned}
\int_{a}^{b} f(s)(h(N s)-\bar{h}) d s & =\int_{a}^{b} f(s) g(N s) d s \\
& =\left[f(s) \frac{G(N s)}{N}\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(s) \frac{G(N s)}{N} d s
\end{aligned}
$$

where G is the primitive of g given by $G(t)=\int_{0}^{t} g(s) d s$.

A useful lemma

Proof.- Let $g=h-\bar{h}$. We have

$$
\begin{aligned}
\int_{a}^{b} f(s)(h(N s)-\bar{h}) d s & =\int_{a}^{b} f(s) g(N s) d s \\
& =\left[f(s) \frac{G(N s)}{N}\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(s) \frac{G(N s)}{N} d s
\end{aligned}
$$

where G is the primitive of g given by $G(t)=\int_{0}^{t} g(s) d s$.
Since

$$
\int_{0}^{T} g(s) d s=\int_{0}^{T}(h(s)-\bar{h}) d s=0
$$

the primitive G is T-periodic thus bounded.

A useful lemma

Proof.- Let $g=h-\bar{h}$. We have

$$
\begin{aligned}
\int_{a}^{b} f(s)(h(N s)-\bar{h}) d s & =\int_{a}^{b} f(s) g(N s) d s \\
& =\left[f(s) \frac{G(N s)}{N}\right]_{a}^{b}-\int_{a}^{b} f^{\prime}(s) \frac{G(N s)}{N} d s
\end{aligned}
$$

where G is the primitive of g given by $G(t)=\int_{0}^{t} g(s) d s$.
Since

$$
\int_{0}^{T} g(s) d s=\int_{0}^{T}(h(s)-\bar{h}) d s=0
$$

the primitive G is T-periodic thus bounded. We conclude

$$
\int_{a}^{b} f(s)(h(N s)-\bar{h}) d s=O\left(\frac{1}{N}\right)
$$

The isometric condition

- By construction, for $j=1$, we have

$$
\left\|\partial_{1} f(x)\right\|^{2}=\left\|\partial_{1} f_{0}\right\|^{2}+\rho(x)
$$

for every $x \in[0,1]^{n}$. Thus, f fulfills Condition $\left.i\right)$ for the couple $\left(\partial_{1}, \partial_{1}\right)$.

The isometric condition

- By construction, for $j=1$, we have

$$
\left\|\partial_{1} f(x)\right\|^{2}=\left\|\partial_{1} f_{0}\right\|^{2}+\rho(x)
$$

for every $x \in[0,1]^{n}$. Thus, f fulfills Condition $\left.i\right)$ for the couple $\left(\partial_{1}, \partial_{1}\right)$.

- However, for the other couples $\left(\partial_{i}, \partial_{j}\right),(i, j) \neq(1,1)$, we have

$$
\begin{aligned}
\left\langle\partial_{i} f(x), \partial_{j} f(x)\right\rangle & =\left\langle\partial_{i} f_{0}(x), \partial_{j} f_{0}(x)\right\rangle+O\left(\frac{1}{N}\right) \\
& =\left\langle\partial_{i} f_{0}(x), \partial_{j} f_{0}(x)\right\rangle+\rho(x) d x_{1}\left(\partial_{i}\right) d x_{1}\left(\partial_{j}\right)+O\left(\frac{1}{N}\right)
\end{aligned}
$$

The isometric condition

- By construction, for $j=1$, we have

$$
\left\|\partial_{1} f(x)\right\|^{2}=\left\|\partial_{1} f_{0}\right\|^{2}+\rho(x)
$$

for every $x \in[0,1]^{n}$. Thus, f fulfills Condition $\left.i\right)$ for the couple $\left(\partial_{1}, \partial_{1}\right)$.

- However, for the other couples $\left(\partial_{i}, \partial_{j}\right),(i, j) \neq(1,1)$, we have

$$
\begin{aligned}
\left\langle\partial_{i} f(x), \partial_{j} f(x)\right\rangle & =\left\langle\partial_{i} f_{0}(x), \partial_{j} f_{0}(x)\right\rangle+O\left(\frac{1}{N}\right) \\
& =\left\langle\partial_{i} f_{0}(x), \partial_{j} f_{0}(x)\right\rangle+\rho(x) d x_{1}\left(\partial_{i}\right) d x_{1}\left(\partial_{j}\right)+O\left(\frac{1}{N}\right)
\end{aligned}
$$

- Finally, we have solved condition i) approximately

$$
f^{*}\langle., .\rangle=f_{0}^{*}\langle., .\rangle+\rho d x_{1} \otimes d x_{1}+O\left(\frac{1}{N}\right)
$$

The isometric condition

- By construction, for $j=1$, we have

$$
\left\|\partial_{1} f(x)\right\|^{2}=\left\|\partial_{1} f_{0}\right\|^{2}+\rho(x)
$$

for every $x \in[0,1]^{n}$. Thus, f fulfills Condition $\left.i\right)$ for the couple $\left(\partial_{1}, \partial_{1}\right)$.

- However, for the other couples $\left(\partial_{i}, \partial_{j}\right),(i, j) \neq(1,1)$, we have

$$
\begin{aligned}
\left\langle\partial_{i} f(x), \partial_{j} f(x)\right\rangle & =\left\langle\partial_{i} f_{0}(x), \partial_{j} f_{0}(x)\right\rangle+O\left(\frac{1}{N}\right) \\
& =\left\langle\partial_{i} f_{0}(x), \partial_{j} f_{0}(x)\right\rangle+\rho(x) d x_{1}\left(\partial_{i}\right) d x_{1}\left(\partial_{j}\right)+O\left(\frac{1}{N}\right)
\end{aligned}
$$

- Finally, we have solved condition i) approximately

$$
f^{*}\langle., .\rangle=f_{0}^{*}\langle., .\rangle+\rho d x_{1} \otimes d x_{1}+O\left(\frac{1}{N}\right)
$$

- Note that Nash also solved this condition approximately.

Convex Integration Formula

Definition.- Let

- $\gamma:[0,1]^{n} \times \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}^{q}$ be a family of loops
- $f_{0}:[0,1]^{n} \rightarrow \mathbb{R}^{q}$ a map
- $N>0$

We define a new map $F:[0,1]^{n} \rightarrow \mathbb{R}^{q}$ by setting

$$
F(x):=f_{0}\left(0, x_{2}, \ldots, x_{n}\right)+\int_{0}^{x_{1}} \gamma\left(u, x_{2}, \ldots, x_{n} ; N u\right) d u
$$

for every $x \in[0,1]^{n}$. The map F is said to be obtained from f_{0} by Convex Integration. It is denoted by $F=C l_{\gamma}\left(f_{0}, \partial_{1}, N\right)$.

Convex Integration Formula

Example.- The map f previously built is obtained by convex integration from f_{0} and with the following choice for γ :

$$
\gamma(x, t)=\sqrt{\rho(x)} e^{2 i \pi t}+\partial_{1} f_{0}(x)
$$

Convex Integration Formula

Example.- The map f previously built is obtained by convex integration from f_{0} and with the following choice for γ :

$$
\gamma(x, t)=\sqrt{\rho(x)} e^{2 i \pi t}+\partial_{1} f_{0}(x)
$$

- Observe that

$$
\int_{0}^{1} \gamma(x, t) d t=\partial_{1} f_{0}(x)
$$

In average, the effect of γ and $\partial_{1} f_{0}$ are the same. This is the reason why f is C^{0}-close to f_{0}.

Convex Integration Formula

Example.- The map f previously built is obtained by convex integration from f_{0} and with the following choice for γ :

$$
\gamma(x, t)=\sqrt{\rho(x)} e^{2 i \pi t}+\partial_{1} f_{0}(x)
$$

- Observe that

$$
\int_{0}^{1} \gamma(x, t) d t=\partial_{1} f_{0}(x)
$$

In average, the effect of γ and $\partial_{1} f_{0}$ are the same. This is the reason why f is C^{0}-close to f_{0}.

Definition.- A family of loops $\gamma:[0,1]^{n} \times \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}^{a}$ satisfies the average condition with respect to f_{0} and in the direction of ∂_{1} if

$$
\forall x \in[0,1]^{n}, \quad \int_{0}^{1} \gamma(x, t) d t=\partial_{1} f_{0}(x)
$$

Convex Integration Formula

Proposition.- If γ satisfies the average condition with respect to f_{0} and in the direction ∂_{1} then the following properties hold for $F=C l_{\gamma}\left(f_{0}, \partial_{1}, N\right):$
$\left(P_{1}\right)\left\|f_{0}-F\right\|_{C^{0}}=O(1 / N)$,
$\left(P_{2}\right)\left\|\partial_{i} f_{0}-\partial_{i} F\right\|_{C^{0}}=O(1 / N)$ for every $i \neq 1$,
$\left(P_{3}\right) \forall x \in[0,1]^{n}, \quad \partial_{1} F(x)=\gamma\left(x, N x_{1}\right)$.

Convex Integration Formula

Proposition.- If γ satisfies the average condition with respect to f_{0} and in the direction ∂_{1} then the following properties hold for $F=C l_{\gamma}\left(f_{0}, \partial_{1}, N\right)$:
$\left(P_{1}\right)\left\|f_{0}-F\right\|_{C^{0}}=O(1 / N)$,
$\left(P_{2}\right)\left\|\partial_{i} f_{0}-\partial_{i} F\right\|_{C^{0}}=O(1 / N)$ for every $i \neq 1$,
$\left(P_{3}\right) \forall x \in[0,1]^{n}, \quad \partial_{1} F(x)=\gamma\left(x, N x_{1}\right)$.
Proof.- Postponed to the lecture devoted to the 1D Convex Integration.

Improving the Kuiper Formula

The step 2 problem (codimension 1).- We assume $q=n+1$. Given $\epsilon>0$ we want to construct $f:[0,1]^{n} \rightarrow \mathbb{E}^{n+1}$ such that
i) $\left\|f^{*}\langle., .\rangle-\left(f_{0}^{*}\langle., .\rangle+\rho d x_{1} \otimes d x_{1}\right)\right\|_{C^{0}}<\epsilon$
ii) $\left\|f-f_{0}\right\|_{C^{0}}<\epsilon$

Improving the Kuiper Formula

The step 2 problem (codimension 1).- We assume $q=n+1$. Given $\epsilon>0$ we want to construct $f:[0,1]^{n} \rightarrow \mathbb{E}^{n+1}$ such that

$$
\begin{aligned}
& \text { i) }\left\|f^{*}\langle., .\rangle-\left(f_{0}^{*}\langle., .\rangle+\rho d x_{1} \otimes d x_{1}\right)\right\|_{C^{0}}<\epsilon \\
& \text { ii) }\left\|f-f_{0}\right\|_{C^{0}}<\epsilon
\end{aligned}
$$

Solution.- We are going to build f by a convex integration from f_{0} in the direction ∂_{1}. Any such map will satisfy property $(P 2)$:

$$
\left\|\partial_{i} f-\partial_{i} f_{0}\right\|_{C^{0}}=O(1 / N) \text { pour tout } i \neq 1
$$

which implies that

$$
\left\langle\partial_{i} f, \partial_{j} f\right\rangle=\left\langle\partial_{i} f_{0}, \partial_{j} f_{0}\right\rangle+O(1 / N)
$$

for every $i \neq 1, j \neq 1$.

Improving the Kuiper Formula

- It remains to solve (i) for the couples $(1, i), i \in\{1, \ldots, n\}$, i. e.

$$
\left\{\begin{array}{l}
\left\langle\partial_{1} f, \partial_{i} f\right\rangle=\left\langle\partial_{1} f_{0}, \partial_{i} f_{0}\right\rangle+O(1 / N) \text { for every } i \neq 1 \\
\left\|\partial_{1} f\right\|^{2}=\left\|\partial_{1} f_{0}\right\|^{2}+\rho+O(1 / N)
\end{array}\right.
$$

Improving the Kuiper Formula

- It remains to solve (i) for the couples $(1, i), i \in\{1, \ldots, n\}$, i. e.

$$
\left\{\begin{array}{l}
\left\langle\partial_{1} f, \partial_{i} f\right\rangle=\left\langle\partial_{1} f_{0}, \partial_{i} f_{0}\right\rangle+O(1 / N) \text { for every } i \neq 1 \\
\left\|\partial_{1} f\right\|^{2}=\left\|\partial_{1} f_{0}\right\|^{2}+\rho+O(1 / N)
\end{array}\right.
$$

Or equivalently

$$
\left\{\begin{array}{l}
\left\langle\partial_{1} f, \partial_{i} f_{0}\right\rangle=\left\langle\partial_{1} f_{0}, \partial_{i} f_{0}\right\rangle+O(1 / N) \text { for every } i \neq 1 \\
\left\|\partial_{1} f\right\|^{2}=\left\|\partial_{1} f_{0}\right\|^{2}+\rho+O(1 / N)
\end{array}\right.
$$

since

$$
\left\|\partial_{i} f-\partial_{i} f_{0}\right\|_{C^{0}}=O(1 / N) \text { pour tout } i \neq 1
$$

- For every $x \in[0,1]^{n}$, we put

$$
\mathcal{R}_{x}=\left\{\begin{array}{ll}
v \in \mathbb{R}^{n+1} \left\lvert\, \begin{array}{l}
\left\langle v, \partial_{i} f_{0}(x)\right\rangle=\left\langle\partial_{1} f_{0}(x), \partial_{i} f_{0}(x)\right\rangle \text { for every } i \neq 1 \\
\|v\|^{2}=\left\|\partial_{1} f_{0}(x)\right\|^{2}+\rho(x)
\end{array}\right.
\end{array}\right\}
$$

Improving the Kuiper Formula

$$
\mathcal{R}_{x}=\left\{\begin{array}{ll}
v \in \mathbb{R}^{n+1} \mid & \begin{array}{l}
\left\langle v, \partial_{i} f_{0}(x)\right\rangle=\left\langle\partial_{1} f_{0}(x), \partial_{i} f_{0}(x)\right\rangle \text { for every } i \neq 1 \\
\|v\|^{2}=\left\|\partial_{1} f_{0}(x)\right\|^{2}+\rho(x)
\end{array}
\end{array}\right\}
$$

- The set \mathcal{R}_{x} is the intersection of a hypersphere $\mathbb{S}^{n}(R)$ of radius

$$
R=\sqrt{\left\|\partial_{1} f_{0}(x)\right\|^{2}+\rho(x)}
$$

and of an affine 2-plane

$$
W=\left\{v \in \mathbb{R}^{n+1} \mid\left\langle v, \partial_{i} f_{0}(x)\right\rangle=\left\langle\partial_{1} f_{0}(x), \partial_{i} f_{0}(x)\right\rangle \text { for every } i \neq 1\right\}
$$

Improving the Kuiper Formula

- It is easily seen that \mathcal{R}_{x} is a circle whose center is given by the projection $\pi\left(\partial_{1} f_{0}(x)\right)$ of $\partial_{1} f_{0}(x)$ on $P=\operatorname{Span}\left(\partial_{2} f_{0}(x), \ldots, \partial_{n} f_{0}(x)\right)$ and whose radius is

$$
r(x)=\sqrt{\left\|\partial_{1} f_{0}(x)\right\|^{2}+\rho(x)-\left\|\pi\left(\partial_{1} f_{0}(x)\right)\right\|^{2}}
$$

Improving the Kuiper Formula

- We have to choose a family of loops $\gamma:[0,1]^{n} \times \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}^{n+1}$ such that

1) $t \mapsto \gamma(x, t) \in \mathcal{R}_{X}$
2) $\int_{0}^{1} \gamma(x, t) d t=\partial_{1} f_{0}(x)$

Improving the Kuiper Formula

- We set

$$
\mathbf{t}=\frac{\partial_{1} f_{0}-\pi\left(\partial_{1} f_{0}\right)}{\left\|\partial_{1} f_{0}-\pi\left(\partial_{1} f_{0}\right)\right\|} \quad \text { and } \quad \mathbf{n}=\frac{\partial_{1} f_{0} \wedge \ldots \wedge \partial_{n} f_{0}}{\left\|\partial_{1} f_{0} \wedge \ldots \wedge \partial_{n} f_{0}\right\|}
$$

Improving the Kuiper Formula

- We define γ to be

$$
\gamma(x, t)=\pi\left(\partial_{1} f_{0}(x)\right)+r(x)(\cos \theta \mathbf{t}+\sin \theta \mathbf{n})
$$

Improving the Kuiper Formula

- We define γ to be

$$
\gamma(x, t)=\pi\left(\partial_{1} f_{0}(x)\right)+r(x)(\cos \theta \mathbf{t}+\sin \theta \mathbf{n})
$$

with $\theta(x, t)=\alpha(x) \cos 2 \pi t$ and $\alpha(x)$ is to be determined.

Improving the Kuiper Formula

- We then have

$$
\int_{0}^{1} \gamma(x, t) d t=r(x) J_{0}(\alpha(x)) \mathbf{t}+\pi\left(\partial_{1} f_{0}(x)\right)
$$

where J_{0} the Bessel function.

The Bessel Function J_{0}

$$
J_{0}(\alpha)=\frac{1}{\pi} \int_{0}^{\pi} \cos (\alpha \sin u) d u
$$

Improving the Kuiper Formula

- We then have

$$
\int_{0}^{1} \gamma(x, t) d t=r(x) J_{0}(\alpha(x)) \mathbf{t}+\pi\left(\partial_{1} f_{0}(x)\right)
$$

where J_{0} the Bessel function.

- To ensure the average to be equal to $\partial_{1} f_{0}$, it is enough to choose

$$
\alpha(x)=J_{0}^{-1}\left(\frac{\left\|\partial_{1} f_{0}(x)-\pi\left(\partial_{1} f_{0}(x)\right)\right\|}{r(x)}\right)
$$

Improving the Kuiper Formula

- We then have

$$
\int_{0}^{1} \gamma(x, t) d t=r(x) J_{0}(\alpha(x)) \mathbf{t}+\pi\left(\partial_{1} f_{0}(x)\right)
$$

where J_{0} the Bessel function.

- To ensure the average to be equal to $\partial_{1} f_{0}$, it is enough to choose

$$
\alpha(x)=J_{0}^{-1}\left(\frac{\left\|\partial_{1} f_{0}(x)-\pi\left(\partial_{1} f_{0}(x)\right)\right\|}{r(x)}\right)
$$

- Since $r J_{0}(\alpha) \mathbf{t}+\pi\left(\partial_{1} f_{0}\right)=\partial_{1} f_{0}$, we can write

$$
\gamma(x, t)=r\left(\cos (\alpha \cos 2 \pi t)-J_{0}(\alpha)\right) \mathbf{t}+r \sin (\alpha \cos 2 \pi t) \mathbf{n}+\partial_{1} f_{0}
$$

Improving the Kuiper Formula

To sum up.- The map $f=C l_{\gamma}\left(f_{0}, \partial_{1}, N\right)$ with

$$
\gamma(x, t)=r\left(\cos (\alpha \cos 2 \pi t)-J_{0}(\alpha)\right) \mathbf{t}+r \sin (\alpha \cos 2 \pi t) \mathbf{n}+\partial_{1} f_{0}
$$

and

$$
r=\sqrt{\left\|\partial_{1} f_{0}\right\|^{2}+\rho-\left\|\pi\left(\partial_{1} f_{0}\right)\right\|^{2}}, \quad \alpha=J_{0}^{-1}\left(\frac{\left\|\partial_{1} f_{0}-\pi\left(\partial_{1} f_{0}\right)\right\|}{r}\right)
$$

satisfies the following properties
i) $f^{*}\langle., .\rangle=,f_{0}^{*}\langle.,\rangle+.\rho d x_{1} \otimes d x_{1}+O(1 / N)$
ii) $\left\|f-f_{0}\right\|_{C^{0}}=O(1 / N)$
iii) $\left\|\partial_{i} f-\partial_{i} f_{0}\right\|_{C^{0}}=O(1 / N)$ for every $i \neq 1$.

Improving the Kuiper Formula

Analytical expression.- The map $f=C l_{\gamma}\left(f_{0}, \partial_{1}, N\right)$ has the following expression

$$
f(x)=f_{0}\left(0, x_{2}, \ldots, x_{m}\right)+\int_{0}^{x_{1}} \gamma\left(u, x_{2}, \ldots, x_{m} ; N u\right) d u
$$

with
$\gamma(x, t)=\pi\left(\partial_{1} f_{0}(x)\right)+r(x)(\cos (\alpha(x) \cos 2 \pi t) \mathbf{t}(x)+\sin (\alpha(x) \cos 2 \pi t) \mathbf{n}(x))$.

Improving the Kuiper Formula

Analytical expression.- The map $f=C l_{\gamma}\left(f_{0}, \partial_{1}, N\right)$ has the following expression

$$
f(x)=f_{0}\left(0, x_{2}, \ldots, x_{m}\right)+\int_{0}^{x_{1}} \gamma\left(u, x_{2}, \ldots, x_{m} ; N u\right) d u
$$

with
$\gamma(x, t)=\pi\left(\partial_{1} f_{0}(x)\right)+r(x)(\cos (\alpha(x) \cos 2 \pi t) \mathbf{t}(x)+\sin (\alpha(x) \cos 2 \pi t) \mathbf{n}(x))$.

- By comparison the Kuiper formula is :
$f(x)=f_{0}(x)-\frac{3 \rho(x)}{16 N} \sin \left(2 N x_{1}\right) \mathbf{t}(x)+\frac{\sqrt{3 \rho(x)}}{\sqrt{2} N} \sin \left(N x_{1}-\frac{3 \rho(x)}{16} \sin \left(2 N x_{1}\right)\right) \mathbf{n}(x)$

The outrageously simple idea

Mikhaïl Gromov

- The $O\left(\rho^{2}\right)$ default in the Kuiper process deserves to be corrected

The outrageously simple idea

Mikhaïl Gromov

- The $O\left(\rho^{2}\right)$ default in the Kuiper process deserves to be corrected
- This can be done by combining a geometrical approach with a simple integral formula.

Mikhaïl Gromov

