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What is the h-principle?

The 1-jet Space.–

J1(M,N) = {(x , y ,L) | x ∈ M, y ∈ N,L ∈ L(TxM,TyN)}.
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What is the h-principle?

Holonomic section.– Any section x 7→ S(x) = (x , f0(x),L(x)) such
that L(x) = (df0)x , i. e. S = j1f0.
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What is the h-principle?

Differential Relation.– Any subset R of J1(M,N).
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What is the h-principle?

Solution of R.– Any map f : M −→ N such that j1f (M) ⊂ R. We
denote by Sol(R) the space of solutions of R.
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What is the h-principle?

Formal Solution.– Any section S : M −→ R. We denote by Γ(R) the
space of formal solutions of R.
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What is the h-principle?

H-Principle.– A differential relation R satisfies the h-principle (or
homotopy principle) if every formal solution S : M −→ R is
homotopic in Γ(R) to the 1-jet of a solution of R.
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What is the h-principle?

• The natural inclusion

J : C1(M,N) −→ J1(M,N)
f 7−→ j1f .

induces a map
J : Sol(R) −→ Γ(R).

• Note that a differential relation R satisfies the h-principle if and only if
the map π0(J) is onto

π0(J) : π0(Sol(R)) � π0(Γ(R)).
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H-principles

1-parametric h-principle.– A differential relation R satisfies the
1-parametric h-principle it satisfies the h-principle and if, for any
family of sections St ∈ Γ(R) such that S0 = j1f0 and S1 = j1f1, there
exists a homotopy H : [0,1]2 → Γ(R) such that :

H(0, t) = St , H(s,0) = S0, H(s,1) = S1, et H(1, t) = j1ft .

• Thus, a differential relation R satisfies the 1-parametric h-principle if
and only if

π0(J) : π0(Sol(R)) −→ π0(Γ(R)).

is a bijective map.
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Homotopy Equivalence

Definition.– Let X and Y be two topological spaces. A map
f : X −→ Y is a homotopy equivalence if there exists

g : Y −→ X

such that f ◦ g is homotopic to IdY and g ◦ f is homotopic to IdX .

• In other words, X and Y are homotopically indistinguishable.

• Example : X = {∗} and Y = Rn

• Example : X = Sn−1 and Y = Rn \ {∗}

• Example : X = {x1, x2} and Rn \ H where H is a hyperplane.
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H-principles

Definition.– A map f : X −→ Y is a weak homotopy equivalence if the
map

π0(f ) : π0(X )→ π0(Y )

is bijective and if, for every k ∈ N∗ and for every x ∈ X , the map f
induces an isomorphism

πk (f ) : πk (X , x) ' πk (Y , f (x)).

• If X is path-connected then first condition is automatic, and it suffices
to state the second condition for a single point x in X .

• If f : X 7→ Y is a homotopy equivalence then it is a weak homotopy
equivalence.
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H-principles

Parametric h-principle.– A differential relation R satisfies the
parametric h-principle if the map

J : Sol(R) −→ Γ(R)

is a weak homotopy equivalence.

• It turns out that several differential relations arising from differential
geometry satisfy the parametric h-principle.
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A remark of Y. Eliashberg and N. Mishachev

Whitehead Theorem (1949).– If f is a weak homotopy equivalence
between X and Y CW complexes then f is a homotopy equivalence.

• An infinite dimensional version of the Whitehead Theorem states that
any weak homotopy equivalence between two Fréchet metrizable
manifolds is a homotopy equivalence.

• Recall that a Fréchet space is a complete topological vector space
which is separated (=is a Hausdorff space) and whose topology is
induced by a countable family of seminormes |.|n. Such a space is
metrizable by setting d(x , y) :=

∑∞
n=1

1
2n
|x−y |n

1+|x−y |n .

• The spaces Sol(R) and Γ(R) are Fréchet metrizable. Consequently,
the parametric h-principle for R implies that J : Sol(R) −→ Γ(R) is a
homotopy equivalence.
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Examples of relations satisfying the h-principle

• The Whitney-Graustein Theorem (1937) shows that the relation

R = {(x , y , v) ∈ S1 × R2 × R2 | v 6= (0,0)}

satisfies the 1-parametric h-principle.

• The generalization of this theorem stated in the end of the lecture 3
shows that R satisfies the parametric h-principle. This generalization is
due to Morris Hirsch and dates back from 1959.

Definition.– Let Mm and Nn be two manifolds. A map f : M −→ N is
an immersion if for all p ∈ M, the differential dfp : TpM → Tf (p)N is of
maximal rank.

• If f is an immersion then dfp(TpM) is a n-dimensional subspace of
Tf (p)N. The image f (M) has no crease or tip.
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Examples of relations satisfying the h-principle

• The space of immersions from M to Rn is denoted by I(M,Rn).

• Let (Kn)n∈N be a countable family of compact sets covering M. For
every n ∈ N, we define

dn(f ,g) := sup
x∈Kn

‖f (x)− g(x)‖+ sup
x∈Kn

‖dfx − dgx‖

and we endow I(M,Rn) with the distance

d(f ,g) :=
∞∑

n=0

1
2n

dn(f ,g)

1 + dn(f ,g)
.
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Smale Theorem on Sphere Immersions

Stephen Smale

Smale Theorem (1957). – Let m < n. The relation

R = {(x , y ,L) ∈ J1(Sm,Rn) | rank L = m}

of immersions of Sm into Rn satisfies the 1-parametric h-principle.
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Smale Theorem on Sphere Immersions

Image : The Geometric Center

Corollary (Smale 1957).– The space I(S2,R3) is path-connected. In
particular, it is possible to realize an eversion of the 2-sphere among
immersions.
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Proof of the Sphere Eversion

Proof of the corollary.– Since R satisfies the 1-parametric
h-principle, the map

J : π0(I(S2,R3)) 7→ π0(Γ(R))

is a 1-to-1. The proof of the corollary thus reduces to the computation
of π0(Γ(R)) with

R = {(x , y ,L) ∈ J1(S2,R3) | rank L = 2}

• A homotopic computation shows that

π0(Γ(R)) = π2(GL+(R3)).

• It turns out that π2(GL+(R3)) = {0}. �
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Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence

Hirsch Theorem (1959). – Let Mm and Nn be two manifolds with
m < n. The relation of immersions of Mm into Nn :

R = {(x , y ,L) ∈ J1(Mm,Nn) | rank L = m}

satisfies the parametric h-principle. Precisely, the map

J : I(Mm,Nn) −→ Γ(R)
f 7−→ j1f

is a weak homotopy equivalence.
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Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence

Hirsch Theorem (1959). – The theorem still holds if m = n provided
that Mm is open.

• Recall that an open manifold is a manifold without boundary and
with no compact component.
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Exercice : Immersions of the 2-Torus

Exercice.– Apply the Hirsch Theorem to show that
Card π0(I(T2,R3)) = 4.

•We recall that π1(GL+(R3)) = Z/2Z and we admit that the space
C0(T2,GL+(R3)) has four components. Precisely,

Φ : π0(C0(T2,GL+(R3))) −→ π1(GL+(R3))× π1(GL+(R3))
[f ] 7−→ [f|S1×{∗}]× [f|{∗}×S1 ]

is a bijective map.
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Isometric Immersions

Mikhail Gromov

Theorem (Nash 1954 - Kuiper 1955 -Gromov 1986). – Let (Mm,g)
and (Nn,h) be two Riemannian manifold with m < n. The relation of
isometric immersions of Mm into Nn :

R = {(x , y ,L) ∈ J1(Mm,Nn) | L∗h = g}
satisfies the parametric h-principle. The weak homotopy equivalence is
given by the map J : f 7−→ j1f .
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Isometric Immersions

Corollary (Gromov 1986). – There exists a C1 isometric eversion of
the 2-sphere.
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More examples of relations satisfying the h-principle...

... with Jean-Claude Sikorav in the second part of this course.
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The h-Principe for Ample Relations

• Here is a theorem of Gromov ensuring the presence of a h-principle
provided R satisfies some topological and convexity properties :

Theorem (Gromov 69-73). – Let R ⊂ J1(M,N) be an open and ample
differential relation. Then R satisfies the parametric h-principle i. e.

J : Sol(R) −→ Γ(R)

is a weak homotopy equivalence.

• It remains to define what is an ample differential relation and to give
a (sketch of the) proof of this theorem.
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Ample Relations

Definition.– A subset A ⊂ Rn is ample if for every a ∈ A the interior of
the convex hull of the connected component to which a belongs is Rn i.
e. : IntConv(A,a) = Rn (in particular A = ∅ is ample).

A is not ample A is ample A is not ample.

Example.– The complement of a linear subspace F ⊂ Rn is ample if
and only if Codim F ≥ 2.
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Ample Relations

Definition.– Let E = P × Rn π−→ P be a fiber bundle, a subset R ⊂ E
is said to be ample if, for every p ∈ P, Rp := π−1(p)∩R is ample in Rn.

Remark.– If R ⊂ E is ample and z : P −→ E is a section, then, for
every p ∈ P, we have z(p) ∈ Conv(Rp, σ(p)).
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Ample Relations in J1(M,N)

• Locally, we identify J1(M,N) with

J1(U ,V) = U × V × L(Rm,Rn) = U × V ×
∏m

i=1 Rn.
= {(x , y , v1, ..., vm)}

where U and V are charts of M and N.

•We set :
J1(U ,V)⊥ := {(x , y , v1, ..., vm−1)}.

•We have
RU ,V −→ J1(U ,V)

↓ p⊥

J1(U ,V)⊥.
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Ample Relations in J1(M,N)

• Let z ∈ J1(U ,V)⊥, we set

R⊥z = (p⊥)−1(z) ∩RU ,V .

• R⊥ is a differential relation of the bundle

J1(U ,V)
p⊥−→ J1(U ,V)⊥.

Definition. – A differential relation R ⊂ J1(M,N) is ample if for every
local identification J1(U ,V) and for every z ∈ J1(U ,V)⊥, the space R⊥z
is ample in (p⊥)−1(z) ' Rn.
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Ample Relations in J1(M,N)

Proposition. – The differential relation R of immersions of Mm into Nn

is ample if n > m.

Proof.– Let J1(U ,V) be any local identification and let
z = (x , y , v1, ..., vm−1) ∈ J1(U ,V)⊥. We have

(p⊥)−1(z)∩R ' {vm ∈ Rn | {v1, ..., vm} are linearly independent in Rn}

• If {v1, ..., vm−1} are linearly independent then

vm ∈ (p⊥)−1(z) lies inside RU ,V ⇐⇒ vm 6∈ Span(v1, ..., vm−1) =: Π
⇐⇒ vm ∈ Rn \ Π.

Therefore R⊥z = RU ,V ∩ (p⊥)−1(z) = Rn \ Π. Since the codimension of
Π is n − (m − 1) ≥ 2, it ensues that R⊥p is ample.

• If {v1, ..., vm−1} are linearly dependent thenR⊥p = ∅ and thus R⊥p is
ample. �
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Sketch of the Proof of Gromov Theorem

•We first work locally over a cubic chart C = [0,1]m of M and an open
V ≈ Rn of N.

• Let S ∈ Γ(RC,Rn ) be a section :

S : c 7−→ (c, f0(c), v1(c), ..., vm(c)) ∈ RC,Rn .

and let p⊥m be the projection

(c, y , v1, ..., vm) 7−→ (c, y , v1, ..., vm−1)

and
R⊥m

z := RC,Rn ∩ (p⊥m )−1(z)
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Sketch of the Proof of Gromov Theorem

•We set

S⊥m : C −→ J1(C,Rn)⊥m

c 7−→ (c, f0(c), v1(c), ..., vm−1(c))

and we denote by E the pull-back bundle :

E −→ J1(C,Rn)
π ↓ ↓ p⊥m

C S⊥m
−→ J1(C,Rn)⊥m
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Sketch of the Proof of Gromov Theorem

• Let Sm ⊂ E be the pull-back of the relation R⊥m . The relation Sm is
obviously open and ample and vm : C −→ Rn provides a section of Sm

over C.

•We use the parametric version of the Fundamental Lemma with
C := [0,1]m as parameter space and with Sm as differential relation.
There exists γ : C × [0,1] −→ Sm such that

γ(.,0) = γ(.,1) = vm ∈ Γ(Sm)

and
∀c ∈ C, γ(c, .) ∈ Concat(ΩBF

vm(c)(S
m
c ))

and

∀c ∈ C,
∫ 1

0
γ(c, s)ds =

∂f0
∂cm

(c).
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Sketch of the Proof of Gromov Theorem

•We set

F1(c) := f0(c1, ..., cm−1,0) +

∫ cm

0
γ(c1, ..., cm−1, s,N1s)ds.

•We then have
‖F1 − f0‖ = O(

1
N1

)

and even more,

‖F1 − f0‖C1,m̂ = O(
1

N1
)

where
‖f‖C1,m̂ = max(‖f‖C0 , ‖

∂f
∂c1
‖C0 , ..., ‖

∂f
∂cm−1

‖C0)

is the C1 norm without the ‖ ∂f
∂cm
‖C0 term.
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Sketch of the Proof of Gromov Theorem

• By the very definition of Sm, the section

c 7→ (c, f0(c), v1(c), ..., vm−1(c),
∂F1

∂cm
(c))

lies inside the relation RC,Rn .

• Since RC,Rn is open and F1 is C0-close to f0, even if it means to
increase N1, we can assume that

c 7→ (c,F1(c), v1(c), ..., vm−1(c),
∂F1

∂cm
(c))

is a section of RC,Rn .

Vincent Borrelli L4 - Gromov Theorem for Ample Relations



Sketch of the Proof of Gromov Theorem

• By the very definition of Sm, the section

c 7→ (c, f0(c), v1(c), ..., vm−1(c),
∂F1

∂cm
(c))

lies inside the relation RC,Rn .

• Since RC,Rn is open and F1 is C0-close to f0, even if it means to
increase N1, we can assume that

c 7→ (c,F1(c), v1(c), ..., vm−1(c),
∂F1

∂cm
(c))

is a section of RC,Rn .

Vincent Borrelli L4 - Gromov Theorem for Ample Relations



Sketch of the Proof of Gromov Theorem
•We then repeat the same process with respect to the variable cm−1
to obtain

c 7→ (c,F1(c), v1(c), ..., vm−2(c),
∂F2

∂cm−1
(c),

∂F1

∂cm
(c)) ∈ RC,Rn .

• Noticing that RC,Rn is open and that F2 and F1 are C1,ĉm−1-close, we
have if N2 is large enough :

c 7→ (c,F2(c), v1(c), ..., vm−2(c),
∂F2

∂cm−1
(c),

∂F2

∂cm
(c)) ∈ RC,Rn .

• Iterating over the other variables v1, ..., vm−2 we eventually obtain a
holonomic section over C. Moreover F := Fm and f0 are C0-close :

‖F − f0‖C0 = O(
1

N1
+ ...+

1
Nm

).
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Sketch of the Proof of Gromov Theorem
• In order to build a solution globally defined over Mm, we first perform
a cubic decomposition of the manifold and we then recursively apply
the preceding process over every cube.

• The real problem is the matching the solutions together. Precisely if
C is an open cube, K a compact subset of C and f0 a solution over an
open neighborhood Op(K ) of K , the point is to construct a solution f
such that f = f0 on some Op2(K ) ⊂ Op(K ).

• To achieve this goal, we need to modify every convex integrations
defining F1, ...,Fm. Let λ1 : C −→ [0,1] be a compactly supported C∞

function such that

λ1(c) =

{
1 if c ∈ Op2(K )
0 if c ∈ C \Op1(K ).

where Op2(K ) ⊂ Op1(K ) ⊂ Op(K ).
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Sketch of the Proof of Gromov Theorem

• Let F1 be the preceding solution over C obtained from the section

S : c 7−→ (c, f0(c), v1(c), ..., vm(c)) ∈ RC,Rn .

We set
f1 := F1 + λ1(f0 − F1).

• Let j ∈ {1, ...,m}, we have

∂f1
∂cj

=
∂F1

∂cj
+ λ1.

(
∂f0
∂cj
− ∂F1

∂cj

)
+
∂λ1

∂cj
.(f0 − F1).

Since λ1 is compactly supported, the
∂λ1

∂cj
’s are bounded for every

j ∈ {1, ...,m}.
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Sketch of the Proof of Gromov Theorem

• Let j ∈ {1, ...,m − 1}. Since F1 and f0 are (C1, m̂)-close, we have

∥∥∂f1
∂cj
− ∂F1

∂cj

∥∥
C0 = O(

1
N1

).

• Let j = m. In general,
∂f1
∂cm

− ∂F1

∂cm

is not small and therefore

c 7−→
(

c,
∂f1
∂cm

(c)

)
should not be a section of Sm.
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Sketch of the Proof of Gromov Theorem
• Since λ1 is 0 over C \Op1(K ), for every c ∈ C \Op1(K ), we have
F1 = f1 and thus

∂f1
∂cm

(c)− ∂F1

∂cm
(c) = 0.

• Over Op(K ), we admit that it is possible to choose the family of loops
γ : C × [0,1]→ Sm such that, for all c ∈ Op1(K ), we have

γ(c, .) ≡ ∂f0
∂cm

(c).

• Thus, for all c ∈ Op1(K ) we have

∂F1

∂cm
(c) = γ(c1, ..., cm−1, cm,N1cm) =

∂f0
∂cm

(c)

and the difference
∂f0
∂cm

− ∂F1

∂cm
vanishes over Op1(K ).
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Sketch of the Proof of Gromov Theorem

• It follows that

λ1(c)

(
∂f1
∂cm

(c)− ∂F1

∂cm
(c)

)
vanishes for all c ∈ Op(K ) and thus

S1 : c 7−→ (c, f1(c), v1(c), ..., vm−1(c),
∂f1
∂cm

(c)) ∈ RC,Rn .

�
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