L4 - Gromov Theorem for Ample Relations

Vincent Borrelli

Institut Camille Jordan - Université Claude Bernard Lyon 1

What is the h-principle?

The 1-jet Space.-

$$
J^{1}(M, N)=\left\{(x, y, L) \mid x \in M, y \in N, L \in \mathcal{L}\left(T_{x} M, T_{y} N\right)\right\} .
$$

What is the h-principle?

Holonomic section.- Any section $x \mapsto \mathfrak{S}(x)=\left(x, f_{0}(x), L(x)\right)$ such that $L(x)=\left(d f_{0}\right)_{x}$, i. e. $\mathfrak{S}=j^{1} f_{0}$.

What is the h-principle?

Differential Relation.- Any subset \mathcal{R} of $J^{1}(M, N)$.

What is the h-principle?

Solution of \mathcal{R}.- Any map $f: M \longrightarrow N$ such that $j^{1} f(M) \subset \mathcal{R}$. We denote by $\mathcal{S o l}(\mathcal{R})$ the space of solutions of \mathcal{R}.

What is the h-principle?

Formal Solution.- Any section $\mathfrak{S}: M \longrightarrow \mathcal{R}$. We denote by $\Gamma(\mathcal{R})$ the space of formal solutions of \mathcal{R}.

What is the h-principle?

H-Principle.- A differential relation \mathcal{R} satisfies the h-principle (or homotopy principle) if every formal solution $\mathfrak{S}: M \longrightarrow \mathcal{R}$ is homotopic in $\Gamma(\mathcal{R})$ to the 1 -jet of a solution of \mathcal{R}.

What is the h-principle?

- The natural inclusion

$$
\begin{array}{ccc}
J: C^{1}(M, N) & \longrightarrow J^{1}(M, N) \\
f & \longmapsto & j^{1} f .
\end{array}
$$

induces a map

$$
J: \mathcal{S O l}(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})
$$

What is the h-principle?

- The natural inclusion

$$
\begin{array}{ccc}
J: C^{1}(M, N) & \longrightarrow J^{1}(M, N) \\
f & \longmapsto & j^{1} f .
\end{array}
$$

induces a map

$$
J: \mathcal{S O l}(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})
$$

- Note that a differential relation \mathcal{R} satisfies the h-principle if and only if the map $\pi_{0}(\mathrm{~J})$ is onto

$$
\pi_{0}(J): \pi_{0}(\mathcal{S o l}(\mathcal{R})) \rightarrow \pi_{0}(\Gamma(\mathcal{R}))
$$

What is the h-principle?

- The natural inclusion

$$
\begin{array}{ccc}
J: C^{1}(M, N) & \longrightarrow J^{1}(M, N) \\
f & \longmapsto & j^{1} f .
\end{array}
$$

induces a map

$$
J: \mathcal{S O l}(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})
$$

What is the h-principle?

- The natural inclusion

$$
\begin{array}{ccc}
J: C^{1}(M, N) & \longrightarrow J^{1}(M, N) \\
f & \longmapsto & j^{1} f .
\end{array}
$$

induces a map

$$
J: \mathcal{S O l}(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})
$$

- Note that a differential relation \mathcal{R} satisfies the h-principle if and only if the map $\pi_{0}(\mathrm{~J})$ is onto

$$
\pi_{0}(J): \pi_{0}(\mathcal{S o l}(\mathcal{R})) \rightarrow \pi_{0}(\Gamma(\mathcal{R}))
$$

H-principles

1-parametric h-principle.- A differential relation \mathcal{R} satisfies the 1-parametric h-principle it satisfies the h-principle and if, for any family of sections $\mathfrak{S}_{t} \in \Gamma(\mathcal{R})$ such that $\mathfrak{S}_{0}=j^{1} f_{0}$ and $\mathfrak{S}_{1}=j^{1} f_{1}$, there exists a homotopy $H:[0,1]^{2} \rightarrow \Gamma(\mathcal{R})$ such that :

$$
H(0, t)=\mathfrak{S}_{t}, H(s, 0)=\mathfrak{S}_{0}, H(s, 1)=\mathfrak{S}_{1}, \text { et } H(1, t)=j^{1} f_{t}
$$

H-principles

1-parametric h-principle.- A differential relation \mathcal{R} satisfies the 1-parametric h-principle it satisfies the h-principle and if, for any family of sections $\mathfrak{S}_{t} \in \Gamma(\mathcal{R})$ such that $\mathfrak{S}_{0}=j^{1} f_{0}$ and $\mathfrak{S}_{1}=j^{1} f_{1}$, there exists a homotopy $H:[0,1]^{2} \rightarrow \Gamma(\mathcal{R})$ such that :

$$
H(0, t)=\mathfrak{S}_{t}, H(s, 0)=\mathfrak{S}_{0}, H(s, 1)=\mathfrak{S}_{1}, \text { et } H(1, t)=j^{1} f_{t}
$$

- Thus, a differential relation \mathcal{R} satisfies the 1-parametric h-principle if and only if

$$
\pi_{0}(J): \pi_{0}(\mathcal{S O l}(\mathcal{R})) \longrightarrow \pi_{0}(\Gamma(\mathcal{R}))
$$

is a bijective map.

Homotopy Equivalence

Definition.- Let X and Y be two topological spaces. A map $f: X \longrightarrow Y$ is a homotopy equivalence if there exists

$$
g: Y \longrightarrow X
$$

such that $f \circ g$ is homotopic to $I d_{Y}$ and $g \circ f$ is homotopic to $I d_{X}$.

- In other words, X and Y are homotopically indistinguishable.

Homotopy Equivalence

Definition.- Let X and Y be two topological spaces. A map $f: X \longrightarrow Y$ is a homotopy equivalence if there exists

$$
g: Y \longrightarrow X
$$

such that $f \circ g$ is homotopic to $I d_{Y}$ and $g \circ f$ is homotopic to $I d_{X}$.

- In other words, X and Y are homotopically indistinguishable.
- Example : $X=\{*\}$ and $Y=\mathbb{R}^{n}$

Homotopy Equivalence

Definition.- Let X and Y be two topological spaces. A map $f: X \longrightarrow Y$ is a homotopy equivalence if there exists

$$
g: Y \longrightarrow X
$$

such that $f \circ g$ is homotopic to $I d_{Y}$ and $g \circ f$ is homotopic to $I d_{X}$.

- In other words, X and Y are homotopically indistinguishable.
- Example : $X=\{*\}$ and $Y=\mathbb{R}^{n}$
- Example : $X=\mathbb{S}^{n-1}$ and $Y=\mathbb{R}^{n} \backslash\{*\}$

Homotopy Equivalence

Definition.- Let X and Y be two topological spaces. A map $f: X \longrightarrow Y$ is a homotopy equivalence if there exists

$$
g: Y \longrightarrow X
$$

such that $f \circ g$ is homotopic to $I d_{Y}$ and $g \circ f$ is homotopic to $I d_{X}$.

- In other words, X and Y are homotopically indistinguishable.
- Example : $X=\{*\}$ and $Y=\mathbb{R}^{n}$
- Example : $X=\mathbb{S}^{n-1}$ and $Y=\mathbb{R}^{n} \backslash\{*\}$
- Example : $X=\left\{x_{1}, x_{2}\right\}$ and $\mathbb{R}^{n} \backslash H$ where H is a hyperplane.

H-principles

Definition.- A map $f: X \longrightarrow Y$ is a weak homotopy equivalence if the map

$$
\pi_{0}(f): \pi_{0}(X) \rightarrow \pi_{0}(Y)
$$

is bijective and if, for every $k \in \mathbb{N}^{*}$ and for every $x \in X$, the map f induces an isomorphism

$$
\pi_{k}(f): \pi_{k}(X, x) \simeq \pi_{k}(Y, f(x)) .
$$

- If X is path-connected then first condition is automatic, and it suffices to state the second condition for a single point x in X.

H-principles

Definition.- A map $f: X \longrightarrow Y$ is a weak homotopy equivalence if the map

$$
\pi_{0}(f): \pi_{0}(X) \rightarrow \pi_{0}(Y)
$$

is bijective and if, for every $k \in \mathbb{N}^{*}$ and for every $x \in X$, the map f induces an isomorphism

$$
\pi_{k}(f): \pi_{k}(X, x) \simeq \pi_{k}(Y, f(x)) .
$$

- If X is path-connected then first condition is automatic, and it suffices to state the second condition for a single point x in X.
- If $f: X \mapsto Y$ is a homotopy equivalence then it is a weak homotopy equivalence.

H-principles

Parametric h-principle.- A differential relation \mathcal{R} satisfies the parametric h-principle if the map

$$
J: \mathcal{S O I}(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})
$$

is a weak homotopy equivalence.

H-principles

Parametric h-principle.- A differential relation \mathcal{R} satisfies the parametric h-principle if the map

$$
J: \mathcal{S O I}(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})
$$

is a weak homotopy equivalence.

- It turns out that several differential relations arising from differential geometry satisfy the parametric h-principle.

A remark of Y. Eliashberg and N. Mishachev

Whitehead Theorem (1949).- If f is a weak homotopy equivalence between X and Y CW complexes then f is a homotopy equivalence.

A remark of Y. Eliashberg and N. Mishachev

Whitehead Theorem (1949).- If f is a weak homotopy equivalence between X and Y CW complexes then f is a homotopy equivalence.

- An infinite dimensional version of the Whitehead Theorem states that any weak homotopy equivalence between two Fréchet metrizable manifolds is a homotopy equivalence.
- Recall that a Fréchet space is a complete topological vector space which is separated (=is a Hausdorff space) and whose topology is induced by a countable family of seminormes $||$.$n . Such a space is$ metrizable by setting $d(x, y):=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{|x-y| n}{1+|x-y| n}$.
- The spaces $\mathcal{S o l}(\mathcal{R})$ and $\Gamma(\mathcal{R})$ are Fréchet metrizable. Consequently, the parametric h-principle for \mathcal{R} implies that $J: \mathcal{S o l}(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})$ is a homotopy equivalence.

Examples of relations satisfying the h-principle

- The Whitney-Graustein Theorem (1937) shows that the relation

$$
\mathcal{R}=\left\{(x, y, v) \in \mathbb{S}^{1} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \mid v \neq(0,0)\right\}
$$

satisfies the 1-parametric h-principle.

Examples of relations satisfying the h-principle

- The Whitney-Graustein Theorem (1937) shows that the relation

$$
\mathcal{R}=\left\{(x, y, v) \in \mathbb{S}^{1} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \mid v \neq(0,0)\right\}
$$

satisfies the 1-parametric h-principle.

- The generalization of this theorem stated in the end of the lecture 3 shows that \mathcal{R} satisfies the parametric h-principle. This generalization is due to Morris Hirsch and dates back from 1959.

Examples of relations satisfying the h-principle

- The Whitney-Graustein Theorem (1937) shows that the relation

$$
\mathcal{R}=\left\{(x, y, v) \in \mathbb{S}^{1} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \mid v \neq(0,0)\right\}
$$

satisfies the 1-parametric h-principle.

- The generalization of this theorem stated in the end of the lecture 3 shows that \mathcal{R} satisfies the parametric h-principle. This generalization is due to Morris Hirsch and dates back from 1959.

Definition.- Let M^{m} and N^{n} be two manifolds. A map $f: M \longrightarrow N$ is an immersion if for all $p \in M$, the differential $d f_{p}: T_{p} M \rightarrow T_{f(p)} N$ is of maximal rank.

Examples of relations satisfying the h-principle

- The Whitney-Graustein Theorem (1937) shows that the relation

$$
\mathcal{R}=\left\{(x, y, v) \in \mathbb{S}^{1} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \mid v \neq(0,0)\right\}
$$

satisfies the 1-parametric h-principle.

- The generalization of this theorem stated in the end of the lecture 3 shows that \mathcal{R} satisfies the parametric h-principle. This generalization is due to Morris Hirsch and dates back from 1959.

Definition.- Let M^{m} and N^{n} be two manifolds. A map $f: M \longrightarrow N$ is an immersion if for all $p \in M$, the differential $d f_{p}: T_{p} M \rightarrow T_{f(p)} N$ is of maximal rank.

- If f is an immersion then $d f_{p}\left(T_{p} M\right)$ is a n-dimensional subspace of $T_{f(p)} N$. The image $f(M)$ has no crease or tip.

Examples of relations satisfying the h-principle

- The space of immersions from M to \mathbb{R}^{n} is denoted by $I\left(M, \mathbb{R}^{n}\right)$.
- Let $\left(K_{n}\right)_{n \in \mathbb{N}}$ be a countable family of compact sets covering M. For every $n \in \mathbb{N}$, we define

$$
d_{n}(f, g):=\sup _{x \in K_{n}}\|f(x)-g(x)\|+\sup _{x \in K_{n}}\left\|d f_{x}-d g_{x}\right\|
$$

and we endow $I\left(M, \mathbb{R}^{n}\right)$ with the distance

$$
d(f, g):=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \frac{d_{n}(f, g)}{1+d_{n}(f, g)}
$$

Smale Theorem on Sphere Immersions

Stephen Smale
Smale Theorem (1957). - Let $m<n$. The relation

$$
\mathcal{R}=\left\{(x, y, L) \in J^{1}\left(\mathbb{S}^{m}, \mathbb{R}^{n}\right) \mid \operatorname{rank} L=m\right\}
$$

of immersions of \mathbb{S}^{m} into \mathbb{R}^{n} satisfies the 1-parametric h-principle.

Smale Theorem on Sphere Immersions

Corollary (Smale 1957).- The space $I\left(\mathbb{S}^{2}, \mathbb{R}^{3}\right)$ is path-connected. In particular, it is possible to realize an eversion of the 2-sphere among immersions.

Proof of the Sphere Eversion

Proof of the corollary.- Since \mathcal{R} satisfies the 1-parametric h-principle, the map

$$
J: \pi_{0}\left(l\left(\mathbb{S}^{2}, \mathbb{R}^{3}\right)\right) \mapsto \pi_{0}(\Gamma(\mathcal{R}))
$$

is a 1 -to- 1 . The proof of the corollary thus reduces to the computation of $\pi_{0}(\Gamma(\mathcal{R}))$ with

$$
\mathcal{R}=\left\{(x, y, L) \in J^{1}\left(\mathbb{S}^{2}, \mathbb{R}^{3}\right) \mid \text { rank } L=2\right\}
$$

Proof of the Sphere Eversion

Proof of the corollary.- Since \mathcal{R} satisfies the 1-parametric h-principle, the map

$$
J: \pi_{0}\left(l\left(\mathbb{S}^{2}, \mathbb{R}^{3}\right)\right) \mapsto \pi_{0}(\Gamma(\mathcal{R}))
$$

is a 1 -to- 1 . The proof of the corollary thus reduces to the computation of $\pi_{0}(\Gamma(\mathcal{R}))$ with

$$
\mathcal{R}=\left\{(x, y, L) \in J^{1}\left(\mathbb{S}^{2}, \mathbb{R}^{3}\right) \mid \text { rank } L=2\right\}
$$

- A homotopic computation shows that

$$
\pi_{0}(\Gamma(\mathcal{R}))=\pi_{2}\left(G L_{+}\left(\mathbb{R}^{3}\right)\right) .
$$

Proof of the Sphere Eversion

Proof of the corollary.- Since \mathcal{R} satisfies the 1-parametric h-principle, the map

$$
J: \pi_{0}\left(l\left(\mathbb{S}^{2}, \mathbb{R}^{3}\right)\right) \mapsto \pi_{0}(\Gamma(\mathcal{R}))
$$

is a 1 -to- 1 . The proof of the corollary thus reduces to the computation of $\pi_{0}(\Gamma(\mathcal{R}))$ with

$$
\mathcal{R}=\left\{(x, y, L) \in J^{1}\left(\mathbb{S}^{2}, \mathbb{R}^{3}\right) \mid \text { rank } L=2\right\}
$$

- A homotopic computation shows that

$$
\pi_{0}(\Gamma(\mathcal{R}))=\pi_{2}\left(G L_{+}\left(\mathbb{R}^{3}\right)\right) .
$$

- It turns out that $\pi_{2}\left(G L_{+}\left(\mathbb{R}^{3}\right)\right)=\{0\}$.

Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence
Hirsch Theorem (1959). - Let M^{m} and N^{n} be two manifolds with $m<n$. The relation of immersions of M^{m} into N^{n} :

$$
\mathcal{R}=\left\{(x, y, L) \in J^{1}\left(M^{m}, N^{n}\right) \mid \text { rank } L=m\right\}
$$

satisfies the parametric h-principle. Precisely, the map

$$
\begin{array}{cl}
J: I\left(M^{m}, N^{n}\right) & \longrightarrow \Gamma(\mathcal{R}) \\
f & \longmapsto j^{1} f
\end{array}
$$

is a weak homotopy equivalence.

Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence
Hirsch Theorem (1959). - The theorem still holds if $m=n$ provided that M^{m} is open.

Hirsch Theorem on Immersions

Morris Hirsch was the first to realize that the map J was a weak homotopy equivalence
Hirsch Theorem (1959). - The theorem still holds if $m=n$ provided that M^{m} is open.

- Recall that an open manifold is a manifold without boundary and with no compact component.

Exercice : Immersions of the 2-Torus

Exercice.- Apply the Hirsch Theorem to show that Card $\pi_{0}\left(I\left(\mathbb{T}^{2}, \mathbb{R}^{3}\right)\right)=4$.

Exercice : Immersions of the 2-Torus

Exercice.- Apply the Hirsch Theorem to show that Card $\pi_{0}\left(I\left(\mathbb{T}^{2}, \mathbb{R}^{3}\right)\right)=4$.

- We recall that $\pi_{1}\left(G L_{+}\left(\mathbb{R}^{3}\right)\right)=\mathbb{Z} / 2 \mathbb{Z}$ and we admit that the space $C^{0}\left(\mathbb{T}^{2}, G L_{+}\left(\mathbb{R}^{3}\right)\right)$ has four components. Precisely,

$$
\begin{array}{ccc}
\Phi: \pi_{0}\left(C^{0}\left(\mathbb{T}^{2}, G L_{+}\left(\mathbb{R}^{3}\right)\right)\right) & \longrightarrow & \pi_{1}\left(G L_{+}\left(\mathbb{R}^{3}\right)\right) \times \pi_{1}\left(G L_{+}\left(\mathbb{R}^{3}\right)\right) \\
{[f]} & \longmapsto & {\left[f_{\mid \mathbb{S}^{1} \times\{*\}}\right] \times\left[f_{\mid\{*\} \times \mathbb{S}_{1}}\right]}
\end{array}
$$

is a bijective map.

Isometric Immersions

Mikhail Gromov
Theorem (Nash 1954 - Kuiper 1955 -Gromov 1986). - Let (M^{m}, g) and $\left(N^{n}, h\right)$ be two Riemannian manifold with $m<n$. The relation of isometric immersions of M^{m} into N^{n} :

$$
\mathcal{R}=\left\{(x, y, L) \in J^{1}\left(M^{m}, N^{n}\right) \mid L^{*} h=g\right\}
$$

satisfies the parametric h-principle. The weak homotopy equivalence is given by the map $J: f \longmapsto j^{1} f$.

Isometric Immersions

Corollary (Gromov 1986). - There exists a C^{1} isometric eversion of the 2-sphere.

More examples of relations satisfying the h-principle...

... with Jean-Claude Sikorav in the second part of this course.

The h-Principe for Ample Relations

- Here is a theorem of Gromov ensuring the presence of a h-principle provided \mathcal{R} satisfies some topological and convexity properties:

The h-Principe for Ample Relations

- Here is a theorem of Gromov ensuring the presence of a h-principle provided \mathcal{R} satisfies some topological and convexity properties:

Theorem (Gromov 69-73). - Let $\mathcal{R} \subset J^{1}(M, N)$ be an open and ample differential relation. Then \mathcal{R} satisfies the parametric h-principle i. e.

$$
J: \mathcal{S O I}(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})
$$

is a weak homotopy equivalence.

The h-Principe for Ample Relations

- Here is a theorem of Gromov ensuring the presence of a h-principle provided \mathcal{R} satisfies some topological and convexity properties:

Theorem (Gromov 69-73). - Let $\mathcal{R} \subset J^{1}(M, N)$ be an open and ample differential relation. Then \mathcal{R} satisfies the parametric h-principle i. e.

$$
J: \mathcal{S O I}(\mathcal{R}) \longrightarrow \Gamma(\mathcal{R})
$$

is a weak homotopy equivalence.

- It remains to define what is an ample differential relation and to give a (sketch of the) proof of this theorem.

Ample Relations

Definition.- A subset $A \subset \mathbb{R}^{n}$ is ample if for every $a \in A$ the interior of the convex hull of the connected component to which a belongs is $\mathbb{R}^{n} i$. e. : $\operatorname{Int} \operatorname{Conv}(A, a)=\mathbb{R}^{n}$ (in particular $A=\emptyset$ is ample).

Ample Relations

Definition.- A subset $A \subset \mathbb{R}^{n}$ is ample if for every $a \in A$ the interior of the convex hull of the connected component to which a belongs is $\mathbb{R}^{n} i$. e. : $\operatorname{Int} \operatorname{Conv}(A, a)=\mathbb{R}^{n}$ (in particular $A=\emptyset$ is ample).

A is not ample

A is ample

A is not ample.

Ample Relations

Definition.- A subset $A \subset \mathbb{R}^{n}$ is ample if for every $a \in A$ the interior of the convex hull of the connected component to which a belongs is $\mathbb{R}^{n} i$. e. : $\operatorname{Int} \operatorname{Conv}(A, a)=\mathbb{R}^{n}$ (in particular $A=\emptyset$ is ample).

A is not ample

A is ample

A is not ample.

Example.- The complement of a linear subspace $F \subset \mathbb{R}^{n}$ is ample if and only if Codim $F \geq 2$.

Ample Relations

Definition.- Let $E=P \times \mathbb{R}^{n} \xrightarrow{\pi} P$ be a fiber bundle, a subset $\mathcal{R} \subset E$ is said to be ample if, for every $p \in P, \mathcal{R}_{p}:=\pi^{-1}(p) \cap \mathcal{R}$ is ample in \mathbb{R}^{n}.

Remark.- If $\mathcal{R} \subset E$ is ample and $z: P \longrightarrow E$ is a section, then, for every $p \in P$, we have $z(p) \in \operatorname{Conv}\left(\mathcal{R}_{p}, \sigma(p)\right)$.

Ample Relations in $J^{1}(M, N)$

- Locally, we identify $J^{1}(M, N)$ with

$$
\begin{aligned}
\mathcal{J}^{1}(\mathcal{U}, \mathcal{V}) & =\mathcal{U} \times \mathcal{V} \times \mathcal{L}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)=\mathcal{U} \times \mathcal{V} \times \prod_{i=1}^{m} \mathbb{R}^{n} \\
& =\left\{\left(x, y, v_{1}, \ldots, v_{m}\right)\right\}
\end{aligned}
$$

where \mathcal{U} and \mathcal{V} are charts of M and N.

- We set :

$$
J^{1}(\mathcal{U}, \mathcal{V})^{\perp}:=\left\{\left(x, y, v_{1}, \ldots, v_{m-1}\right)\right\}
$$

- We have

$$
\begin{array}{rlc}
\mathcal{R}_{\mathcal{U}, \mathcal{V}} \longrightarrow & J^{1}(\mathcal{U}, \mathcal{V}) \\
& \downarrow p^{\perp} \\
& J^{1}(\mathcal{U}, \mathcal{V})^{\perp}
\end{array}
$$

Ample Relations in $J^{1}(M, N)$

- Let $z \in J^{1}(\mathcal{U}, \mathcal{V})^{\perp}$, we set

$$
\mathcal{R}_{z}^{\perp}=\left(p^{\perp}\right)^{-1}(z) \cap \mathcal{R}_{\mathcal{U}, \mathcal{V}}
$$

- \mathcal{R}^{\perp} is a differential relation of the bundle

$$
J^{1}(\mathcal{U}, \mathcal{V}) \xrightarrow{p^{\perp}} J^{1}(\mathcal{U}, \mathcal{V})^{\perp}
$$

Definition. - A differential relation $\mathcal{R} \subset J^{1}(M, N)$ is ample if for every local identification $J^{1}(\mathcal{U}, \mathcal{V})$ and for every $z \in J^{1}(\mathcal{U}, \mathcal{V})^{\perp}$, the space \mathcal{R}_{z}^{\perp} is ample in $\left(p^{\perp}\right)^{-1}(z) \simeq \mathbb{R}^{n}$.

Ample Relations in $J^{1}(M, N)$

Proposition. - The differential relation \mathcal{R} of immersions of M^{m} into N^{n} is ample if $n>m$.

Ample Relations in $J^{1}(M, N)$

Proposition. - The differential relation \mathcal{R} of immersions of M^{m} into N^{n} is ample if $n>m$.

Proof.- Let $J^{1}(\mathcal{U}, \mathcal{V})$ be any local identification and let $z=\left(x, y, v_{1}, \ldots, v_{m-1}\right) \in J^{1}(\mathcal{U}, \mathcal{V})^{\perp}$. We have
$\left(p^{\perp}\right)^{-1}(z) \cap \mathcal{R} \simeq\left\{v_{m} \in \mathbb{R}^{n} \mid\left\{v_{1}, \ldots, v_{m}\right\}\right.$ are linearly independent in $\left.\mathbb{R}^{n}\right\}$

Ample Relations in $J^{1}(M, N)$

Proposition. - The differential relation \mathcal{R} of immersions of M^{m} into N^{n} is ample if $n>m$.

Proof.- Let $J^{1}(\mathcal{U}, \mathcal{V})$ be any local identification and let $z=\left(x, y, v_{1}, \ldots, v_{m-1}\right) \in J^{1}(\mathcal{U}, \mathcal{V})^{\perp}$. We have $\left(p^{\perp}\right)^{-1}(z) \cap \mathcal{R} \simeq\left\{v_{m} \in \mathbb{R}^{n} \mid\left\{v_{1}, \ldots, v_{m}\right\}\right.$ are linearly independent in $\left.\mathbb{R}^{n}\right\}$

- If $\left\{v_{1}, \ldots, v_{m-1}\right\}$ are linearly independent then
$v_{m} \in\left(p^{\perp}\right)^{-1}(z)$ lies inside $\mathcal{R}_{\mathcal{U}, \mathcal{V}} \Longleftrightarrow v_{m} \notin \operatorname{Span}\left(v_{1}, \ldots, v_{m-1}\right)=: \Pi$ $\Longleftrightarrow \quad v_{m} \in \mathbb{R}^{n} \backslash \Pi$.

Therefore $\mathcal{R}_{z}^{\perp}=\mathcal{R}_{\mathcal{U}, \mathcal{V}} \cap\left(p^{\perp}\right)^{-1}(z)=\mathbb{R}^{n} \backslash \Pi$. Since the codimension of Π is $n-(m-1) \geq 2$, it ensues that $\mathcal{R}_{p}^{\frac{1}{p}}$ is ample.

Ample Relations in $J^{1}(M, N)$

Proposition. - The differential relation \mathcal{R} of immersions of M^{m} into N^{n} is ample if $n>m$.

Proof.- Let $J^{1}(\mathcal{U}, \mathcal{V})$ be any local identification and let $z=\left(x, y, v_{1}, \ldots, v_{m-1}\right) \in J^{1}(\mathcal{U}, \mathcal{V})^{\perp}$. We have $\left(p^{\perp}\right)^{-1}(z) \cap \mathcal{R} \simeq\left\{v_{m} \in \mathbb{R}^{n} \mid\left\{v_{1}, \ldots, v_{m}\right\}\right.$ are linearly independent in $\left.\mathbb{R}^{n}\right\}$

- If $\left\{v_{1}, \ldots, v_{m-1}\right\}$ are linearly independent then
$v_{m} \in\left(p^{\perp}\right)^{-1}(z)$ lies inside $\mathcal{R}_{\mathcal{U}, \mathcal{V}} \Longleftrightarrow v_{m} \notin \operatorname{Span}\left(v_{1}, \ldots, v_{m-1}\right)=: \Pi$ $\Longleftrightarrow \quad v_{m} \in \mathbb{R}^{n} \backslash \Pi$.

Therefore $\mathcal{R}_{z}^{\perp}=\mathcal{R}_{\mathcal{U}, \mathcal{V}} \cap\left(p^{\perp}\right)^{-1}(z)=\mathbb{R}^{n} \backslash \Pi$. Since the codimension of Π is $n-(m-1) \geq 2$, it ensues that $\mathcal{R}_{p}^{\frac{1}{2}}$ is ample.

- If $\left\{v_{1}, \ldots, v_{m-1}\right\}$ are linearly dependent then $\mathcal{R}_{p}^{\perp}=\emptyset$ and thus \mathcal{R}_{p}^{\perp} is ample.

Sketch of the Proof of Gromov Theorem

- We first work locally over a cubic chart $C=[0,1]^{m}$ of M and an open $\mathcal{V} \approx \mathbb{R}^{n}$ of N.

Sketch of the Proof of Gromov Theorem

- We first work locally over a cubic chart $C=[0,1]^{m}$ of M and an open $\mathcal{V} \approx \mathbb{R}^{n}$ of N.
- Let $\mathfrak{S} \in \Gamma\left(\mathcal{R}_{C, \mathbb{R}^{n}}\right)$ be a section :

$$
\mathfrak{S}: c \longmapsto\left(c, f_{0}(c), v_{1}(c), \ldots, v_{m}(c)\right) \in \mathcal{R}_{c, \mathbb{R}^{n}}
$$

and let $p^{\perp_{m}}$ be the projection

$$
\left(c, y, v_{1}, \ldots, v_{m}\right) \longmapsto\left(c, y, v_{1}, \ldots, v_{m-1}\right)
$$

and

$$
\mathcal{R}_{z}^{\perp^{m}}:=\mathcal{R}_{C, \mathbb{R}^{n}} \cap\left(p^{\perp_{m}}\right)^{-1}(z)
$$

Sketch of the Proof of Gromov Theorem

- We set

$$
\begin{aligned}
\mathfrak{S}^{\perp_{m}}: & C \\
c & \longmapsto\left(c, f_{0}(c), v_{1}(c), \ldots, v_{m-1}(c)\right)
\end{aligned}
$$

and we denote by E the pull-back bundle :

$$
\begin{array}{rcc}
E & \longrightarrow & J^{1}\left(C, \mathbb{R}^{n}\right) \\
\pi \downarrow & & \downarrow p^{\perp_{m}} \\
C & \xrightarrow{\mathcal{S}_{m}} & J^{1}\left(C, \mathbb{R}^{n}\right)^{\perp_{m}}
\end{array}
$$

Sketch of the Proof of Gromov Theorem

- Let $\mathcal{S}^{m} \subset E$ be the pull-back of the relation $\mathcal{R}^{\perp_{m}}$. The relation \mathcal{S}^{m} is obviously open and ample and $v_{m}: C \longrightarrow \mathbb{R}^{n}$ provides a section of \mathcal{S}^{m} over C.
- We use the parametric version of the Fundamental Lemma with $C:=[0,1]^{m}$ as parameter space and with \mathcal{S}^{m} as differential relation. There exists $\gamma: C \times[0,1] \longrightarrow \mathcal{S}^{m}$ such that

$$
\gamma(., 0)=\gamma(., 1)=v_{m} \in \Gamma\left(\mathcal{S}^{m}\right)
$$

and

$$
\forall c \in C, \quad \gamma(c, .) \in \operatorname{Concat}\left(\Omega_{v_{m}(c)}^{B F}\left(\mathcal{S}_{c}^{m}\right)\right)
$$

and

$$
\forall c \in C, \int_{0}^{1} \gamma(c, s) d s=\frac{\partial f_{0}}{\partial c_{m}}(c)
$$

Sketch of the Proof of Gromov Theorem

- We set

$$
F_{1}(c):=f_{0}\left(c_{1}, \ldots, c_{m-1}, 0\right)+\int_{0}^{c_{m}} \gamma\left(c_{1}, \ldots, c_{m-1}, s, N_{1} s\right) d s
$$

Sketch of the Proof of Gromov Theorem

- We set

$$
F_{1}(c):=f_{0}\left(c_{1}, \ldots, c_{m-1}, 0\right)+\int_{0}^{c_{m}} \gamma\left(c_{1}, \ldots, c_{m-1}, s, N_{1} s\right) d s
$$

- We then have

$$
\left\|F_{1}-f_{0}\right\|=O\left(\frac{1}{N_{1}}\right)
$$

and even more,

$$
\left\|F_{1}-f_{0}\right\|_{C^{1}, \hat{m}}=O\left(\frac{1}{N_{1}}\right)
$$

where

$$
\|f\|_{C^{1, \widehat{m}}}=\max \left(\|f\|_{C^{0}},\left\|\frac{\partial f}{\partial c_{1}}\right\|_{C^{0}}, \ldots,\left\|\frac{\partial f}{\partial c_{m-1}}\right\|_{C^{0}}\right)
$$

is the C^{1} norm without the $\left\|\frac{\partial f}{\partial c_{m}}\right\|_{C^{0}}$ term.

Sketch of the Proof of Gromov Theorem

- By the very definition of \mathcal{S}^{m}, the section

$$
c \mapsto\left(c, f_{0}(c), v_{1}(c), \ldots, v_{m-1}(c), \frac{\partial F_{1}}{\partial c_{m}}(c)\right)
$$

lies inside the relation $\mathcal{R}_{C, \mathbb{R}^{n}}$.

Sketch of the Proof of Gromov Theorem

- By the very definition of \mathcal{S}^{m}, the section

$$
c \mapsto\left(c, f_{0}(c), v_{1}(c), \ldots, v_{m-1}(c), \frac{\partial F_{1}}{\partial c_{m}}(c)\right)
$$

lies inside the relation $\mathcal{R}_{C, \mathbb{R}^{n}}$.

- Since $\mathcal{R}_{C, \mathbb{R}^{n}}$ is open and F_{1} is C^{0}-close to f_{0}, even if it means to increase N_{1}, we can assume that

$$
c \mapsto\left(c, F_{1}(c), v_{1}(c), \ldots, v_{m-1}(c), \frac{\partial F_{1}}{\partial c_{m}}(c)\right)
$$

is a section of $\mathcal{R}_{C, \mathbb{R}^{n}}$.

Sketch of the Proof of Gromov Theorem

- We then repeat the same process with respect to the variable c_{m-1} to obtain

$$
c \mapsto\left(c, F_{1}(c), v_{1}(c), \ldots, v_{m-2}(c), \frac{\partial F_{2}}{\partial c_{m-1}}(c), \frac{\partial F_{1}}{\partial c_{m}}(c)\right) \in \mathcal{R}_{C, \mathbb{R}^{n}}
$$

Sketch of the Proof of Gromov Theorem

- We then repeat the same process with respect to the variable c_{m-1} to obtain

$$
c \mapsto\left(c, F_{1}(c), v_{1}(c), \ldots, v_{m-2}(c), \frac{\partial F_{2}}{\partial c_{m-1}}(c), \frac{\partial F_{1}}{\partial c_{m}}(c)\right) \in \mathcal{R}_{c, \mathbb{R}^{n}}
$$

- Noticing that $\mathcal{R}_{C, \mathbb{R}^{n}}$ is open and that F_{2} and F_{1} are $C^{1, \widehat{c_{m-1}} \text {-close, we }}$ have if N_{2} is large enough :

$$
c \mapsto\left(c, F_{2}(c), v_{1}(c), \ldots, v_{m-2}(c), \frac{\partial F_{2}}{\partial c_{m-1}}(c), \frac{\partial F_{2}}{\partial c_{m}}(c)\right) \in \mathcal{R}_{c, \mathbb{R}^{n}}
$$

Sketch of the Proof of Gromov Theorem

- We then repeat the same process with respect to the variable c_{m-1} to obtain

$$
c \mapsto\left(c, F_{1}(c), v_{1}(c), \ldots, v_{m-2}(c), \frac{\partial F_{2}}{\partial c_{m-1}}(c), \frac{\partial F_{1}}{\partial c_{m}}(c)\right) \in \mathcal{R}_{c, \mathbb{R}^{n}}
$$

- Noticing that $\mathcal{R}_{C, \mathbb{R}^{n}}$ is open and that F_{2} and F_{1} are $C^{1, \widehat{c_{m-1}} \text {-close, we }}$ have if N_{2} is large enough :

$$
c \mapsto\left(c, F_{2}(c), v_{1}(c), \ldots, v_{m-2}(c), \frac{\partial F_{2}}{\partial c_{m-1}}(c), \frac{\partial F_{2}}{\partial c_{m}}(c)\right) \in \mathcal{R}_{c, \mathbb{R}^{n}}
$$

- Iterating over the other variables v_{1}, \ldots, v_{m-2} we eventually obtain a holonomic section over C. Moreover $F:=F_{m}$ and f_{0} are C^{0}-close :

$$
\left\|F-f_{0}\right\|_{C^{0}}=O\left(\frac{1}{N_{1}}+\ldots+\frac{1}{N_{m}}\right)
$$

Sketch of the Proof of Gromov Theorem

- In order to build a solution globally defined over M^{m}, we first perform a cubic decomposition of the manifold and we then recursively apply the preceding process over every cube.

Sketch of the Proof of Gromov Theorem

- In order to build a solution globally defined over M^{m}, we first perform a cubic decomposition of the manifold and we then recursively apply the preceding process over every cube.
- The real problem is the matching the solutions together. Precisely if C is an open cube, K a compact subset of C and f_{0} a solution over an open neighborhood $\operatorname{Op}(K)$ of K, the point is to construct a solution f such that $f=f_{0}$ on some $O p_{2}(K) \subset O p(K)$.

Sketch of the Proof of Gromov Theorem

- In order to build a solution globally defined over M^{m}, we first perform a cubic decomposition of the manifold and we then recursively apply the preceding process over every cube.
- The real problem is the matching the solutions together. Precisely if C is an open cube, K a compact subset of C and f_{0} a solution over an open neighborhood $\operatorname{Op}(K)$ of K, the point is to construct a solution f such that $f=f_{0}$ on some $O p_{2}(K) \subset O p(K)$.
- To achieve this goal, we need to modify every convex integrations defining F_{1}, \ldots, F_{m}. Let $\lambda_{1}: C \longrightarrow[0,1]$ be a compactly supported C^{∞} function such that

$$
\lambda_{1}(c)= \begin{cases}1 & \text { if } c \in O p_{2}(K) \\ 0 & \text { if } c \in C \backslash O p_{1}(K)\end{cases}
$$

where $O p_{2}(K) \subset O p_{1}(K) \subset O p(K)$.

Sketch of the Proof of Gromov Theorem

- Let F_{1} be the preceding solution over C obtained from the section

$$
\mathfrak{S}: c \longmapsto\left(c, f_{0}(c), v_{1}(c), \ldots, v_{m}(c)\right) \in \mathcal{R}_{c, \mathbb{R}^{n}}
$$

We set

$$
f_{1}:=F_{1}+\lambda_{1}\left(f_{0}-F_{1}\right)
$$

Sketch of the Proof of Gromov Theorem

- Let F_{1} be the preceding solution over C obtained from the section

$$
\mathfrak{S}: c \longmapsto\left(c, f_{0}(c), v_{1}(c), \ldots, v_{m}(c)\right) \in \mathcal{R}_{c, \mathbb{R}^{n}}
$$

We set

$$
f_{1}:=F_{1}+\lambda_{1}\left(f_{0}-F_{1}\right)
$$

- Let $j \in\{1, \ldots, m\}$, we have

$$
\frac{\partial f_{1}}{\partial c_{j}}=\frac{\partial F_{1}}{\partial c_{j}}+\lambda_{1} \cdot\left(\frac{\partial f_{0}}{\partial c_{j}}-\frac{\partial F_{1}}{\partial c_{j}}\right)+\frac{\partial \lambda_{1}}{\partial c_{j}} \cdot\left(f_{0}-F_{1}\right)
$$

Since λ_{1} is compactly supported, the $\frac{\partial \lambda_{1}}{\partial c_{j}}$'s are bounded for every $j \in\{1, \ldots, m\}$.

Sketch of the Proof of Gromov Theorem

- Let $j \in\{1, \ldots, m-1\}$. Since F_{1} and f_{0} are $\left(C^{1}, \widehat{m}\right)$-close, we have

$$
\left\|\frac{\partial f_{1}}{\partial c_{j}}-\frac{\partial F_{1}}{\partial c_{j}}\right\|_{C^{0}}=O\left(\frac{1}{N_{1}}\right)
$$

Sketch of the Proof of Gromov Theorem

- Let $j \in\{1, \ldots, m-1\}$. Since F_{1} and f_{0} are $\left(C^{1}, \widehat{m}\right)$-close, we have

$$
\left\|\frac{\partial f_{1}}{\partial c_{j}}-\frac{\partial F_{1}}{\partial c_{j}}\right\|_{C^{0}}=O\left(\frac{1}{N_{1}}\right)
$$

- Let $j=m$. In general,

$$
\frac{\partial f_{1}}{\partial c_{m}}-\frac{\partial F_{1}}{\partial c_{m}}
$$

is not small and therefore

$$
c \longmapsto\left(c, \frac{\partial f_{1}}{\partial c_{m}}(c)\right)
$$

should not be a section of \mathcal{S}^{m}.

Sketch of the Proof of Gromov Theorem

- Since λ_{1} is 0 over $C \backslash O p_{1}(K)$, for every $c \in C \backslash O p_{1}(K)$, we have $F_{1}=f_{1}$ and thus

$$
\frac{\partial f_{1}}{\partial c_{m}}(c)-\frac{\partial F_{1}}{\partial c_{m}}(c)=0
$$

Sketch of the Proof of Gromov Theorem

- Since λ_{1} is 0 over $C \backslash O p_{1}(K)$, for every $c \in C \backslash O p_{1}(K)$, we have $F_{1}=f_{1}$ and thus

$$
\frac{\partial f_{1}}{\partial c_{m}}(c)-\frac{\partial F_{1}}{\partial c_{m}}(c)=0
$$

- Over $\operatorname{Op}(K)$, we admit that it is possible to choose the family of loops $\gamma: C \times[0,1] \rightarrow \mathcal{S}^{m}$ such that, for all $c \in O p_{1}(K)$, we have

$$
\gamma(c, .) \equiv \frac{\partial f_{0}}{\partial c_{m}}(c)
$$

Sketch of the Proof of Gromov Theorem

- Since λ_{1} is 0 over $C \backslash O p_{1}(K)$, for every $c \in C \backslash O p_{1}(K)$, we have $F_{1}=f_{1}$ and thus

$$
\frac{\partial f_{1}}{\partial c_{m}}(c)-\frac{\partial F_{1}}{\partial c_{m}}(c)=0
$$

- Over $\operatorname{Op}(K)$, we admit that it is possible to choose the family of loops $\gamma: C \times[0,1] \rightarrow \mathcal{S}^{m}$ such that, for all $c \in O p_{1}(K)$, we have

$$
\gamma(c, .) \equiv \frac{\partial f_{0}}{\partial c_{m}}(c)
$$

- Thus, for all $c \in O p_{1}(K)$ we have

$$
\frac{\partial F_{1}}{\partial c_{m}}(c)=\gamma\left(c_{1}, \ldots, c_{m-1}, c_{m}, N_{1} c_{m}\right)=\frac{\partial f_{0}}{\partial c_{m}}(c)
$$

and the difference $\frac{\partial f_{0}}{\partial c_{m}}-\frac{\partial F_{1}}{\partial c_{m}}$ vanishes over $O p_{1}(K)$.

Sketch of the Proof of Gromov Theorem

- It follows that

$$
\lambda_{1}(c)\left(\frac{\partial f_{1}}{\partial c_{m}}(c)-\frac{\partial F_{1}}{\partial c_{m}}(c)\right)
$$

vanishes for all $c \in O p(K)$ and thus

$$
\mathfrak{S}_{1}: c \longmapsto\left(c, f_{1}(c), v_{1}(c), \ldots, v_{m-1}(c), \frac{\partial f_{1}}{\partial c_{m}}(c)\right) \in \mathcal{R}_{C, \mathbb{R}^{n}}
$$

Morris Hirsch

