Oral 1 géométrie

Leçon n°10 : Géométrie vectorielle dans le plan et dans l'espace.

Niveau : Lycée. (De la seconde à la terminale.)

Prérequis : Repérage dans le plan et dans l'espace, translation, produit scalaire, projeté orthogonal et positions relatives de droites et de plans dans l'espace.

Plan:

I.	V	/ecteurs
1		Définition d'un vecteur
2	2.	Coordonnées d'un vecteur
3		Opérations sur les vecteurs et relation de Chasles
4		Colinéarité de deux vecteurs
II.		Géométrie vectorielle dans le plan
1		Normes et orthogonalité
2	2.	Vecteur directeur et vecteur normal
3	3.	Equation cartésienne de droite dans le plan
III.		Géométrie vectorielle dans l'espace
1		Coplanarité
2	<u>.</u>	Parallélisme de droites et de plans dans l'espace
3	3.	Vecteur normal à un plan et orthogonalité
4	L.	Equation cartésienne de plan et représentations paramétriques de droites et de plans dans
		pace
IV.		Conclusion
1		

I. Vecteurs

1. Définition d'un vecteur

Définition 1 vecteurs entre deux points : A chaque translation est associé un vecteur. Pour A et B deux points, le vecteur \overrightarrow{AB} est associé à la translation qui transforme A en B.

Remarque 1 : A est l'origine du vecteur et B son extrémité.

Définition 2 vecteur : Un vecteur noté \vec{u} est déterminé par :

- Une direction
- Un sens
- Une longueur

Définition 3 vecteurs particuliers :

- 1) Vecteur nul noté $\vec{0}$: Translation qui transforme un point en lui-même.
- 2) Vecteurs opposés : Le vecteur opposé au vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} associé à la translation qui transforme B en A. Donc $\overrightarrow{AB} = -\overrightarrow{BA}$.
- 3) Vecteurs égaux : Soient A, B, C et D quatre points du plan. Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si la translation qui transforme A en B transforme C en D.

Propriété 1 : Soit A, B et C trois points du plan. Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si et seulement si le quadrilatère ABDC est un parallélogramme

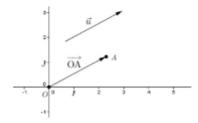
2. Coordonnées d'un vecteur

Dans la suite, on choisit un plan P muni d'un repère orthonormé (O, I, J).

Définition 4 coordonnées d'un vecteur : On considère un vecteur \vec{u} du plan. Les coordonnées du vecteur \vec{u} sont les coordonnées du point A tel que $\vec{u} = \overrightarrow{OA}$. Autrement dit : Si $\vec{u} = \overrightarrow{OA}$ et A(x; y) alors \vec{u} (x; y).

Propriété 2 : On considère deux points distincts du plan $A(x_A; y_A)$ et $B(x_B; y_B)$. Les coordonnées du vecteur \overrightarrow{AB} sont $(x_B - x_A; y_B - y_A)$. On a donc $\overrightarrow{AB}(x_B - x_A; y_B - y_A)$.

Remarque 2: Dans l'espace, cette propriété reste vraie. On considère les points distincts $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$. Les coordonnées du vecteur \overrightarrow{AB} sont $(x_B - x_A; y_B - y_A; z_A - z_B)$.



On a : $\overrightarrow{OI}(1; 0)$; $\overrightarrow{OJ}(0; 1)$ et $\vec{0}(0; 0)$.

Propriété 3 : On considère deux vecteurs \vec{u} (x; y) et \vec{v} (x'; y'). On dit que $\vec{u} = \vec{v}$ si et seulement si x = x' et y = y'.

Remarque 3 : Cette propriété est aussi vraie dans l'espace.

3. Opérations sur les vecteurs et relation de Chasles

Définition 5 vecteur produit par k : On considère un vecteur $\vec{u}(x;y)$ du plan et un réel k. Les coordonnées du vecteur $k\vec{u}$ sont (kx; ky).

Propriété 4:

somme de vecteurs : On considère deux vecteurs \vec{u} (x ; y) et \vec{v} (x' ; y'). Le vecteur \vec{u} + \vec{v} a pour coordonnées (x+x' ; y +y'). On a \vec{u} + \vec{v} (x + x', y+y').

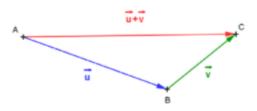
produit de vecteurs par des réels : Soient k et k' deux nombres réels et \vec{u} et \vec{v} deux vecteurs.

- 1) $k\vec{u} + k'\vec{u} = (k + k')\vec{u}$
- 2) $k(k'\vec{u}) = (kk')\vec{u}$
- 3) $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$
- 4) $k\vec{u} = \vec{0}$ si et seulement si k = 0 ou $\vec{u} = \vec{0}$

Remarque 4 : Soustraire un vecteur, c'est additionner son opposé.

Relation de Chasles : On considère trois points distincts A, B et C du plan, on a : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Relation de Chasles $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$



Exemple 1 : Simplifier $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$.

Règle du parallélogramme : On considère A, B, C et D, quatre points distincts du plan. ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$.

Règle du parallélogramme

4. Colinéarité de deux vecteurs

Définition 6 vecteurs colinéaires : Deux vecteurs \vec{u} et \vec{v} sont colinéaires s'ils ont la même direction.

On dit aussi que les vecteurs \vec{u} et \vec{v} sont colinéaires s'il existe un réel k tel que \vec{u} = $k\vec{v}$.

Remarque 5 : Pour tout vecteur \vec{u} , on a $\vec{0} = 0 \times \vec{u}$: Le vecteur nul est colinéaire à tous les vecteurs.

Propriété 5 : Deux vecteurs \vec{u} (x ; y) et \vec{v} (x' ; y') sont colinéaires si et seulement si xy'-x'y =0.

Propriété 6 : On considère cinq points distincts du plan A, B, C, D et I.

- 1) Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires si et seulement si les droites (AB) et (CD) sont parallèles.
- 2) Les points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- 3) I est le milieu de [AB] si et seulement si les vecteurs \overrightarrow{IA} et \overrightarrow{IB} sont opposés.

Exemple 2 : On considère les points A(-2; 3); B(0; 2); C(1; 0); D(4; -5). Les droites (AB) et (CD) sont-elles parallèles ?

II. Géométrie vectorielle dans le plan

Dans la suite, on choisit un repère euclidien orthonormé $(0, \vec{\iota}, \vec{\jmath})$.

1. Normes et orthogonalité

Définition 7 norme d'un vecteur \vec{u} : Soit \vec{u} un vecteur et A, B deux points du plan tels que $\vec{u} = \overrightarrow{AB}$. La norme de \vec{u} est la longueur AB et se note $||\vec{u}|| = ||\overrightarrow{AB}|| = AB$.

Propriété 7 sur les normes :

- 1) La norme du vecteur \vec{u} (a ; b) est donnée par : $||\vec{u}|| = \sqrt{a^2 + b^2}$
- 2) On considère un vecteur \vec{u} et un réel k, on a : $||k|\vec{u}|| = |k|||\vec{u}||$

Définition 8 vecteurs orthogonaux : On considère deux vecteurs \vec{u} et \vec{v} et quatre points distincts du plan A, B, C et D tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$. On dit que les vecteurs \vec{u} et \vec{v} sont orthogonaux si les droites (AB) et (CD) sont perpendiculaires.

Propriété 8 : Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = 0$.

Conséquence : Deux droites (AB) et (CD) sont perpendiculaires si et seulement si $\langle \overrightarrow{AB}, \overrightarrow{CD} \rangle = 0$.

2. Vecteur directeur et vecteur normal

Définition 9 vecteur directeur d'une droite : On considère un vecteur \vec{u} et une droite (d). On dit que \vec{u} est un vecteur directeur de (d) s'il existe deux points distincts A et B appartenant à (d) tel que $\vec{u} = \overline{AB}$.

Exemple 3: Soit la droite (d) d'équation y =2x-1. Déterminer deux vecteurs directeurs de la droite (d).

Définition 10 vecteur normal à une droite : On dit que le vecteur \vec{n} est normal à une droite (d) si $\vec{n} \neq \vec{0}$ et si \vec{n} est orthogonal à la direction de (d).

Propriété 9 : Soit (d), une droite passant par le point A, de vecteur normal \vec{n} et M un point du plan distinct de A, le point M appartient à (d) si et seulement si $\langle \vec{n}, \overrightarrow{AM} \rangle = 0$.

3. Equation cartésienne de droite dans le plan

Définition 11 équation cartésienne de droite : Toute droite (d) a une équation de la forme : ax + by + c = 0 où a, b et c sont des réels avec (a, b) \neq (0, 0). Une telle équation est appelée équation cartésienne de la droite (d).

Propriété 10 :

- 1) On considère deux réels a et b non tous nuls, une droite (d) de vecteur normal $\vec{n}(a; b)$ admet pour équation cartésienne de la forme ax + by + c = 0 où c est un nombre réel à déterminer.
- 2) La droite (d) d'équation cartésienne ax + by + c = 0 admet le vecteur $\vec{\mathbf{u}}$ (-b ; a) pour vecteur directeur.
- 3) La droite (d) d'équation cartésienne ax + by + c = 0 admet le vecteur \vec{n} (a; b) pour vecteur normal.

Exemple 4 : Déterminer l'équation cartésienne de la droite (d) de vecteur directeur \vec{u} (-1 ; 2) et passant par le point A(2,5).

Propriété 11 : Soient deux droites (d) d'équation cartésienne ax + by + c = 0 et (d') d'équation cartésienne a'x + b'y + c' = 0 où a, b, a' et b' sont des entiers non tous nuls et c et c' sont des réels à déterminer. (d) et (d') sont parallèles si et seulement si ab' - a'b = 0.

Exemple 5: Les droites (d): 2x-y+3=0 et (d'): -4x+2y+1=0 sont-elles parallèles?

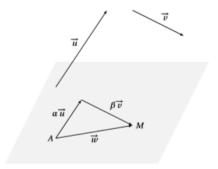
III. Géométrie vectorielle dans l'espace

On se place à présent dans l'espace euclidien muni d'un repère orthonormé $(0, \vec{l}, \vec{j}, \vec{k})$.

1. Coplanarité

Définition 12 vecteurs coplanaires : Soit trois vecteurs non nuls \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} , on dit que \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires si et seulement s'il existe trois réels α , β , γ tels que : $\alpha \overrightarrow{u} + \beta \overrightarrow{v} + \gamma \overrightarrow{w} = 0$.

Remarque 6 : On dit aussi que $\overrightarrow{w} = \alpha \overrightarrow{u} + \beta \overrightarrow{v}$ quand les vecteurs \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires.



2. Parallélisme de droites et de plans dans l'espace

Définition 13 parallélisme de deux plans dans l'espace : Deux plans de l'espace sont parallèles s'ils ne sont pas sécants.

Propriété 12 : A, B et C étant trois points distincts non alignés de l'espace, le plan (ABC) est l'ensemble des points M de l'espace tels que : $\overrightarrow{AM} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$ avec α et β des réels. On dit que \overrightarrow{AB} et \overrightarrow{AC} dirigent le plan (ABC).

3. Vecteur normal à un plan et orthogonalité

Définition 14 droites orthogonales : On dit que deux droites de l'espace (d) et (d') sont orthogonales quand une parallèle de (d) est perpendiculaire à une parallèle de (d').

Définition 15 droite orthogonale à un plan : On dit qu'une droite (d) est orthogonale à un plan (P) quand (d) est orthogonale à toutes droites de (P).

Définition 16 vecteur normal à un plan : Un vecteur \vec{n} est dit normal à un plan P s'il est non nul et orthogonal à tous les vecteurs contenus dans P.

Propriété 13 : Une droite (d) est orthogonale à toute droite d'un plan P si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

> 4. Equation cartésienne de plan et représentations paramétriques de droites et de plans dans l'espace

Définition équation cartésienne d'un plan P- Théorème :

Un plan P de vecteur normal \vec{n} (a; b; c) non nul admet une équation cartésienne de la forme ax + by +cz +d = 0 avec d un réel à déterminer et a, b et c des réels non tous nuls. Réciproquement, si a, b, c sont non tous nuls, l'ensemble des points M(x; y; z) tels que ax + by+cz +d avec d un réel, est un plan.

Définition 17 représentation paramétrique de le droite (d) passant par le point $A(x_A; y_A; z_A)$ et de vecteur directeur $\overrightarrow{u}(\alpha; \beta; \gamma)$:

C'est le système d'équation :
$$\begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \text{ où t est un réel.} \\ z = z_A + t\gamma \end{cases}$$

Propriété 14:

On considère une droite (d) passant par le point $A(x_A, y_A, z_A)$ et de vecteur directeur $\overrightarrow{u}(\alpha, \beta, \gamma)$.

Le point M(x, y, z) distinct de A appartient à la droite (d) si et seulement s'il existe un réel t tel que : $(x = x_A + t\alpha)$ $\begin{cases} y = y_A + t\beta, \\ z = z_A + t\gamma \end{cases}$

Définition 18 représentation paramétrique du plan P passant par le point $A(x_A, y_A, z_A)$ et de vecteur directeur $\overrightarrow{u}(\alpha, \beta, \gamma)$ et $\overrightarrow{v}(\alpha', \beta', \gamma')$. :

C'est le système d'équation :
$$\begin{cases} x = x_A + t\alpha + \ t'\alpha' \\ y = \ y_A + t\beta + t'\beta' \text{ où t et t' sont des réels.} \\ z = \ z_A + t\gamma + \ t'\gamma' \end{cases}$$

Propriété 15 : On considère le plan P passant par le point $A(x_A; y_A; z_A)$ de vecteurs directeurs $\overrightarrow{u}(\alpha; \beta; z_A)$ γ) et $\overrightarrow{v}(\alpha'; \beta'; \gamma')$.

Le point M(x; y; z) distinct de A appartient au plan P si et seulement s'il existe deux réels t et t' tels $\operatorname{que}: \begin{cases} x = x_A + t\alpha + \ t'\alpha' \\ y = \ y_A + t\beta + t'\beta'. \\ z = \ z_A + t\gamma + \ t'\gamma' \end{cases}$

que :
$$\begin{cases} y = y_A + t\beta + t'\beta' \\ z = z_A + t\gamma + t'\gamma' \end{cases}$$

IV. Conclusion

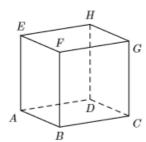
1. Exercice d'application

Amérique du sud 2017. Enseignement spécifique

EXERCICE 2 (4 points) (commun à tous les candidats)

On considère un cube ABCDEFGH.

- 1) a) Simplifier le vecteur $\overrightarrow{AC} + \overrightarrow{AE}$.
 - **b)** En déduire que $\overrightarrow{AG}.\overrightarrow{BD} = 0$.
 - c) On admet que $\overrightarrow{AG}.\overrightarrow{BE} = 0$. Démontrer que la droite (AG) est orthogonale au plan (BDE).



- 2) L'espace est muni du repère orthonormé $(A \; ; \; \overrightarrow{AB}, \; \overrightarrow{AD}, \; \overrightarrow{AE})$.
 - a) Démontrer qu'une équation cartésienne du plan (BDE) est x+y+z-1=0.
 - b) Déterminer les coordonnées du point d'intersection K de la droite (AG) et du plan (BDE).