La formule

Thoma:

Le trièdre d Darboux

Gaston

Le théorème de

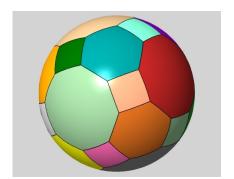
Gauss-Bonnet

Pierre-Ossia

# CM-R5: Le théorème de Gauss-Bonnet

### Vincent Borrelli

Université de Lyon



Polygones réguliers sur une sphère

La formule d'Harriot

Thoma Harriot

Le trièdre de Darboux

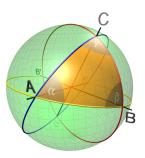
Gaston

Le théorème de Gauss-Bonn

Gauss-Bonne

# La formule d'Harriot

• On suppose que l'espace euclidien  $\mathbb{E}^3$  est orienté.



**Définition.**— On appelle TRIANGLE SPHÉRIQUE un domaine T de la sphère homéomorphe à un disque et dont le bord est formé de trois arcs géodésiques dont aucun n'est réduit à un point.

# La formule d'Harriot

- On note A, B et C les extrémités des arcs géodésiques et  $\alpha$ ,  $\beta$  et  $\gamma$  les angles intérieurs définis par les tangentes aux géodésiques. Ces angles peuvent être orientés par le choix d'une normale à la sphère.
- Si *T* est un triangle sphérique alors l'adhérence de son complémentaire dans la sphère est encore un triangle sphérique.
- Si l'union des trois arcs géodésiques forme un grand cercle de la sphère, alors le triangle sphérique correspondant est une demi-sphère.

Thoma Harrio

Le trièdre d Darboux

Gaston Darbou

Le théorème de Gauss-Bonn

Gauss-Bonne

# La formule d'Harriot

**Définition.**— On appelle BIANGLE SPHÉRIQUE un domaine *B* de la sphère homéomorphe à un disque et dont le bord est formé de deux arcs géodésiques dont les extrémités communes sont deux points antipodaux.



• L'aire du biangle  $B_{\alpha}$  d'angle au sommet  $\alpha$  est  $2\alpha R^2$ .

Gaston Darbou

Le théorème de

Gauss-Bonn

Pierre-Ossia Bonnet

### La formule d'Harriot

Théorème (la formule d'Harriot).— Soit T un triangle sphérique, on a

$$\frac{\textit{Aire}(T)}{\textit{R}^2} = \alpha + \beta + \gamma - \pi$$

où R est le rayon de la sphère.

• Notons que  $\frac{1}{R^2}$  est la courbure de Gauss de la sphère de rayon R.

Thoma Harriot

Le trièdre d Darboux

Gaston Darbou

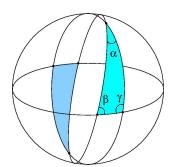
Le théorème de

Gauss-Bonne

Diama Ossian

# La formule d'Harriot

**Démonstration.**— Elle repose sur la partition de la sphère induite par un triangle sphérique.



Thoma Harriot

Le trièdre d Darboux

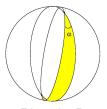
Gaston

Le théorème de

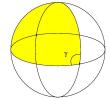
Gauss-Bonne

Pierre-Ossia Bonnet

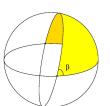
# La formule d'Harriot



Biangle  $B_{\alpha}$ 



Biangle  $B_{\gamma}$ 



Biangle  $B_{\beta}$ 



Triangle T

# La formule d'Harriot

Ainsi

$$Aire(2B_{\alpha} + 2B_{\beta} + 2B_{\gamma}) = Aire(\mathbb{S}^2) + 4Aire(T)$$

i. e.

$$Aire(T) = \frac{1}{2}Aire(B_{\alpha} + B_{\beta} + B_{\gamma}) - \frac{1}{4}Aire(\mathbb{S}^{2})$$

• On remplace :

Aire(T) = 
$$\frac{1}{2} \left( 2\alpha R^2 + 2\beta R^2 + 2\gamma R^2 \right) - \frac{1}{4} (4\pi R^2)$$
  
=  $(\alpha + \beta + \gamma - \pi) R^2$ 

C'est la formule d'Harriot.

La formule

Thomas Harriot

Le trièdre

Gaston

Le théorème de

Gauss-Bonn

# Thomas Harriot (1560-1621)



Gaston Darbou

Le théorème de Gauss-Bonn

Piorro Ossiar

# Thomas Harriot (1560-1621)

- Mathématicien, physicien, géographe et astronome anglais.
- L'algèbre moderne c'est lui... et François Viète bien sûr!
- En tant que géographe, il étudie la trigonométrie sphérique et découvre sa formule. Il ne la publie pas. Elle sera redécouverte par le mathématicien français Albert Girard.
- En astronomie, il effectua les premiers dessins de la Lune au travers d'une lunette quatre mois avant Galilée.
- Probablement athée, il est heureusement sous la protection du comte de Northumberland, Henry Percy.

La formule

Thomas Harriot

Le trièdre d

Gaston

Le théorème de

Gauss-Bonne

# Thomas Harriot (1560-1621)



Une carte de la Lune dessinée par Thomas Harriot

La formule

Thomas Harriot

Le trièdre

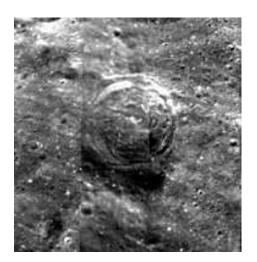
Gaston

Le théorèm de

Gauss-Bonne

Pierre-Ossia

# Thomas Harriot (1560-1621)



Une cratère lunaire du nom d'Harriot (sur la face cachée)

# Le trièdre de Darboux

- Soit  $S \subset \mathbb{R}^3$  une variété de dimension 2 et  $\overline{\gamma}: I \longrightarrow S$  une courbe paramétrée par la longueur d'arc et dont le support est contenue dans S
- Localement (=quitte à réduire I), on peut toujours supposer qu'il existe une immersion  $f: \mathcal{U} \longrightarrow \mathcal{S}$  et une courbe paramétrée  $\gamma: I \longrightarrow \mathcal{U}$  telles que  $\overline{\gamma} = f \circ \gamma$ .
- On pose

$$T(s) := \overline{\gamma}'(s)$$
 et  $V(s) := n(\gamma(s)) \wedge T(s)$ .

**Définition.**— Le repère orthonormée  $(T, V, n \circ \gamma)$  est appelé TRIÈDRE DE DARBOUX

Gaston Darboux

Le théorème de

de Gauss-Bonn

Diama Ossisa

### Le trièdre de Darboux

• En dérivant les 6 relations exprimant le caractère orthonormé de  $(T, V, n \circ \gamma)$ , on montre que nécessairement les dérivées de T, V et  $n \circ \gamma$  sont de la forme

$$\frac{dT}{ds} = 0 + -aV - b \, n \circ \gamma$$

$$\frac{dV}{ds} = aT + 0 - c \, n \circ \gamma$$

$$\frac{d(n \circ \gamma)}{ds} = bT + cV + 0$$

où  $a, b, c: I \longrightarrow \mathbb{R}$ .

Gaston

Le théorème de

Gauss-Bonne

Pierre-Ossia

### Le trièdre de Darboux

• Notons que

$$k_{T(s)} = II(\overline{\gamma}'(s), \overline{\gamma}'(s))$$

$$= \langle -dn(\overline{\gamma}'(s)), \overline{\gamma}'(s)) \rangle$$

$$= \langle -\frac{d(n \circ \gamma)}{ds}(s), T(s) \rangle$$

$$= -b.$$

**Définition.**— La fonction a est appelée la COURBURE GÉODÉSIQUE et elle est notée  $k_g$ . La fonction c est appelée la TORSION GÉODÉSIQUE et notée  $\tau_q$ .

Thoma: Harriot

#### Le trièdre de Darboux

Gaston Darbou

Le théorème de

Pierre-Ossia

# Le trièdre de Darboux

### Au bilan

$$\frac{dT}{ds} = -k_g.V + k_T.n \circ \gamma 
\frac{dV}{ds} = k_g.T - \tau_g.n \circ \gamma 
\frac{d(n \circ \gamma)}{ds} = -k_T.T + \tau_g.V$$

**Lemme.–** Soit  $\overline{\gamma} = f \circ \gamma : I \longrightarrow S$  une courbe paramétrée par la longueur d'arc alors :

$$\overline{\gamma}$$
 est une géodésique ssi  $k_q \equiv 0$ 

$$\overline{\gamma}$$
 est une courbe asymptotique ssi  $k_T \equiv 0$ 

$$\overline{\gamma}$$
 est une ligne de courbure ssi  $\tau_a \equiv 0$ 

#### Le trièdre de Darboux

# Le trièdre de Darboux

**Démonstration.**— C'est quasi immédiat.

- $\overline{\gamma}$  est une géodésique ssi  $(\frac{dT}{ds})^T = 0$  i.e. ssi  $k_a \equiv 0$ .
- $\bullet \overline{\gamma}$  est une courbe asymptotique ssi la courbure normale dans la direction T est nulle i.e. ssi  $k_T = 0$ .
- $\overline{\gamma}$  est une ligne de courbure ssi T est vecteur propre de -dn, autrement dit, ssi  $\frac{d(n \circ \gamma)}{ds}$  est proportionnel à T, i. e.  $\tau_a = 0$ .

**Corollaire.–**  $Si \overline{\gamma} = f \circ \gamma : I \longrightarrow S$  est une droite paramétrée par la longueur d'arc alors c'est une géodésique et une courbe asymptotique.

**Démonstration.**— En effet, dans ce cas  $\frac{dT}{ds} = 0$  et donc  $k_0 = k_T = 0.$ 

CM-R5 : Le théorème de Gauss-Bonnet

#### V. Borrelli

La formule

Thoma

Le trièdre de Darboux

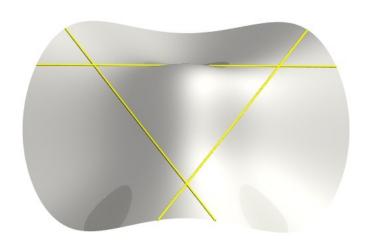
Gaston

Le théorème

Gauss-Bonnet

Pierre-Ossia

# Le trièdre de Darboux



Trois droites sur une cubique

La formule

Thomas

#### Le trièdre de Darboux

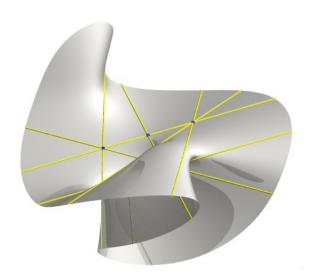
Gaston

Le théorème

Gauss-Bonnet

Pierre-Ossia

### Le trièdre de Darboux



Sept droites sur une cubique

CM-R5 : Le théorème de Gauss-Bonnet

#### V. Borrelli

La formule

Thoma Harriot

Le trièdre de Darboux

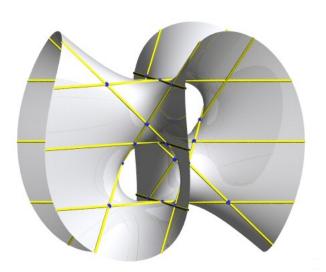
Gaston

Le théorèm

Gauss-Bonne

Pierre-Ossia

# Le trièdre de Darboux



Quinze droites sur une cubique

La formule

Thoma
Harriot

Le trièdre de

#### Gaston Darboux

Le théorèm de

Gauss-Bonn

# Gaston Darboux (1842-1917)



La formul d'Harriot

Thomas Harriot

Le trièdre d Darboux

Gaston Darboux

de Gauss-Bonn

Pierre-Ossia

# Gaston Darboux (1842-1917)

- Ses travaux concernent l'analyse (intégration, équations aux dérivées partielles) et la géométrie différentielle (étude des courbes et des surfaces)
- Deux théorèmes portent son nom, l'un en analyse et l'autre en géométrie symplectique
- Il fut membre du bureau des longitudes : initialement (1795), le but de ce bureau était de résoudre les problèmes astronomiques liés à la détermination de la longitude en mer afin de reprendre « la maîtrise des mers aux Anglais ».
- Actuellement bureau des longitudes est une académie de 13 membres qui définissent les missions confiées à l'Institut de mécanique céleste et de calcul des éphémérides.

La formule

Thoma Harriot

Le trièdre

#### Gaston Darboux

Le théorèm de

Gauss-Bonne

Pierre-Ossia

# Gaston Darboux (1842-1917)



L'ancienne entrée du bureau des longitudes...

La formul

Thoma

Le trièdre d

#### Gaston Darboux

Le théorèm de

Gauss-Bonne

Pierre-Ossia Bonnet

# Gaston Darboux (1842-1917)



... et les anciens locaux : la marine anglaise a dû trembler d'effroi!

La formul

Thoma Harriot

Le trièdre d

#### Gaston Darboux

de théorém

Gauss-Bonne

Pierre-Ossi Ronnet

# Gaston Darboux (1842-1917)



Les locaux actuels de l'Institut de mécanique céleste et de calcul des éphémérides à l'observatoire de Paris

Le théorème Gauss-Bonnet

# Le théorème de Gauss-Bonnet

**Définition.** Soit S une sous-variété de dimension 2 et  $f: \mathcal{U} \longrightarrow S$  un paramétrage régulier. On dit que f est un PARAMÉTRAGE ORTHOGONAL de S si, dans la base  $(f_{U}, f_{V})$ , la matrice de la première forme fondamentale est de la forme

$$\left(\begin{array}{cc} E & 0 \\ 0 & G \end{array}\right)$$

autrement dit, si F=0.

**Théorème (admis).–** Soit  $f: \mathcal{U} \longrightarrow S$  un paramétrage régulier et  $p = f(u_0, v_0) \in S$ . Alors il existe un voisinage  $\mathcal{W} \subset \mathcal{U}$  de  $(u_0, v_0)$  et un difféomorphisme  $\varphi : \mathcal{V} \longrightarrow \mathcal{W}$  tel que  $g = f \circ \varphi$  soit un paramétrage orthogonal du voisinage  $g(\mathcal{V})$  de p dans S.

La formule

Thoma Harriot

Le trièdre d

Gaston

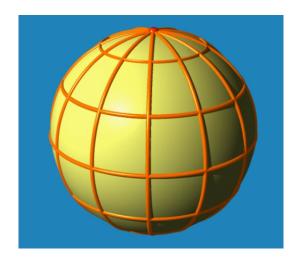
Le théorème

de Gauss-Bonnet

Gauss-buille

Pierre-Ossia

### Le théorème de Gauss-Bonnet



Le paramétrage usuel de la sphère est orthogonal

La formule

Thoma

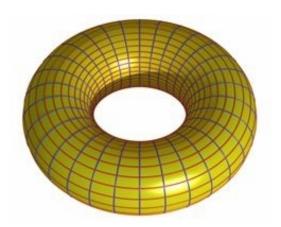
Le trièdre d

Gaston

Le théorème de

Gauss-Bonnet

# Le théorème de Gauss-Bonnet



Idem pour le tore...

La formule

Thoma
Harriot

Le trièdre d

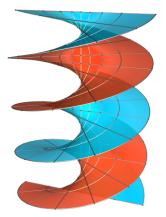
Gaston

Le théorème de

Gauss-Bonnet

Pierre-Ossi

# Le théorème de Gauss-Bonnet



... et l'hélicoïde

La formule

Thoma Harriot

Le trièdre d

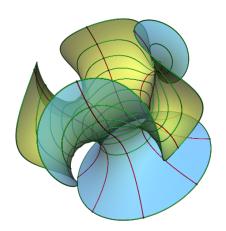
Gaston

Le théorème de

Gauss-Bonnet

Pierre-Ossia

# Le théorème de Gauss-Bonnet



Un exemple moins évident : sur la catenoïde ondulée

La formule

Thoma
Harriot

Le trièdre d

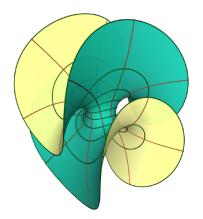
Gaston

Le théorème de

Gauss-Bonnet

Pierre-Ossia

# Le théorème de Gauss-Bonnet



Un autre : sur la surface d'Enneper double

La formule

Thoma Harriot

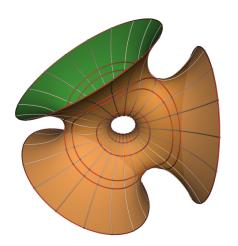
Le trièdre d

Gaston

Le théorème de

Gauss-Bonnet

# Le théorème de Gauss-Bonnet



Encore un autre : sur la 3-noïde de genre 1

Gaston Darbou

Le théorème de Gauss-Bonnet

Pierre-Ossia Bonnet

# Le théorème de Gauss-Bonnet

**Proposition.–** Soit  $f: \mathcal{U} \longrightarrow S$  un paramétrage orthogonal alors

$$K = -\frac{1}{2\sqrt{EG}} \left( \left( \frac{E_{\nu}}{\sqrt{EG}} \right)_{\nu} + \left( \frac{G_{u}}{\sqrt{EG}} \right)_{u} \right).$$

De plus, si  $\overline{\gamma} = f \circ \gamma : I \longrightarrow S$  une courbe paramétrée par la longueur d'arc, alors sa courbure géodésique vaut

$$k_g = \frac{1}{2\sqrt{EG}} \left( G_u v' - E_v u' \right) + \varphi'$$

où  $\varphi: I \longrightarrow \mathbb{R}$  est l'angle orientée (par n) du couple de vecteurs  $(f_{\mu} \circ \gamma, \overline{\gamma}')$ .

# Le théorème de Gauss-Bonnet

**Démonstration.**— Il est un peu long mais facile de vérifier au moyen de la formule de Brioschi que si  $f: \mathcal{U} \longrightarrow S$  est un paramétrage orthogonal alors

$$K = -\frac{1}{2\sqrt{EG}} \left( \left( \frac{E_{\nu}}{\sqrt{EG}} \right)_{\nu} + \left( \frac{G_{u}}{\sqrt{EG}} \right)_{u} \right).$$

A partir des relations vues en CM-S4, on tire directement

$$\Gamma_{11}^{1} = \frac{1}{2} \frac{E_{u}}{E} \qquad \qquad \Gamma_{12}^{1} = \frac{1}{2} \frac{E_{v}}{E} \qquad \qquad \Gamma_{22}^{1} = -\frac{1}{2} \frac{G_{u}}{E}$$

$$\Gamma_{11}^{2} = -\frac{1}{2} \frac{E_{v}}{G} \qquad \qquad \Gamma_{12}^{2} = \frac{1}{2} \frac{G_{u}}{G} \qquad \qquad \Gamma_{22}^{2} = \frac{1}{2} \frac{G_{v}}{G}$$

Le trièdre d Darboux

Gaston Darbou

Le théorème de Gauss-Bonnet

Pierre-Ossiar

# Le théorème de Gauss-Bonnet

• Soit  $\overline{\gamma} = f \circ \gamma : I \longrightarrow S$  une courbe paramétrée par la longueur d'arc. Dans la base  $(f_u, f_v)$  on a

$$\overline{\gamma}'(s) = u'f_u + v'f_v.$$

Mais puisque la base

$$(\frac{f_u}{\sqrt{E}}, \frac{f_v}{\sqrt{G}})$$

est orthonormée, on peut aussi choisir d'écrire

$$\overline{\gamma}'(s) = \cos(\varphi(s)) \frac{f_u}{\sqrt{E}} + \sin(\varphi(s)) \frac{f_v}{\sqrt{G}}.$$

où  $\varphi: I \longrightarrow \mathbb{R}$ .

La formule

Thoma

Le trièdre d Darboux

Gaston

Le théorème de Gauss-Bonne

Gauss-Bonnet

Pierre-Ossia

# Le théorème de Gauss-Bonnet

En identifiant

$$u' = \frac{\cos(\varphi)}{\sqrt{E}}$$
 et  $v' = \frac{\sin(\varphi)}{\sqrt{G}}$ 

et

$$\begin{split} u'' &= -\varphi' \frac{\sin \varphi}{\sqrt{E}} - \frac{1}{2} \frac{\cos^2 \varphi}{E^2} E_u - \frac{1}{2} \frac{\cos \varphi \sin \varphi}{E \sqrt{EG}} E_v \\ v'' &= \varphi' \frac{\cos \varphi}{\sqrt{G}} - \frac{1}{2} \frac{\sin \varphi \cos \varphi}{G \sqrt{EG}} G_u - \frac{1}{2} \frac{\sin^2 \varphi}{G^2} G_v \end{split}$$

• Puisque  $(\overline{\gamma}'')^T = -k_g V$  et d'après une relation vue en CM-S4, on a

$$-k_g V = \left(u'' + \Gamma_{11}^1(u')^2 + 2\Gamma_{12}^1 u' v' + \Gamma_{22}^1(v')^2\right) f_u$$
$$+ \left(v'' + \Gamma_{11}^2(u')^2 + 2\Gamma_{12}^2 u' v' + \Gamma_{22}^2(v')^2\right) f_v.$$

Le théorème de Gauss-Bonnet

Gauss-Bonne

### Le théorème de Gauss-Bonnet

• Il « suffit » de remplacer pour obtenir

$$k_g = \frac{1}{2\sqrt{EG}} \left( \frac{G_u}{\sqrt{G}} \sin(\varphi) - \frac{E_v}{\sqrt{E}} \cos(\varphi) \right) + \varphi'$$

que l'on peut aussi écrire :

$$k_g = \frac{1}{2\sqrt{EG}}\left(G_uv' - E_vu'\right) + \varphi'$$

• On vient d'exprimer, pour un paramétrage orthogonal, toutes les quantités qui ne dépendent que de la première forme fondamentale, autrement dit, toutes celles qui sont invariantes par isométrie.

### Le théorème de Gauss-Bonnet

**Définition.**— Une courbe paramétrée  $\overline{\gamma}:[a,b]\longrightarrow\mathbb{R}^3$  est dite FERMÉE SIMPLE ET  $C^k$ -RÉGULIÈRE PAR MORCEAUX SI

- (i)  $\overline{\gamma}(a) = \overline{\gamma}(b)$
- (ii)  $\forall t_1, t_2 \in [a, b[, t_1 \neq t_2 \Rightarrow \overline{\gamma}(t_1) \neq \overline{\gamma}(t_2)]$
- (iii) Il existe une subdivision

$$a = t_0 < t_1 < ... < t_k < t_{k+1} = b$$

de [a, b] telle que  $\overline{\gamma}$  soit  $C^k$  et régulière sur chaque  $[t_i, t_{i+1}], i \in \{0, ..., k\}.$ 

• On suppose maintenant en outre que  $\overline{\gamma} = f \circ \gamma$  où f est une paramétrisation régulière et injective.

CM-R5 : Le théorème de Gauss-Bonnet

#### V. Borrelli

La formule

Thoma

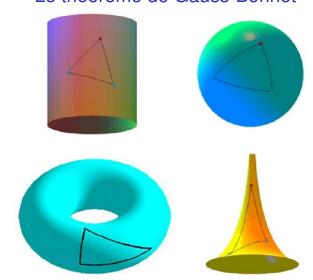
Le trièdre d

Gaston

Le théorème de Gauss-Bonnet

Gauss-Bonne

# Le théorème de Gauss-Bonnet



Courbes fermées simples et régulières par morceaux

Le théorème de

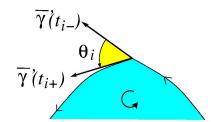
Gauss-Bonnet

### Le théorème de Gauss-Bonnet

• On note  $\theta_i$ ,  $i \in \{0,...,k\}$ , les angles en  $\overline{\gamma}(t_i)$  formées par les couples de vecteurs

$$(\overline{\gamma}'(t_{i-}),\overline{\gamma}'(t_{i+}))$$

et orientés par la normale de f.



#### V. Borrelli

La formulo d'Harriot

Thoma Harriot

Le trièdre d Darboux

Gaston Darbou

Le théorème de Gauss-Bonnet

Piorro Ossian

Pierre-Ossiai Bonnet

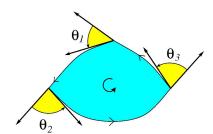
### Le théorème de Gauss-Bonnet

• On note  $\varphi$  l'angle orienté entre  $f_u$  et  $\overline{\gamma}'$ .

Théorème des tangentes tournantes pour les surfaces (admis).— Si  $f(\mathcal{U})$  est homéomorphe à un disque on a

$$\sum_{i=0}^k (\varphi(t_{i+1}) - \varphi(t_i)) + \sum_{i=0}^k \theta_i = \pm 2\pi$$

le signe dépendant de l'orientation de  $\overline{\gamma}$ .



#### V. Borrelli

La formule d'Harriot

Thomas Harriot

Le trièdre d Darboux

Gaston Darbou

Le théorème de Gauss-Bonnet

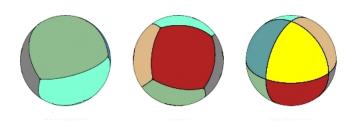
Gauss-Bonne

Le théorème de Gauss-Bonnet

**Définition.**— On dit que  $D \subset S$  est un DOMAINE SIMPLE si D est homéomorphe à un disque fermé et si le bord  $\partial D$  de D est le support d'une courbe paramétrée

$$\overline{\gamma}: [\mathbf{a}, \mathbf{b}] \longrightarrow \partial \mathbf{D} \subset \mathbf{S}$$

fermée simple et régulière par morceaux.



Des domaines simples sur la sphère

#### V Borrelli

La formule

Thoma

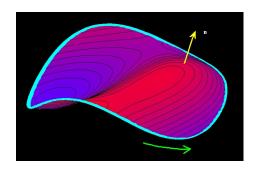
Le trièdre Darboux

Gaston

Le théorème de Gauss-Bonnet

Pierre-Ossia

# Le théorème de Gauss-Bonnet



**Définition.—** Soit  $\overline{\gamma}:[a,b]\longrightarrow\partial D\subset S$  une courbe paramétrée fermée simple et régulière par morceaux. On dit que  $\overline{\gamma}$  est ORIENTÉE POSITIVEMENT si pour tout  $t\in ]t_k,t_{k+1}[$ , lorsque l'on complète  $\overline{\gamma}'(t)$  en une base  $(\overline{\gamma}'(t),w(t))$  orthogonale directe pour l'orientation induite par n, alors le vecteur w(t) « pointe à l'intérieur de D ».

Thomas Harriot

Le trièdre de Darboux

Gaston Darbou

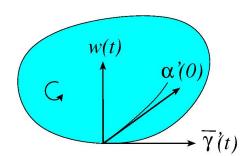
Le théorème de Gauss-Bonnet

Pierre-Ossiai

### Le théorème de Gauss-Bonnet

• « Pointer à l'intérieur de D » signifie que pour toute courbe  $\alpha:[0,\epsilon[\longrightarrow D \text{ telle que }\alpha(0)=\overline{\gamma}(t)\text{ et }\alpha'(0)\not\in\mathbb{R}\overline{\gamma}'(t)\text{ on a}$ 

$$\langle \alpha'(\mathbf{0}), \mathbf{w}(t) \rangle > \mathbf{0}.$$



Le trièdre d Darboux

Gaston Darbou

Le théorème de Gauss-Bonnet

Pierre-Ossia Bonnet

### Le théorème de Gauss-Bonnet

**Théorème de Gauss-Bonnet.**—Soit  $D \subset S = f(\mathcal{U})$  un domaine simple bordé par  $\overline{\gamma}$  orientée positivement et paramétrée par la longueur d'arc. Alors :

$$\sum_{i=1}^{k} \int_{s_{i}}^{s_{i+1}} k_{g}(s) ds + \int_{D} K \ d^{2}S + \sum_{i=1}^{k} \theta_{i} = 2\pi.$$

**Corollaire.**– Si le support de  $\overline{\gamma}$  est formé d'arcs géodésiques alors

$$\int_D K d^2S = 2\pi - \sum_{i=1}^k \theta_i.$$

Le trièdre d Darboux

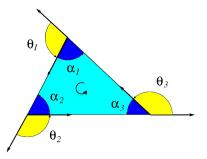
Gaston

Le théorème de Gauss-Bonnet

Pierre-Ossian

# Le théorème de Gauss-Bonnet

• Si *D* est un triangle dans un plan (K = 0), la formule de Gauss-Bonnet s'écrit :  $\theta_1 + \theta_2 + \theta_3 = 2\pi$ .



Si on note  $\alpha_i$  les angles intérieurs, on obtient

$$\alpha_1 + \alpha_2 + \alpha_3 = \pi.$$

On retrouve le théorème de la somme des angles d'un triangle.

Le théorème de Gauss-Bonnet

Piorro Ossiar

### Le théorème de Gauss-Bonnet

• Si *D* est un triangle sphérique tracée sur une sphère de rayon *R* alors

$$\int_D K d^2S = \frac{Aire(D)}{R^2}.$$

La formule de Gauss-Bonnet s'écrit donc

$$\frac{\textit{Aire}(\textit{D})}{\textit{R}^2} = 2\pi - (\theta_1 + \theta_2 + \theta_3).$$

En passant aux angles intérieurs on retrouve la formule d'Harriot

$$\frac{Aire(D)}{B^2} = \alpha_1 + \alpha_2 + \alpha_3 - \pi.$$

Le théorème de Gauss-Bonnet

Pierre-Ossian

# Le théorème de Gauss-Bonnet

**Démonstration.**— On suppose pour simplifier la démonstration que  $f: \mathcal{U} \longrightarrow S$  est un paramétrage orthogonal.

• Ainsi

$$\sum_{i=1}^k \int_{s_i}^{s_{i+1}} k_g(s) ds = A + B$$

οù

$$A = \sum_{i=1}^{k} \int_{s_{i}}^{s_{i+1}} \frac{1}{2\sqrt{EG}} \left( G_{u}v' - E_{v}u' \right) ds$$

et

$$B = \sum_{i=1}^k \int_{s_i}^{s_{i+1}} \varphi' ds.$$

Le théorème de Gauss-Bonnet

Pierre-Ossiai

# Le théorème de Gauss-Bonnet

• On s'occupe en premier de A. On note

$$P = -rac{E_{V}}{2\sqrt{EG}}$$
 et  $Q = rac{G_{u}}{2\sqrt{EG}}$ .

Par Green-Riemann

$$A = \sum_{i=1}^{k} \int_{s_{i}}^{s_{i+1}} \frac{1}{2\sqrt{EG}} \left( G_{u}v' - E_{v}u' \right) ds$$

$$= \sum_{i=1}^{k} \int_{s_{i}}^{s_{i+1}} Pu' + Qv' ds$$

$$= \int_{D} \left( \frac{\partial Q}{\partial u} - \frac{\partial P}{\partial v} \right) du dv$$

$$= \int_{D} \left( \left( \frac{E_{v}}{2\sqrt{EG}} \right)_{v} + \left( \frac{G_{u}}{2\sqrt{EG}} \right)_{u} \right) du dv$$

Harriot Harriot

Le trièdre d Darboux

Gaston Darboux

Le théorème de Gauss-Bonnet

Pierre-Ossia

# Le théorème de Gauss-Bonnet

• A un facteur  $-\sqrt{EG}$  près on reconnaît l'expression de la courbure de Gauss, d'où

$$A = -\int_D K\sqrt{EG} \ dudv.$$

• Or  $\sqrt{EG}$  est l'élément d'aire puisque F=0. Ainsi

$$A = -\int_D K d^2 S.$$

• On s'occupe de B maintenant. On a

$$B = \sum_{i=1}^{k} \int_{s_i}^{s_{i+1}} \varphi' ds$$
$$= \sum_{i=1}^{k} (\varphi(s_{i+1}) - \varphi(s_i)).$$

Le trièdre d Darboux

Gaston Darbou

Le théorème de Gauss-Bonne

Gauss-Bonnet

Pierre-Ossiai Bonnet

# Le théorème de Gauss-Bonnet

• Le théorème des tangentes tournantes permet ensuite d'écrire que

$$\sum_{i=1}^k \left( \varphi(\boldsymbol{s}_{i+1}) - \varphi(\boldsymbol{s}_i) \right) = 2\pi - \sum_{i=1}^k \theta_i$$

Finalement

$$\sum_{i=1}^{k} \int_{s_i}^{s_{i+1}} k_g(s) ds = A + B$$
$$= -\int_{D} K d^2 S + 2\pi - \sum_{i=1}^{k} \theta_i$$

C'est la formule de Gauss-Bonnet.

#### V. Borrelli

La formule

Thoma Harriot

Le trièdre d

Gaston

Le théorème de

Gauss-Bonn

Pierre-Ossian Bonnet

# Pierre-Ossian Bonnet (1819-1892)



#### V Borrelli

Pierre-Ossian

**Bonnet** 

# Pierre-Ossian Bonnet (1819-1892)

- Il renonce à une carrière d'ingénieur pour se tourner vers l'enseignement et la recherche
- On lui doit d'importantes contributions en théorie des surfaces : c'est lui qui introduit la courbure géodésique puis démontre la formule de Gauss-Bonnet
- En fait cette formule avait déjà été établie par Gauss, mais il ne l'avait pas publiée
- Comme Darboux, il fut membre du bureau des longitudes... mais 20 avant!