CM-TA1 : Plus d'espaces !

Complexes

Espaces

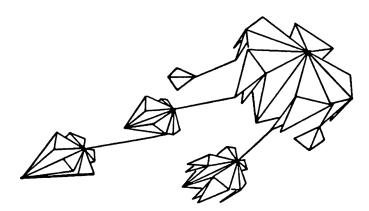
CWcomplexe

Evoc

CM-TA1: Plus d'espaces!

Vincent Borrelli

Université de Lyon



Un complexe simplicial.

• On travaille dans \mathbb{R}^{∞} , c'est-à-dire, dans le plus "petit espace affine de dimension infini":

$$\mathbb{R}^{\infty} = \bigcup_{n \in \mathbb{N}^*} \mathbb{R}^n.$$

Choisir un point $p \in \mathbb{R}^{\infty}$ c'est choisir un point d'un certain \mathbb{R}^n . et donc, de tous les \mathbb{R}^N , N > n, via l'inclusion $\mathbb{R}^n \subset \mathbb{R}^N$.

• Pour se fixer les idées, on peut penser \mathbb{R}^{∞} comme $\mathbb{R}[X]$, les deux espaces étant affinement isomorphes.

Définition.— Soit $n \in \mathbb{N}^*$. On appelle simplexe affine de dimension *n* tout sous-ensemble $\sigma \subset \mathbb{R}^{\infty}$ tel qu'il existe (n+1)-points $\{p_0,...,p_n\}$ affinement indépendants dont l'enveloppe convexe soit égale à σ :

$$\sigma = Conv(p_0, ..., p_n)$$

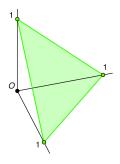
- Les points p_i sont appelés les SOMMETS de σ .
- Soit $0 \le k \le n$. On appelle FACE DE DIMENSION k de σ , toute enveloppe convexe de n'importe quel sous ensemble de k points de $\{p_0, ..., p_n\}$.

Complexes

Espaces

CWcomplexe

Exos



Le 2-simplexe standard Δ_2

Exemple de simplexes : le n-SIMPLEXE STANDARD défini par

$$\Delta_n := \{O + \sum_{i=1}^{n+1} \lambda_i e_i \mid \sum_{i=1}^{n+1} \lambda_i = 1\} \subset \mathbb{R}^{n+1}$$

où
$$\overrightarrow{\mathbb{R}}^{n+1} = Vect(e_1, ..., e_{n+1}).$$

Définition.— On appelle COMPLEXE SIMPLICIAL K une collection de simplexes

$$K = {\sigma_{\alpha}}_{\alpha \in A}$$

telle que

1) $\sigma_{\alpha} \in K \Longrightarrow$ toutes les faces de σ_{α} sont dans K

$$2) \; \sigma_{\alpha}, \sigma_{\beta} \in \textit{K} \Longrightarrow \left\{ \begin{array}{l} \sigma_{\alpha} \cap \sigma_{\beta} = \emptyset \\ \text{ou} \\ \sigma_{\alpha} \cap \sigma_{\beta} = \text{ une face de } \sigma_{\alpha} \text{ et de } \sigma_{\beta}. \end{array} \right.$$

La réalisation géométrique de K est le POLYÈDRE |K| de \mathbb{R}^{∞} définit par

$$|K| = \bigcup_{\alpha \in A} \sigma_{\alpha}.$$

CM-TA1 : Plus d'espaces !

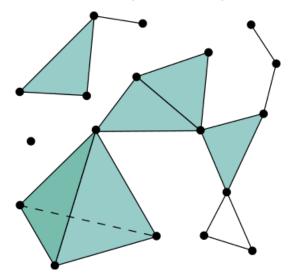
Complexes simpliciaux

quotient

CW-

Exos

Complexes simpliciaux



Un exemple de polyèdre |K| (Image : Wikipédia)

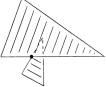
Complexes

Espaces

complexe

Exos

Complexes simpliciaux



Exemples d'ensembles qui ne sont pas des polyèdres de complexes simpliciaux (Image : Bredon)

Définition.— Si $\sup_{\alpha \in A} \dim \sigma_{\alpha} = k < +\infty$ on dit que K est un complexe simplicial de dimension k.

- Un complexe simplicial de dimension 0 est espace topologique discret
- Un complexe simplicial de dimension 1 est un graphe

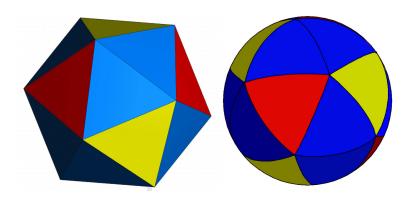
Complexes

Espaces

CW-

Exos

Complexes simpliciaux



Une triangulation de la sphère où |K| est un icosaèdre

Définition.— Une TRIANGULATION d'un espace topologique X est un homéomorphisme entre |K| et X où K est un complexe simplicial de dimension 2.

ullet On considère un espace topologique Y ainsi que relation d'équivalence \sim entre les points de Y. On note

$$p:\,Y\to\,Y/\!\sim$$

la surjection canonique de *Y* sur son espace quotient.

 \bullet Rappelons que l'on définit une topologie sur Y/\sim en décrétant que

$$U \subset Y/\sim \text{ est ouvert si } p^{-1}(U) \text{ est ouvert dans } Y.$$

• Pour cette topologie, la surjection canonique *p* est tautologiquement continue.

• L'espace quotient Y/\sim n'est pas nécessairement séparé.

- Un espace topologique est dit SÉPARÉ si tout couple de points distincts admet des voisinages disjoints.
- Le SATURÉ d'un ensemble F ⊂ Y est l'ensemble $p^{-1}(p(F))$, c'est-à-dire tous les points de Y qui sont en relation par \sim à un point de F.
- La relation d'équivalence ∼ est dite FERMÉE si le saturé de toute partie fermée est fermée.

Propriété (rappel).— Si Y est compact et la relation d'équivalence \sim fermée alors Y/ \sim est séparé.

Espaces quotients

• Dans la propriété ci dessus, la compacité est une hypothèse contraignante. Elle peut être remplacée par une propriété beaucoup plus faible, la compacité locale.

Définition.— Un espace topologique *X* est dit LOCALEMENT COMPACT s'il est séparé et si tout point *x* élément de *X* admet un voisinage compact, autrement dit si *x* appartient à un ouvert relativement compact (c'est-à-dire d'adhérence compacte).

Exemples.— Sont relativement compacts, tous les compacts, tous les espaces homéomorphes à \mathbb{R}^n , toutes les variétés topologiques, tous les espaces discrets.

Propriété bis (rappel).— Si Y est localement compact et la relation d'équivalence \sim fermée alors Y/\sim est séparé.

Proposition de transfert de continuité au quotient.— Soit $f: Y \to Z$ une application continue telle que pour tout $(v_1, v_2) \in Y^2$ on ait

$$y_1 \sim y_2 \Longrightarrow f(y_1) = f(y_2).$$

Alors l'application $\bar{f}: Y/\sim \to Z$ donnée par $\bar{f}([y]) = f(y)$ est bien définie et continue.

Démonstration.— Le caractère bien défini provient du fait que f est constante sur chaque classe d'équivalence.

• Soit U un ouvert de Z. L'image réciproque $\bar{f}^{-1}(U)$ est un ouvert de Y/\sim si et seulement si $p^{-1}(\bar{f}^{-1}(U))$ est un ouvert de Y.

• Or par construction $f = \bar{f} \circ p$ donc

$$p^{-1}(\bar{f}^{-1}(U)) = (\bar{f} \circ p)^{-1}(U) = f^{-1}(U).$$

• Puisque f est continue, $f^{-1}(U)$ est un ouvert de Y. Ainsi \bar{f} est continue.

Un exemple fondamental : On considère Y = [0, 1] et la relation d'équivalence \sim sur Y définie par

$$y_1 \sim y_2 \iff y_1 = y_2 \text{ ou } (y_1, y_2) = (0, 1) \text{ ou } (y_1, y_2) = (1, 0).$$

Proposition.— L'espace quotient Y/\sim est homéomorphe au cercle \mathbb{S}^1 .

Démonstration.— Montrons d'abord que la relation d'équivalence \sim est fermée.

- Soit F un fermé de Y = [0, 1] alors :
 - si F ne contient ni 0 ni 1, alors $p^{-1}(p(F)) = F$ et il est fermé,
 - si F contient $\{0,1\}$ alors $p^{-1}(p(F)) = F$ et il est fermé,
 - si F contient {0} ou (exclusif) {1} alors p⁻¹(p(F)) ≠ F.
 Néanmoins

$$p^{-1}(p(F)) = F \cup \{0, 1\}$$

est l'union de deux fermés, il est donc fermé.

• Ainsi la relation d'équivalence \sim est fermée. Puisque Y est compact, on en déduit que le quotient Y/\sim est séparé.

Espaces quotients

- Puisque p est continue, Y compact et Y/\sim séparé, on en déduit que $p(Y)=Y/\sim$ est compact.
- L'application

$$\begin{array}{cccc} f: & [0,1] & \longrightarrow & \mathbb{S}^1 \\ & y & \longmapsto & e^{2i\pi y} \end{array}$$

est continue et f(0) = f(1). D'après la proposition de transfert de continuité au quotient, l'application

$$\bar{f}:[0,1]/\!\sim\!\longrightarrow\mathbb{S}^1$$

est continue.

- L'application \bar{f} est aussi bijective car f est surjective et son seul défaut d'injectivité concerne le couple (0,1).
- Une bijection continue d'un espace compact dans un espace séparé est un homéomorphisme. Donc $[0,1]/\sim$ et \mathbb{S}^1 sont homéomorphes.

• Soit Y un espace topologique et soit $A \subset Y$. On considère la relation d'équivalence suivante

$$y_1 \sim y_2 \iff y_1 = y_2 \text{ ou } (y_1, y_2) \in A^2$$

L'espace quotient Y/\sim est donc formé de la classe [a] où $a \in A$ et des classes d'équivalence [y] avec $y \in Y \setminus A$.

Définition.— L'espace quotient est noté Y/A et est appelé ESPACE QUOTIENT DE Y PAR A.

Exemple.– $[0,1]/\{0,1\}$ est homéomorphe au cercle \mathbb{S}^1 .

Exercice.— Montrer que $D^2/\partial D^2$ est homéomorphe à la sphère \mathbb{S}^2 .

Espaces quotients

• Soient X et Y deux espaces topologiques, $A \subset Y$ et $f: A \rightarrow X$ une application continue. On définit une relation d'équivalence \sim sur la somme disjointe $Z = X \sqcup Y$ par

$$z_1 \sim z_2$$
 si
$$\left\{ egin{array}{l} z_1 = z_2 \ ext{ou} \ (z_1 \in A ext{ et } z_2 = f(z_1)) \ ext{ou} \ (z_2 \in A ext{ et } z_1 = f(z_2)) \end{array}
ight.$$

Définition.— L'espace quotient est noté

$$X \cup_f Y = X \sqcup Y / \sim$$

et s'appelle le RECOLLEMENT DE X À Y LE LONG DE f.

Espaces quotients

Proposition.– Si $X = \{x\}$ est un singleton et Y/A est compact alors $X \cup_f Y$ est homéomorphe à Y/A.

Démonstration. Si $X = \{x\}$ alors $f : A \rightarrow X$ est nécessairement constante. La classe d'équivalence de tout élément $z \in Y \setminus A$ est triviale : $[z] = \{z\}$. La seule classe d'équivalence non triviale est celle de z = x ou z = a, $a \in A$, puisque l'on a

$$[x] = \{x\} \sqcup A = [a].$$

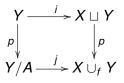
Ainsi $X \cup_f Y$ est en bijection avec Y/A.

• On vérifie sans peine que la relation \sim est fermé, ainsi $X \cup_f Y$ est un espace séparé.

Exos

Espaces quotients

On a le diagramme commutatif suivant



où i est l'inclusion naturelle (et continue) et j la bijection décrite ci-dessus.

- Puisque $j \circ p = p \circ i$ et que $p \circ i$ est continue, on en déduit que $j \circ p$ est continue. Par transfert de continuité au quotient, i est continue.
- Supposons que Y/A soit compact (par exemple en supposant Y compact) alors j est un homéomorphisme car c'est une bijection continue d'un compact dans un espace séparée.

Espaces quotients

Complexes simpliciaux

Espaces quotients

complexe

Exos

Un exemple non trivial.— Soit $X=\mathbb{M}^2\subset\mathbb{R}^3$ où \mathbb{M}^2 est le ruban de Möbius donné comme image de la paramétrisation

$$\begin{array}{ccc} g: & \mathbb{S}^1 \times [-1,1] & \longrightarrow & \mathbb{R}^3 \\ & (\theta,t) & \longmapsto & \left(\rho(\theta,t)\cos 2\theta, \rho(\theta,t)\sin 2\theta, \frac{t}{2}\sin\theta\right) \end{array}$$

où
$$\rho(\theta, t) = 1 + \frac{t}{2}\cos\theta$$
.

Espaces quotients

• On choisit $Y = D^2$, $A = \partial D^2 = \mathbb{S}^1$ et $f : A \to X$ donnée par

$$f(\theta) := g(\theta, 1).$$

L'application f est un homéomorphisme sur son image (en jaune dans l'illustration).

• Nous allons nous convaincre que $X \cup_f Y$ est homéomorphe à l'ESPACE PROJECTIF

$$\mathbb{R}P^2 = \mathbb{S}^2/\!\sim$$

c'est-à-dire l'espace quotient de la sphère par la relation d'équivalence dite d'ANTIPODIE

$$x_1 \sim x_2$$
 si $x_1 = \pm x_2$.

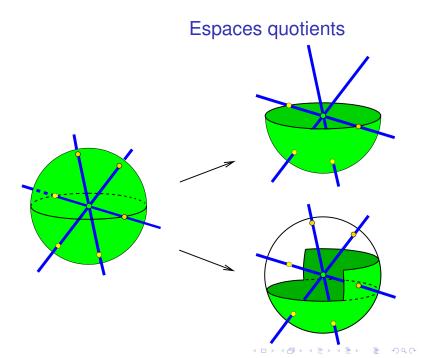
CM-TA1 : Plus d'espaces !

Complexes

Espaces quotients

CWcomplexe

Exas



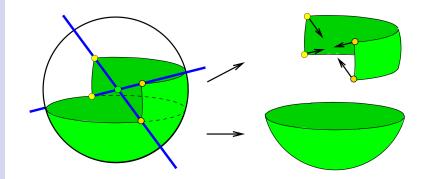
Espaces quotients

Complexes simpliciaux

Espaces quotients

CWcomplexe

Exos



CM-TA1 : Plus d'espaces !

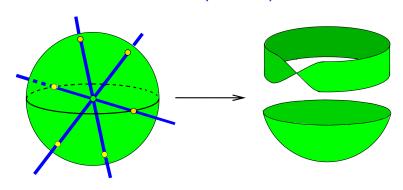
Complexes

Espaces quotients

CWcomplexe

Exos

Espaces quotients



L'espace projectif est homéomorphe au recollement d'un disque et d'un ruban de Möbius le long de leur bord. Formellement

$$\mathbb{R}P^2 \approx \mathbb{M}^2 \cup_f D^2$$

où f est l'application décrite plus haut.

L'exemple non trivial sous une autre forme.— Soient

$$X = \mathbb{S}^1 \subset \mathbb{C}, \ Y = D^2, \ A = \partial D^2 = \mathbb{S}^1 \text{ et}$$

$$f: \partial D^2 \longrightarrow \mathbb{S}^1$$
$$z \longmapsto z^2$$

- Les classes d'équivalence non triviales sont les pairs de points $\{e^{i\theta}, e^{i(\theta+\pi)}\}$ antipodaux de \mathbb{S}^1 .
- Ainsi, et d'après ce que nous venons de faire, le recollement $\mathbb{S}^1 \cup_f D^2$ est homéomorphe à $\mathbb{R}P^2$.

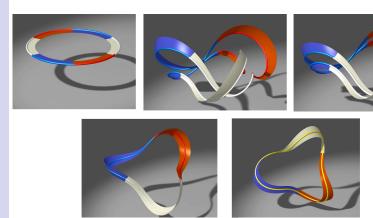
CM-TA1 : Plus d'espaces !

Espaces quotients

Complexes simpliciaux Espaces

quotients CW-

complexe



Images: Jos Leys

Déformation réalisant le recollement de $X = \mathbb{S}^1$ avec un voisinage Y de $A = \partial D^2$ le long de l'application $z \to z^2$. L'espace $\mathbb{S}^1 \cup_f Y$ est homéomorphe au ruban de Möbius \mathbb{M}^2 .

quotients
CWcomplexe

complexe

Définition.— La donnée d'un espace topologique X et d'un point base $x_0 \in X$ est appelé un ESPACE POINTÉ et noté (X, x_0) .

Définition.— Étant donnés deux espaces pointés (X, x_0) et (Y, y_0) , on appelle BOUQUET DE X ET DE Y et on note

$$X \vee Y$$

le recollement $X \cup_f Y$ où $A = \{y_0\}$ et $f(y_0) = x_0$.

 On dit également que X ∨ Y est la SOMME POINTÉE de X et de Y.

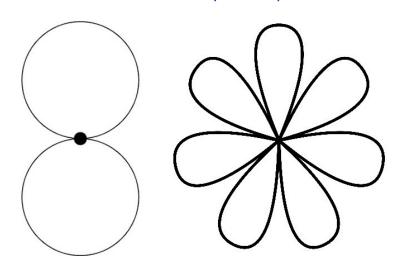
Espaces quotients

Complexes simpliciaux

Espaces quotients

CWcomplexe

Exos



Bouquets de deux cercles $\mathbb{S}^1 \vee \mathbb{S}^1$ et de 7 cercles $\mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^1$

complex

Exemple 1.– Soit K un complexe simplicial connexe et fini de dimension 1 et S l'ensemble de ses sommets (=face de dimension 0). L'espace |K|/S est homéomorphe à un bouquet de cercles dont le nombre de cercles est celui des arêtes (=face de dimension 1) de K.

Exemple 2.– Soit $A \subset \mathbb{S}^2$ un grand cercle, l'espace \mathbb{S}^2/A est un bouquet de deux sphères $\mathbb{S}^2 \vee \mathbb{S}^2$.

Exemple 3.– Soit $A \subset \mathbb{S}^2$ l'ensemble des arêtes de la triangulation par l'icosaèdre (cf. l'image plus haut dans ce cours). L'espace \mathbb{S}^2/A est un bouquet de vingt sphères.

CW-complexes

Définition.— Un CW-COMPLEXE X est un espace topologique défini par la donnée d'une suite croissante (finie ou non)

$$\emptyset \subset X^0 \subset X^1 \subset \cdots$$

d'espaces topologiques $(X^n)_{n\in I}$ avec $I=\{0,1,...,N\}$ ou $I=\mathbb{N}$, et telle que :

- $X = \bigcup_{n \in I} X^n$
- X⁰ est un espace discret non vide
- Xⁿ est homéomorphe à l'espace obtenu en effectuant le recollement de X^{n-1} avec une famille $(e_{\alpha}^{n})_{\alpha \in A_{n}}$ de *n*-boules fermées, par des applications continues

$$\varphi_{\alpha}: \partial e_{\alpha}^{n} \to X^{n-1}, \quad \alpha \in A_{n}.$$

• Une partie *F* est un fermé de *X* ssi son intersection avec X^n est fermée pour tout $n \in I$.

_ '

- Les espaces X^n sont appelés les n-SQUELETTES, les n-boules e^n_α sont appelées les n-CELLULES.
- Si *I* est finie, le dernier axiome est une conséquence directe du fait que les inclusions entre les squelettes sont des applications continues.
- La topologie de X est la plus faible pour laquelle les inclusions $X^n \subset X$ sont continues. C'est la topologie de la limite directe $\varinjlim X^n$, autrement dit la TOPOLOGIE FAIBLE.
- Cette topologie n'est par reliée à la TOPOLOGIE INITIALE des espaces vectoriels topologiques, dite elle aussi, TOPOLOGIE FAIBLE.

Exemple 1.– On considère le CW-complexe de dimension 1 donné par $X^0 = 1$ et

$$X^1 = X^0 \cup_{\varphi} e^1$$

où $e^1=B^1=[-1,1]$ et $\varphi:\partial e^1=\{-1,1\}\to X^0=1$ est l'application constante.

D'après ce que l'on a établi plus haut

$$X^1 \approx e^1/\partial e^1 \approx \mathbb{S}^1$$
.

Ceci montre que le cercle \mathbb{S}^1 admet une structure de CW-complexe ayant un point et une 1-cellule.

Exemple 2.– Plus généralement, la sphère \mathbb{S}^n admet une structure de CW-complexe ayant un point et une n-cellule.

CW-complexes

Exemple 3.– L'espace projectif $\mathbb{R}P^2$ admet une structure de CW-complexe ayant un point, une 1-cellule et une 2-cellule. Le 1-squelette est homéomorphe à S1 et le 2-squelette est obtenu en attachant la 2-cellule avec $\varphi: \partial e^2 \to X^1$ donnée par $z \mapsto z^2$.

Exemple 4.– Un complexe simplicial |K| a une structure naturelle de CW-complexe donnée par sa filtration $|K^n|$ par les *n*-simplexes.

• Le point clé est que tout *n*-simplexe σ_{α} est (homéomorphe à) une *n*-boule. L'application de recollement

$$\varphi_{\alpha}:\partial\sigma_{\alpha}\to |K^{n-1}|$$

est l'inclusion naturelle.

CW-complexes

Proposition.– Soit X un CW-complexe alors

- X est séparé.
- l'adhérence de toute cellule e_n ne rencontre qu'un nombre fini d'autres cellules.
- X est compact ssi il se compose d'un nombre fini de cellules.

Démonstration.— Voir le Hatcher, p. 521-523.

- On peut comprendre maintenant la dénomination de ces espaces. Les lettres "CW" sont les initiales de Closure-finiteness et de Weak topology.
- Les CW-complexes sont les « bons » espaces topologiques. Kirby et Siebenmann démontrent que toute variété topologique compacte de dimension $n \neq 4$ possède une structure de CW-complexe. 4□ > 4□ > 4□ > 4□ > 4□ > 900

simpliciaux

CW-

Exos

1) Montrer que l'espace quotient Y/A d'un cylindre $Y := \mathbb{S}^1 \times [-1, 1]$ par $A = \mathbb{S}^1 \times \{0\}$ est homéomorphe au cône de \mathbb{R}^3 défini par $C = \{x^2 + y^2 - z^2 = 0, z \in [-1, 1]\}$.

2) On définit le ruban de Möbius comme le quotient

$$\mathbb{M}^2 = [0, \pi] \times [-1, 1] / \sim$$

où les seules relations non triviales de \sim sont

- $(0, \rho) \sim (\pi, -\rho)$ pour tout $\rho \in [-1, 1]$.
- a) Montrer que M² est un espace séparé et compact.
- b) Montrer que l'application

$$f: \mathbb{M}^2 \longrightarrow D^2 \subset \mathbb{R}^2$$
$$(\theta, \rho) \longmapsto (\rho \cos \theta, \rho \sin \theta)$$

est continue.

c) Soit $A = [0, \pi] \times \{0\} / \sim$ l'âme de \mathbb{M}^2 . Montrer que \mathbb{M}^2 / A est homéomorphe au disque D^2 .

3) Soit K le 2-complexe simplicial de \mathbb{R}^3 dont les sommets sont

$$p_0 = (1, 1, 1), \quad p_1 = (1, -1, -1),$$

 $p_2 = (-1, 1, -1) \quad \text{et} \quad p_3 = (-1, -1, 1),$

les arêtes sont les six segments $[p_ip_j]$ et les faces les quatre triangles $[p_ip_jp_k]$.

- a) Faire un dessin de |K| et montrer que les sommets sont inscrits dans une sphère S.
- b) Pour tout p = (x, y, z), on pose

$$\begin{array}{l} \ell_0(\overrightarrow{Op}) = x + y + z, \quad \ell_1(\overrightarrow{Op}) = x - y - z, \\ \ell_2(\overrightarrow{Op}) = -x + y - z, \quad \ell_3(\overrightarrow{Op}) = -x - y + z. \end{array}$$

On note F_i la face ne contenant pas le point p_i . Montrer que

$$p \in F_i \iff \ell_i(\overrightarrow{Op}) = -1 \text{ et } \ell_j(\overrightarrow{Op}) \ge -1 \text{ si } j \ne i$$

Exos

c) Soit

$$\delta(\overrightarrow{\textit{Op}}) := \max_{i \in \{0, \dots, 3\}} (-\ell_i(\overrightarrow{\textit{Op}}))$$

- i) Montrer que $\delta(\overrightarrow{Op}) = 0$ ssi p = O.
- ii) Constater que $\ell_0 + \ell_1 + \ell_2 + \ell_3 = 0$ et en déduire que si $p \neq O$ alors $\delta(\overrightarrow{Op}) > 0$.
 - iii) Montrer que si $\lambda > 0$ alors $\delta(\lambda \overrightarrow{Op}) = \lambda \, \delta(\overrightarrow{Op})$. iv) Montrer enfin que $p \in |K| \iff \delta(\overrightarrow{Op}) = 1$.
- d) On considère

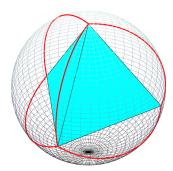
$$f: \quad \mathbb{S}^2(\sqrt{3}) \quad \longrightarrow \quad \mathbb{R}^3$$

$$\rho = (x, y, z) \quad \longmapsto \quad \frac{1}{\delta(\overrightarrow{Op})} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Montrer que l'image de f est incluse dans |K|.

complexe

Exos



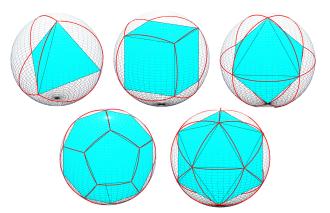
L'application f^{-1} .

- e) Écrire explicitement la fonction réciproque de f et en déduire que f^{-1} est une triangulation de $\mathbb{S}^2(\sqrt{3})$.
- f) À votre avis, est-il possible de construire une triangulation de la sphère ayant moins de quatre sommets ?

Lspaces

complexe

Exos



L'application f^{-1} pour les solides de Platon.

g) Imaginer d'autres triangulations de la sphère en s'inspirant de la démarche précédente et de l'illustration ci-dessus. CW-

Exns

4) Soit $h: X \to Y$ un homéomorphisme, e^n une n-boule et $\varphi: \partial e^n \to X$ une application de recollement. Montrer que

$$X \cup_{\varphi} e^n \simeq Y \cup_{h \circ \varphi} e^n$$
.

Complexes

Espaces quotients

complexe

Exos

Les espaces X^0 , X^1 et $X^2 = T$.

5) Soit 0 < b < a et $I = [0, 2\pi]$. On considère l'espace topologique $T = f(I \times I)$ où

$$f: \quad I \times I \longrightarrow \mathbb{R}^3$$

$$(\theta, \varphi) \longmapsto \begin{pmatrix} x(\theta, \varphi) = (a + b\cos\theta)\cos\varphi \\ y(\theta, \varphi) = (a + b\cos\theta)\sin\varphi \\ z(\theta, \varphi) = b\sin\theta \end{pmatrix}.$$

a) On note \sim la relation d'équivalence dont les seules relations non triviales sont

$$(0,\varphi)\sim (2\pi,\varphi)$$
 et $(\theta,0)\sim (\theta,2\pi)$

pour tout $\varphi, \theta \in [0, 2\pi]$. Montrer que $I \times I/\sim$ est homéomorphe à T.

b) On considère la suite croissante de sous-espaces suivants :

$$X^0 = f(0,0), \quad X^1 = f(I \times \{0\} \cup \{0\} \times I)), \quad X^2 = T.$$

Montrer que X^1 est homéomorphe au bouquet $\mathbb{S}^1 \vee \mathbb{S}^1$

c) On note $p: I^2 \to I^2/\sim$ la projection canonique et $\psi:=p_{|\partial I^2}:\partial I^2\longrightarrow p(I^2)$

Montrer que

$$p(\partial I^2) \cup_{\psi} I^2 \simeq p(I^2).$$

Exos

d) Montrer que

$$\emptyset \subset X^0 \subset X^1 \subset X^2 = T$$

définit une structure de CW-complexe sur T. On admettra que le carré $I \times I$ est homéomorphe à la 2-boule e^2 .