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Le groupe fondamental de S1

• On considère l’application

p : R −→ S1 ⊂ C
s 7−→ e2iπs.

qui est continue, 1-périodique et réalise un épimorphisme
de groupe entre (R,+) et (S1,×) dont le noyau est Z.

• Notons que si γ̃ : [0,1] → R est un chemin de R dont les
extrémités sont des points de Z ⊂ R alors γ := p ◦ γ̃ est un
lacet de S1 basé en z = 1.

• Pour tout n ∈ Z, on définit ω̃n ∈ L(R,0,n) et ωn ∈ Ω(S1,1)
par

ω̃n(s) := ns et ωn(s) := (p ◦ ω̃n)(s) = e2inπs.
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Le groupe fondamental de S1

Théorème 1.– L’application

Φ : Z −→ π1(S1,1)
n 7−→ [ωn]

est un isomorphisme de groupes.

Stratégie de la démonstration.– On procède en trois
étapes
• On montre d’abord que Φ est un morphisme de groupe
• On montre ensuite une propriété de relèvement
• Grâce à cette propriété, on montre que Φ est injectif et

surjectif.
Le point le plus délicat est la propriété de relèvement. Nous
allons le traiter à part, en préambule.
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Propriété de relèvement (1).– Soient γ ∈ L(S1, x0, x1) un
chemin de S1 et x̃0 ∈ p−1(x0), alors il existe un unique
relevé γ̃ de γ partant de x̃0 ∈ R, c’est-à-dire une application
γ̃ : [0,1] → R telle que γ̃(0) = x̃0. et p ◦ γ̃ = γ :

R

p
��

[0,1]
γ //

γ̃
==

S1
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Propriété de relèvement (2).– Si H : [0,1]2 → S1 est une
homotopie relative joignant deux chemins
γ1, γ2 ∈ L(S1, x0, x1) :

H(s,0) = γ1(s), H(s,1) = γ2(s)

H(0, t) = x0, H(1, t) = x1

et si γ̃1 est un relevé de γ1 alors il existe une unique
homotopie H̃ : [0,1]2 → R telle que p ◦ H̃ = H

R

p
��

[0,1]2 H //

H̃
<<

S1

et H̃(s,0) = γ̃1(s).
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Le groupe fondamental de S1

Démonstration de la propriété de relèvement. –
Remarquons que la restriction p à l’intervalle ]− 1

2 ,
1
2 [ est

inversible et son inverse est ψ := 1
2πArg où

Arg : S1 \ {−1} → ]− π, π[⊂ R

est l’argument principal défini par

Arg(z) := 2 arctan

(
y

x +
√

x2 + y2

)

pour tout z = x + iy ∈ C \ {y = 0 et x ≤ 0}.

• Pour z1, z2 ∈ S1, remarquons que Arg (z2/z1) est défini ssi
z2 ̸= −z1, ou encore, ssi |z2 − z1| < 2.
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Le groupe fondamental de S1

• Puisque [0,1] est compact, l’application γ : [0,1] → S1 est
uniformément continue. Il existe un entier N > 0 tel que

|s − t | ≤ 1
N

=⇒ |γ(s)− γ(t)| < 2

• Définissons γ̃ par

γ̃(s) :=
N−1∑
ℓ=0

ψ

(
γ

(
ℓ+ 1

N
s
)
/γ

(
ℓ

N
s
))

+ x̃0

Cette application est bien définie grâce au choix de N
effectué plus haut. Elle est continue car composée
d’applications continues (sur leurs ensembles de définition).
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Le groupe fondamental de S1

• Puisque p : (R,+) → (S1,×) est un morphisme de
groupes, on a

(p ◦ γ̃)(s) = p ◦
(∑N−1

ℓ=0 ψ
(
γ
(
ℓ+1
N s

)
/γ
(
ℓ
N s
))

+ x̃0

)
=

(∏N−1
ℓ=0 p ◦ ψ

(
γ
(
ℓ+1
N s

)
/γ
(
ℓ
N s
)))

p(x̃0).

• Puisque p ◦ ψ = idS1\{−1} on en déduit

(p ◦ γ̃)(s) =
(∏N−1

ℓ=0 γ
(
ℓ+1
N s

)
/γ
(
ℓ
N s
))

x0

= (γ(s)/γ(0)) x0.

• Puisque γ(0) = x0, il s’en suit que p ◦ γ̃ = γ.
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Le groupe fondamental de S1

• Montrons l’unicité du relèvement. Soit γ̃′ un second
relèvement de γ tel que γ̃′(0) = x̃0. Puisque p ◦ γ̃′ = p ◦ γ̃
cela signifie que la différence

γ̃′ − γ̃ : [0,1] −→ ker p = Z

est à valeurs dans le noyau de p, c’est-à-dire Z.

• Puisque γ̃′ − γ̃ est continue, elle est donc constante.

• Puisque γ̃′(0) = γ̃(0), cette constante vaut zéro, ce qui
signifie que γ̃′ = γ̃.

• La démonstration concernant l’existence et l’unicité du
relèvement de l’homotopie H procède du même principe en
remplaçant l’espace [0,1] par [0,1]× [0,1]. □
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Le groupe fondamental de S1

Démonstration du théorème 1.– Montrons d’abord que Φ
est un morphisme.

• Considérons tm la translation x 7→ x + m. On a

tm ◦ ω̃n ∈ L(R,m,m + n)

et
ω̃m ∗ (tm ◦ ω̃n) ∈ L(R,0,m + n).

• Puisque R est simplement connexe et que
ω̃m+n ∈ L(R,0,m + n), on a

ω̃m ∗ (tm ◦ ω̃n) ≃∂ ω̃m+n

et donc

Φ(m + n) = [p ◦ ω̃m+n] = [p ◦ (ω̃m ∗ (tm ◦ ω̃n))].
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Le groupe fondamental de S1

• Puisque f ◦ (γ1 ∗ γ2) = (f ◦ γ1) ∗ (f ◦ γ2) on déduit

p ◦ (ω̃m ∗ (tm ◦ ω̃n)) = (p ◦ ω̃m) ∗ p ◦ (tm ◦ ω̃n)

et comme p est 1-périodique

p ◦ (tm ◦ ω̃n) = p ◦ ω̃n.

• Ainsi
Φ(m + n) = [(p ◦ ω̃m) ∗ (p ◦ ω̃n)]

= [ωm ∗ ωn]

= [ωm] · [ωn]

= Φ(m) · Φ(n).

et l’on a montré que Φ est un morphisme de groupes.
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Le groupe fondamental de S1

• Montrons maintenant que Φ est surjectif. Soit
[γ] ∈ π1(S1,1). D’après la propriété de relèvement, il existe
un unique γ̃ : [0,1] → R tel que p ◦ γ̃ = γ et γ̃(0) = 1.

• Puisque p ◦ γ̃(1) = γ(1) = 1, il s’en suit que γ̃(1) ∈ Z.

• Donc il existe n ∈ Z tel que γ̃(1) = n et donc γ̃ ∈ L(R,0,n).

• Puisque R est simplement connexe, les chemins γ̃ et ω̃n
sont relativement homotopes dans L(R,0,n).

• Il en est donc de même des lacets p ◦ γ̃ = γ et p ◦ ω̃n = ωn
dans Ω(S1,1).

• Par conséquent, [γ] = [ωn] et donc Φ(n) = [γ].
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Le groupe fondamental de S1

• Il reste à montrer que Φ est injectif. Supposons que
Φ(m) = Φ(n). Cela signifie que ωm et ωn sont homotopes
dans (S1,1).

• Soit H une homotopie dans (S1,1) entre ωm et ωn. D’après
la propriété de relèvement, il existe une unique homotopie
H̃ telle que
• H̃(s,0) = ω̃m

• H̃(s,1) = ω̃n

• H̃(0, t) = 0
• p ◦ H̃ = H.
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• Considérons t 7→ H̃(1, t). Puisque pour tout t ∈ [0,1] on a

p ◦ H̃(1, t) = H(1, t) = 1,

l’application t 7→ H̃(1, t) est à valeur dans ker p = Z.

• Puisque cette application est continue, elle est constante.
Ainsi

m = H̃(1,0) = H̃(1,1) = n

ce qui montre que Φ est injective. □

Corollaire 1.– L’espace S1 n’est pas simplement connexe. Il
s’en suit que tout espace topologique X ayant le type
d’homotopie de S1 n’est pas simplement connexe.
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Démonstration du corollaire 1.– D’après la proposition 1,
le groupe fondamental π1(S1,1) contient une infinité
d’éléments et donc n’est pas réduit à l’élément [c1]. D’après
le théorème 2 de TA3, si X et S1 ont même type
d’homotopie alors les groupes fondamentaux sont
isomorphes et donc X n’est pas simplement connexe. □

Corollaire 2.– L’espace S1 n’est pas un rétract du disque
fermé D2.

Démonstration.– Supposons que S1 soit un rétract de D2.
Cela signifie qu’il existe une application r ∈ C0(D2, S1) telle
que r|S1 = idS1 .
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Le groupe fondamental de S1

• Soit i : S1 → D2 l’inclusion. On a r ◦ i = idS1 et donc
r∗ ◦ i∗ = idZ. Mais le diagramme

Z ∼= π1(S1,1) i∗−→ π1(D2,1) ∼= {0} r∗−→ π1(S1,1) ∼= Z

montre que r∗ ◦ i∗ = 0. Contradiction. □
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Le théorème du point fixe de
Brouwer

Théorème du point fixe de Brouwer dans le plan (1912).–
Toute application continue du disque fermé dans lui-même
a un point fixe.

Observation 1 : Ce théorème se généralise en dimension
quelconque pour les applications continues f : Bn → Bn.

Observation 2 : Le cas n = 1 affirme que toute fonction
continue f : [−1,1] → [−1,1] admet un point fixe et se
démontre en utilisant le théorème de la valeur intermédiaire
à la fonction g = f − id .
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Démonstration.– Par contradiction : on va montrer que s’il
existe une application f : D2 → D2 continue et sans point
fixe alors on peut construire à partir d’elle une rétraction
r : D2 → S1, ce qui est en contradiction avec le corollaire 2.
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CONSTRUCTION DE f : Soit f : D2 → D2 continue et
supposons que pour tout x ∈ D2, on ait f (x) ̸= x . Alors, on
peut définir une application r : D2 → S1 dont la valeur en un
point x est le point d’intersection r(x) du rayon [f (x), x) avec
S1.
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• Le point d’intersection r(x) étant sur la droite (f (x)x), il
existe λ(x) ∈ R tel que

r(x) = x + λ(x)
−−−→
xf (x)
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• Le point d’intersection

r(x) = x + λ(x)
−−−→
xf (x)

étant sur le rayon [f (x)x) mais pas sur l’intervalle ]x , f (x)], il
s’en suit que λ(x) ≤ 0. Notons que λ(x) = 0 ⇐⇒ r(x) = x .
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• On détermine λ(x) en résolvant l’équation ∥r(x)∥ = 1
c’est-à-dire l’équation

∥λ(x)f (x) + (1 − λ(x))x∥2 = 1.
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• Les racines de

P(λ(x)) = ∥λf (x) + (1 − λ(x))x∥2 − 1

sont

λ±(x) :=
⟨x , x − f (x)⟩ ±

√
∆(x)

∥f (x)− x∥2

où

∆(x) := ⟨x , x − f (x)⟩2 + (1 − ∥x∥2)∥x − f (x)∥2 ≥ 0.

• Notons que √
∆(x) ≥ |⟨x , x − f (x)⟩|.
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• Ainsi

λ+(x) ≥ ⟨x , x − f (x)⟩+ |⟨x , x − f (x)⟩|
∥f (x)− x∥2

≥ −|⟨x , x − f (x)⟩|+ |⟨x , x − f (x)⟩|
∥f (x)− x∥2

≥ 0.

• Similairement

λ−(x) ≤ ⟨x , x − f (x)⟩ − |⟨x , x − f (x)⟩|
∥f (x)− x∥2

≤ |⟨x , x − f (x)⟩| − |⟨x , x − f (x)⟩|
∥f (x)− x∥2

≤ 0.
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• Il en découle que

λ(x) = λ−(x) =
⟨x , x − f (x)⟩ −

√
∆(x)

∥f (x)− x∥2 .

PROPRIÉTÉS DE r : D’après son expression analytique,
l’application

x 7−→ r(x) := λ(x)f (x) + (1 − λ(x))x

est continue.

• Observons que

⟨x , x − f (x)⟩ = ∥x∥2 − ⟨x , f (x)⟩
≥ ∥x∥2 − |⟨x , f (x)⟩|
≥ ∥x∥ (∥x∥ − ∥f (x)∥)

où l’on a utilisé l’inégalité de Cauchy-Schwarz à la dernière
ligne.
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• Si x ∈ S1 alors ∥x∥ = 1 et d’après l’inégalité précédente

⟨x , x − f (x)⟩ ≥ 1 − ∥f (x)∥ ≥ 0

puisque ∥f (x)∥ ≤ 1.

• Il s’en suit que si x ∈ S1, on a

∆(x) = ⟨x , x − f (x)⟩2 + (1 − ∥x∥2)∥x − f (x)∥2

= ⟨x , x − f (x)⟩2

et donc
√
∆ = |⟨x , x − f (x)⟩| = ⟨x , x − f (x)⟩.
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• En remplaçant dans l’expression de λ(x) on obtient
λ(x) = 0 et finalement r(x) = x .

• Ainsi r|S1 est l’identité de S1. L’application r est donc une
rétraction de D2 sur S1. Ceci est contradictoire avec le
corollaire 2. □
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1) Montrer de deux façons différentes que π1(S1 × S1, (1,1))
est isomorphe à Z2.

2) Soient S3 := {q ∈ H | |q| = 1} le groupe des unités du
corps des quaternions

H := {q = a + bi + cj + dk | (a,b, c,d) ∈ R4}.

avec
i2 = j2 = k2 = ijk = −1.

a) Montrer que Re(q1q2) = Re(q2q1).

b) On munit H du produit scalaire ⟨q1,q2⟩ := Re(q1q2).
Montrer que ImH = Vect(i , j , k) ⊥ R = Vect(1).
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2c) En déduire que ImH est stable par conjugaison :

q ImHq−1 ⊂ ImH.

2d) À tout q ∈ S3 on associe

Φq : ImH −→ ImH
u 7−→ quq−1

Montrer que Φq ∈ SO(ImH).

2e) Montrer que tout élément q ∈ S3 s’écrit sous la forme
q = cos θ + sin θv avec v ∈ ImH, |v | = 1 et θ ∈ [0, π].

2f) Une étude spécifique montrerait que Φq est la rotation
rotv ,2θ d’axe Rv et d’angle 2θ. On considère

p : S3 −→ SO(3)
q 7−→ Φq

Montrer que p est un épimorphisme de groupes et que
ker p = {±1}.
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2g) On écrit tout élément de SO(3) sous la forme rotv ,θ avec
v ∈ ImH, |v | = 1 et θ ∈ [0, π]. Cette écriture est-elle
unique ?

2h) Soit R = {rotv ,π | v ∈ ImH, |v | = 1} et

ψ : SO(3) \ R −→ S3

rotv ,θ 7−→ q := cos θ
2 + sin θ

2v

Montrer que ψ est bien définie et que p ◦ ψ = idSO(3)\R.
L’extension naturelle de ψ à SO(3) est-elle bien définie ?
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2i) En s’inspirant de la démonstration du cours, montrer que
p satisfait à la propriété de relèvement : si
γ : [0,1] → SO(3) un chemin partant de γ(0) = Id , alors il
existe un unique relevé

S3

p
��

[0,1]
γ //

γ̃
::

SO(3)

tel que γ̃(0) = 1.
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3) Le but de cet exercice est de démontrer le théorème
fondamental de l’algèbre avec des méthodes
homotopiques. Soient n ≥ 1 et

p(z) := zn + a1zn−1 + ...+ an

un polynôme à cœfficients dans C. On suppose que p(z)
n’a pas de racine dans C.
a) Pour tout nombre r ≥ 0 et tout polynôme q sans racine
sur le cercle {|z| = r} , on définit un lacet γ(q, r) de S1 basé
en 1 par

s 7−→ γ(q, r)(s) :=
q(re2iπs)/q(r)
|q(re2iπs)/q(r)|

.

Montrer que [γ(p, r)] = [c1] ∈ π1(S1,1).
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b) Pour tout t ∈ [0,1] on considère le polynôme

pt(z) := zn + t(a1zn−1 + ...+ an).

Montrer que si r est suffisamment grand, les polynômes pt
n’ont aucune racine sur le cercle {|z| = r}.

c) Montrer que γ(p0, r) = ωn.

d) En déduire que si r est suffisamment grand alors
[γ(p, r)] = n ∈ Z. Conclure.
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4) Le but de cet exercice est de démontrer le théorème de
Borsuk-Ulam en dimension 2 : soit f : S2 → R2 continue,
alors il existe une paire de points antipodaux x et −x de S2

tels que f (x) = f (−x).

a) Montrer le théorème en dimension 1 : si f : S1 → R est
continue alors il existe une paire de points antipodaux x et
−x de S1 tels que f (x) = f (−x).
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On se place désormais en dimension 2 et on suppose
l’hypothèse (H) suivante :

il existe f : S2 → R2 continue telle que pour tout point
x ∈ S2, f (x) ̸= f (−x).

b) Soient g : S2 → S1 l’application définie par

g(x) :=
f (x)− f (−x)
|f (x)− f (−x)|

et η : [0,1] → S2 le lacet défini par

η(s) = (cos2πs, sin2πs,0).

On considère le lacet γ := g ◦ η. Montrer que pour tout
s ∈ [0, 1

2 ], on a

γ(s +
1
2
) = −γ(s)
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c) Soit x0 = (1,0,0) ∈ S2. Quitte a effectuer un changement
de base dans R2 ∼= C, on peut toujours supposer
g(x0) = (1,0). Soit γ̃ : I → R le relevé de γ tel que γ̃(0) = 0.
Montrer qu’il existe un entier impair n tel que

∀s ∈ [0,
1
2
], γ̃(s +

1
2
) = γ̃(s) +

n
2
.

d) Montrer en s’appuyant sur la question précédente que
[γ] ∈ π1(S1,1) n’est pas trivial.

e) En admettant que S2 est simplement connexe1, en
déduire contradiction avec l’hypothèse (H).

f) Soit A ⊂ R2 un sous-espace quelconque. Montrer S2 et A
ne sont pas homéomorphes.

1ceci sera démontré dans la leçon consacrée au théorème de Van
Kampen, TA5, corollaire 1.
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