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Le groupe fondamental de S’

¢ On considere I'application

p: R — Ss'ccC
S — eZiTrS'

qui est continue, 1-périodique et réalise un épimorphisme
de groupe entre (R, +) et (S, x) dont le noyau est Z.

e Notons que si 7 : [0,1] — R est un chemin de R dont les
extrémités sont des points de Z C R alors v := po 75 est un
lacet de S' basé en z = 1.

e Pour tout n € Z, on définit w,, € L(R, 0, n) et w, € (ST, 1)
par

@n(s) :=ns et wn(s):= (pown)(s) = e?ms.
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Le groupe fondamental de S'
Théoréme 1.— L'application

b: 7 — 7T1(S1,1)
n —— [Wn]

est un isomorphisme de groupes.

Stratégie de la démonstration.— On procéde en trois
étapes
e On montre d’abord que ® est un morphisme de groupe
¢ On montre ensuite une propriété de relévement
e Grace a cette propriété, on montre que ¢ est injectif et
surjectif.

Le point le plus délicat est la propriété de relevement. Nous
allons le traiter a part, en préambule.
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Propriété de relévement (1).— Soient v € L(S', xo, x1) un
chemin de S' et xy € p~'(xo), alors il existe un unique
relevé ¥ de ~ partant de x; € R, c’est-a-dire une application
5 :[0,1] — R telle que 5(0) = Xg. etpo~ = :
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Propriété de relévement (2).— Si H : [0,1]?> — S' est une
homotopie relative joignant deux chemins
7,72 € L(ST, X0, x1) -

H(S,O) =N (3)7 H(37 1) = 72(3)
H(O t) = Xo, H(1 t) = Xi

et si~yy est un releve de ~ alors il existe une unique
homotopie H : [0,1]2 — R telle que po H = H

2,
[0,12-2 ¢

et H(s,0) = F(s).
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des' Démonstration de la propriété de relevement. —
Remarquons que la restriction p a l'intervalle | — %, %[ est
inversible et son inverse est ¢ := iﬁArg ou

Arg:S'\ {-1} =] -7 7[Cc R

est 'argument principal défini par

Arg(z) := 2arctan (y)

X+ /X2 4 y2
pourtoutz=x+iy € C\ {y =0etx <0}.

e Pour 21,2, € S, remarquons que Arg (22/z;) est défini ssi
Z» # —2y, OU encore, Ssi |zo — z1| < 2.



CM-TA4 :
Louroboros
mathématique

Le groupe
fondamental
des’

Le groupe fondamental de S’

e Puisque [0, 1] est compact, I'application ~ : [0, 1] — S' est
uniformément continue. Il existe un entier N > 0 tel que

1

s—ti<y = h(s)-n)<2

e Définissons 7 par

=5 (o (59) 1 (49)

Cette application est bien définie grace au choix de N
effectué plus haut. Elle est continue car composée
d’applications continues (sur leurs ensembles de définition).
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e Puisque p : (R, +) — (S, x) est un morphisme de
groupes, on a
(poA)s) = po (22“;01 6 (v (519) /7 (%)) + %)
%S)D p(Xo)-

e Puisque p o ¢ = idsr\ _1; on en déduit

(poA)s) = (I (58) /7 (#9)) %o
= (1(8)/1(0) %

e Puisque 7(0) = xo, il S’en suitque po vy = ~.
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e Montrons l'unicité du relévement. Soit 7’ un second
relévement de v tel que 7/(0) = Xxp. Puisque po7’ = po 7y
cela signifie que la différence
¥ —75:[0,1] — kerp=7Z
est a valeurs dans le noyau de p, c’est-a-dire Z.

e Puisque 7/ — 7 est continue, elle est donc constante.

e Puisque 7/(0) = 7(0), cette constante vaut zéro, ce qui
signifie que 7' = 7.

e La démonstration concernant I'existence et I'unicité du
relevement de 'homotopie H procéde du méme principe en
remplagant I'espace [0, 1] par [0, 1] x [0, 1]. O



CM-TA4 :
Louroboros
mathématique

Le groupe
fondamental
des’

Le groupe fondamental de S’
Démonstration du théoreme 1.— Montrons d’abord que ¢
est un morphisme.

e Considérons ty, la translation x — x 4+ m. On a
tmown € L(R,m,m+ n)

et
Wm * (tm o wp) € L(R,0,m+ n).

e Puisque R est simplement connexe et que
Wm+n € L(R,0,m+ n),on a

Wm * (tm 0 Wn) ~p Wmtn
et donc

®(m+ n) = [powmn] = [P o (wWm * (tm © wn))]-
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e Puisque f o (1 xv2) = (foyy) * (f o o) on déduit
p o (Wm* (tmown)) = (Powm)*po (tmown)
et comme p est 1-périodique
po (tmown) =pown.

e Ainsi
S(m+n) = [(podm)*(pon)]
[wm * wn]
= [wm] - [wn]
= ®(m)- d(n).

et 'on a montré que ® est un morphisme de groupes.
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e Montrons maintenant que @ est surjectif. Soit

[v] € 71(S", 1). D’apreés la propriété de relévement, il existe
un unique 5 : [0,1] —» Rtelque po7y =~y et5(0) = 1.

e Puisque po (1) =~(1) = 1, il s’en suit que 7(1) € Z.

e Donc il existe n € Z tel que 7(1) = netdonc 7 € L(R, 0, n).

e Puisque R est simplement connexe, les chemins 7 et w,
sont relativement homotopes dans L(R, 0, n).

e |l en est donc de méme des lacets poy =~ et pow, = wp
dans Q(S',1).

e Par conséquent, [y] = [wn] et donc ®(n) = [v].
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o |l reste a montrer que ¢ est injectif. Supposons que
®(m) = &(n). Cela signifie que wn et w, sont homotopes
dans (S',1).

e Soit H une homotopie dans (S', 1) entre wy, et w,. D’aprés
la propriété de relévement, il existe une unique homotopie
H telle que
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e Considérons t — Fl(1 ,t). Puisque pour tout t € [0,1] on a

poHA,t)=HA1,t) =1,
I'application t — ﬁl(1 , 1) est a valeur dans ker p = Z.

e Puisque cette application est continue, elle est constante.
Ainsi B N
m=H({1,0)=H(1,1)=n

ce qui montre que ¢ est injective. O
Corollaire 1.— L'espace S' n’est pas simplement connexe. Il

s’en suit que tout espace topologique X ayant le type
d’homotopie de S' n’est pas simplement connexe.
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Démonstration du corollaire 1.— D’aprés la proposition 1,
le groupe fondamental 74 (S', 1) contient une infinité
d’éléments et donc n’est pas réduit a I'élément [c4]. D’aprés
le théoréme 2 de TA3, si X et S' ont méme type
d’homotopie alors les groupes fondamentaux sont
isomorphes et donc X n’est pas simplement connexe. O

Corollaire 2.— Lespace S' n’est pas un rétract du disque
fermé D?.

Démonstration.— Supposons que S' soit un rétract de D?.
Cela signifie qu'il existe une application r € C°(D?,S") telle
que g1 = ids.
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e Soit i : ST — D? l'inclusion. On a ro i = idy et donc
I o iy = idz. Mais le diagramme

> (ST, 1) <5 7wy (DP1) = {0} L5 (ST, 1) 2 Z

montre que r, o i, = 0. Contradiction.
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Théoréeme du point fixe de Brouwer dans le plan (1912).—
Toute application continue du disque fermé dans lui-méme
a un point fixe.

Observation 1 : Ce théoréme se généralise en dimension
quelconque pour les applications continues f : B" — B".

Observation 2 : Le cas n =1 affirme que toute fonction
continue f: [-1,1] — [—1,1] admet un point fixe et se
démontre en utilisant le théoréme de la valeur intermédiaire
alafonction g =f —id.
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Démonstration.— Par contradiction : on va montrer que s'il
existe une application f : D> — D? continue et sans point
fixe alors on peut construire a partir d’elle une rétraction

r: D? — S, ce qui est en contradiction avec le corollaire 2.
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CONSTRUCTION DE f : Soit f : D? — D? continue et
supposons que pour tout x € D?, on ait f(x) # x. Alors, on
peut définir une application r : D> — S' dont la valeur en un
point x est le point d’intersection r(x) du rayon [f(x), x) avec
s'.
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e Le point d’intersection r(x) étant sur la droite (f(x)x), il
existe A(x) € R tel que

r(x) = X+ AOX(x)
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e Le point d’intersection

F(x) = X+ ACOXF(X)

étant sur le rayon [f(x)x) mais pas sur l'intervalle ]x, f(x)], il
s’en suit que A\(x) < 0. Notons que A\(x) =0 <= r(x) = x.
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e On détermine A\(x) en résolvant I'équation ||r(x)|| = 1
c’est-a-dire I'équation

INCF() + (1 = ACx))x||7 = 1.
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e Les racines de
P(A(X)) = |Mf(x) + (1 — A(x))x]? — 1
sont

(x,x — f(x)) £ /A(x)

I(x) — x|2

As(X) ==
ou
A(x) := (%, x = £(x))% + (1 = [Ix[*)][x = f(x)|? > 0.
¢ Notons que

VAX) =[x, x = f(x))]-
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e Ainsi

A+(x)

e Similairement

A—(x)

ARV

INIA

Brouwer

(X X = F(x)) + [(x, x = f(x))|

1(x) — x|
— 106 x = FOO)| + [, x — (X))

17(x) = x|I7

(X, x = F(x)) — [(x, x = (X))

1(x) = x|2
[ x = FO)] =[x x = (X))
1(x) = |2
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e |l en découle que

_ (o x—1f(x) — VA(X)

1(x) — x||2
PROPRIETES DE r : D’aprés son expression analytique,
I'application

X — r(x) == XX)f(x) + (1 — A\(x))x
est continue.

e Observons que
<X> X — f(X)>

X1 — (x, £(x))
1X[1Z = 1(x, £(x))]
[ Clix I =TI

ou I'on a utilisé I'inégalité de Cauchy-Schwarz a la derniére
ligne.

VARV
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e Si x € S" alors || x|| = 1 et d'aprés I'inégalité précédente
(X, x = f(x)) 21— [[f(x)[| = 0

puisque ||f(x)| < 1.

ells’ensuitquesix €S, ona

AK) = (xx— )2+ (1 [xIP)lx — fx)IP
— (XX — f(x))?

et donc

VA = |(x,x — f(x))| = (x,x — f(x)).
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e En remplacant dans I'expression de A(x) on obtient
A(x) = 0 et finalement r(x) = x.

e Ainsi rjg: est lidentité de S'. Lapplication r est donc une
rétraction de D? sur S'. Ceci est contradictoire avec le
corollaire 2.

O
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1) Montrer de deux fagons différentes que 7 (S' x S', (1,1))
est isomorphe & Z2.

= 2) Soient S® := {q € H||q| = 1} le groupe des unités du
corps des quaternions

H:={q=a+bi+cj+dk|(ab,c,d) cR*}.

avec
2= =k =ijk=-1.

a) Montrer que Re(q1q2) = Re(qzq1).

b) On munit H du produit scalaire (g, g2) := Re(q1q5).
Montrer que ImH = Vect(i,j, k) L R = Vect(1).
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2c) En déduire que ImH est stable par conjugaison :

qImHqg™' c ImH.
2d) A tout g € S® on associe
Sq: IMH — ImH
u — quq’
Montrer que ¢4 € SO(/ImH).

2e) Montrer que tout élément g € S® s’écrit sous la forme
g =cosf +sinfvavecv e ImH, |v|=1eth € [0,n].

2f) Une étude spécifique montrerait que ¢, est la rotation
rot, o9 d’axe Rv et d’angle 2¢. On considére
p: S8 — SO(3)
qg — g
Montrer que p est un épimorphisme de groupes et que
ker p={£1}.
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29g) On écrit tout élément de SO(3) sous la forme rot, y avec
Eroe velmH, |v|=1etd c [0,n]. Cette écriture est-elle
unique ?

2h) Soit R = {roty » | v € ImH, |v| =1} et

Y: SO(B)\R — S°
roty g — q:= cosg%—singv

Montrer que ¢ est bien définie et que p o ¢ = idso)\r-
Lextension naturelle de ¢ a SO(3) est-elle bien définie ?
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2i) En s’inspirant de la démonstration du cours, montrer que
p satisfait a la propriété de relevement : si

v :[0,1] — SO(3) un chemin partant de v(0) = /d, alors il
existe un unique relevé

Exos

e
S
[0,1] — SO(3)

tel que 7(0) = 1.
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3) Le but de cet exercice est de démontrer le théoreme
fondamental de 'algébre avec des méthodes
homotopiques. Soient n > 1 et

p(z) =z2"+az2" "+ ... +a,

un polynéme a ccefficients dans C. On suppose que p(z2)
n’a pas de racine dans C.

a) Pour tout nombre r > 0 et tout polynbme g sans racine
sur le cercle {|z| = r} , on définit un lacet v(qg, r) de S' basé
en 1 par

_ q(rem)/q(r)
q(re27#)/q(r)]

Montrer que [y(p, r)] = [¢1] € m1(S',1).

s — (g, r)(s) :
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b) Pour tout t € [0, 1] on considére le polyndme

Exos

pi(z) = 2"+ (a1 2" + ... + ap).

Montrer que si r est suffisamment grand, les polynémes p;
n’ont aucune racine sur le cercle {|z| = r}.

c¢) Montrer que ~v(pg, r) = wn.

d) En déduire que si r est suffisamment grand alors
[v(p, r)] = n € Z. Conclure.
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4) Le but de cet exercice est de démontrer le théoréme de
Borsuk-Ulam en dimension 2 : soit f : S — R? continue,
alors il existe une paire de points antipodaux x et —x de S?
tels que f(x) = f(—x).

a) Montrer le théoréme en dimension 1 : si f: S' — R est
continue alors il existe une paire de points antipodaux x et
—x de S tels que f(x) = f(—x).
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On se place désormais en dimension 2 et on suppose

I'hypothése (H) suivante :
il existe f : S2 — RR? continue telle que pour tout point
s x € $?, f(x) # f(—x).
b) Soient g : S? — S' I'application définie par
f(x) — f(—x
) 16— 1)
etn :[0,1] — S? le lacet défini par
n(s) = (cos27s, sin 278, 0).

On considere le lacet v := g o . Montrer que pour tout
se[0,f],ona

1S+ 5)=—(9)
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c) Soit xo = (1,0,0) € S?. Quitte a effectuer un changement
de base dans R? = C, on peut toujours supposer

9(x0) = (1,0). Soit 7 : I — R le relevé de ~ tel que 7(0) = 0.
Montrer qu’il existe un entier impair n tel que

1 ~ 1 ~ n
Vs € [0, E]’ (s + E)—V(S)‘FE-
d) Montrer en s’appuyant sur la question précédente que

[7] € m1(S', 1) nest pas trivial.

e) En admettant que S? est simplement connexe', en
déduire contradiction avec I'hypothése (H).

f) Soit A C R? un sous-espace quelconque. Montrer S? et A
ne sont pas homéomorphes.

'ceci sera démontré dans la legon consacrée au théoréme de Van
Kampen, TA5, corollaire 1.
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