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A HOMOGENIZED MODEL OF AN UNDERGROUND WASTE
REPOSITORY INCLUDING A DISTURBED ZONE∗

ALAIN BOURGEAT† AND EDUARD MARUŠIĆ-PALOKA‡

Abstract. The mathematical model describing the leaking of an underground waste repository
should include the multiscale geometry and the large variation of the geological coefficients. Numer-
ical simulations for performance assessments using such a local and detailed model are unrealistic,
and there is a need to replace this local model (mesoscopic model) by a global one (macroscopic
model). After introducing a small parameter ε, linking the relative size of the waste packages to
the repository module size and to geological parameters, a first-order accurate macroscopic model
of a repository module is obtained by studying the asymptotic behavior of the mesoscopic model
when ε tends to 0. The mathematical homogenization method that we use herein leads to an ac-
curate macroscopic model which could be used as a global repository model for far field numerical
simulations in performance assessment.
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1. Introduction. In our previous papers [4] and [5] we gave a mathematical
model describing the global behavior of an entire underground waste repository, as-
suming it was made of a high number of repository modules. In the present paper
we give a mathematical model describing the global behavior of only one repository
module in the underground waste repository. For this, we assume that a repository
module is made of a high number of disposal holes, filled with waste packages, and
located inside a low permeable rock, lying on a hypersurface Σ and linked by parallel
loading and handling drifts (see Figure 1.1). Moreover, in a repository module, all
these parallel loading and handling drifts were backfilled and are connected, at their
head, to a main connecting gallery, which was also backfilled. The entire repository is
embedded in a low permeability layer, called host layer, like, for example, clay. As in
the previous paper (see the introduction in [5]), we study the worst possible scenario
where all the waste packages start leaking at the same time. We mathematically rep-
resent the leaking of a waste package by a time-dependent flux given on the boundary
of the disposal holes. This leaking lasts over a period of time ]0, tm[ , which is small
compared to the millions of years over which the radioelements are transported. The
case where the components, and the starting of the leaking, of each waste package are
assumed to be random will be presented in a forthcoming paper.

The pressure drop, or hydraulic head, in the region produces a water flow cross-
ing the repository array. The solute is then transported both by the convection
produced by the water flowing slowly (creeping flow) through the rocks and by the
diffusion/dispersion coming from the dilution in the water. Following the test case [10]
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†MCS-ISTIL, Université Lyon1, Bât. ISTIL, 43 Bd. du 11 novembre, 69622 Villeurbanne Cedex,

France (bourgeat@mcs.univ-lyon1.fr).
‡Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia (emarusic
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Fig. 1.1. A part of a waste repository module, with five rows of handling drifts and disposal holes.

the general solute transport model will include possible chemical effects and radioac-
tive decay, and the fluid viscosity will not depend on the concentration. Hence the
hydrology will be decoupled from the transport, and we will assume, without loss of
generality, the convection velocity field to be given.

We are making no attempt here to exactly represent a real repository, and we have
designed a simplified mesoscopic model, but with interesting mathematical difficulties,
for obtaining a global model by homogenization. In our model, following the Couplex
benchmark [10] we assume that the typical dimensions of a drift are 10 meters for the
diameter, 500 meters for the length, and 50 meters for the distance between the drift
axes. The order of a typical waste package diameter is assumed to be a few meters,
and for the distance between two waste packages it is assumed to be 10 meters. Since
there is a large number of waste packages, each of them with a small size compared to
the host geological layer size and to the drift diameter (see Figures 1.1 and 2.1), a di-
rect numerical simulation of a single repository module, based on a mesoscopic model
taking into account all the details, is unrealistic. The ratio between the width of a
module (500 meters) and the distance between the drift axes (50 meters) is considered
as a small parameter, ε, in the detailed mesoscopic model. According to this rescaling,
the waste package now has a diameter, of order εγ , with γ ≥ 1, and finally there are
now in the renormalized model three scales: 1 for the scale of a repository module,
ε for both the scale of a row of waste packages and the periodicity of drifts, and εγ for
the waste package thickness.1 Contrary to the test case [10], in the present model we
take into account the existence of a possible disturbed zone, the excavation disturbed
zone (or EDZ in short) created by the excavation of the handling drifts, connecting
galleries, and shafts. Since the excavation backfill has similar geological properties to
the EDZ, which is located around the excavations, we will for mathematical simplicity
not distinguish the cylindrical backfilled drift itself from the surrounding disturbed
zone (annulus), and we will call, in short, the disturbed drift the cylinder including
the EDZ. The three different scenarii (considered in the European exercise BENIPA)
corresponding to the connected shafts galleries and drifts being either perfectly sealed,
poorly sealed, or not sealed will be mathematically represented by different concen-
tration rates on the drifts heads. We will also assume the existence of a barrier or a
perfect seal situated on the bottom of each loading and handling drift and between
the waste packages and the EDZ or the undisturbed host rock. The purpose of these
last two types of modeling assumptions is to simplify the mathematical discussion by

1According to the Couplex test case [10] the actual γ is close to three. We have chosen to treat
the more general situation here.
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producing simpler interface and boundary conditions for the drifts or the disturbed
zone; other types of interface and boundary conditions would only add more compli-
cations in the mathematical discussion without significant change in the homogenized
global model.

In section 2, starting from the geometrical situation and the above described
rescaling, we define in subsection 2.1 the detailed geometry of a repository module.
In subsection 2.2, we give the equations describing the solute transport in such detailed
geometry.

In section 3, we present the results according to the ε−β range, the mathematical
parameter used for describing the water inflow and the concentration on the head
drift. We remark that there are three typical different behaviors for β equal to,
strictly greater than, or lower than one.

In section 4, we derive the a priori estimates for all the situations. In order to
obtain convergence all over the domain, we introduce the extension operator adapted
to the three scales O(1), ε, and εγ , as defined in [5].

In sections 5, 6, and 7, starting from the previous a priori estimates and taking the
weak limits in the original detailed model, we give in Theorems 5.1, 6.1, 7.3, and 7.4
the global models corresponding to the three situations: β equal to, strictly greater
than, or lower than one.

The a priori estimates are obtained thanks to a sharp estimate of the integral
over all the waste package boundaries Γε, which is presented in Appendix B.

The global models obtained at the limit are defined on the hypersurface Σ, and
the general two-scale convergence has to be adapted to this situation. Following the
“two-scale convergence with respect to a singular measure” for parabolic problems,
as developed in [3], we precisely present the compactness properties we use herein in
Appendix A.

2. Setting the problem.

2.1. Detailed description of the geometry. The repository module is located
inside a domain Ω = ]0, L[

2 × ]−L/2, L/2[ ⊂ R3, the hypersurface on which the

waste packages lie is denoted Σ = ]0, L[
2 × {0}, and for simplicity we assume that

L/ε = m ∈ N.

In the following we will use the notation

x = (x1, x2, x3), x′ = (x1, x2), yi = xi/ε, i = 2, 3.

The cell Y on Figure 2.1 consists of three parts: the disturbed-drift cylinder S =
C × ]−1/2, 1/2[ with cross-section C, the waste packages Pε, and Y the rest of the cell
called “host rock.” The rescaled waste packages Pε are of cylindric shape with length
of order 1 and thickness of order εγ−1, with γ ≥ 1. By the change of variable x = εy we
shrink the unit cell Y to the actual size ε, and we denote by Yε(i, j) = ε ( (i, j, 0)+Y )
the (i, j)th ε-cell. Inside this ε-cell we have Pε(i, j) = ε ( (i, j, 0) + Pε), the waste
package (each waste package having length O(ε) and cross-section diameter O(εγ)),
and Sε(i, j) = ε ( (i, j, 0) + S), the disturbed-drift part. Repeating Yε periodically
m2 times over the surface Σ, we obtain the whole repository module, and we denote
the different parts of this repository module:

Pε =

m⋃
i,j=1

Pε(i, j) the union of all waste packages,(2.1)



UNDERGROUND WASTE REPOSITORY 921

Fig. 2.1. Cell of periodicity Y containing a disturbed-drift cylinder S = C × ]−1/2, 1/2[ and a
waste package Pε (gray part).

Γε = ∂Pε =

m⋃
i,j=1

Pε(i, j) the boundary of waste packages,(2.2)

Sε =

m⋃
i,j=1

Sε(i, j) the union of all disturbed-drift cylinders,(2.3)

Cε =

m⋃
i,j=1

ε ( (i, j) + C) the union of all disturbed-drift cylinder sections.(2.4)

Assuming that the disturbed zone is not intersecting any of the waste packages we
assume that Pε ∩Sε = ∅. Finally, we denote by Ωε = Ω\Pε the part of the domain Ω,
left after removing all the deposition holes Pε. In what follows, all functions defined
on C are assumed to be extended by 1-periodicity in the y2 direction to a periodic set
∪m
i=0( (i, 0) + C ).

2.2. Mesoscopic model and equations describing the solute transport.
Let T > 0, and let us denote

ΩT
ε = Ωε × ]0, T [ , ΓT

ε = Γε × ]0, T [ .(2.5)

The time behavior of the flux produced from a waste package is given by the function
Φ ∈ L∞([0, T ]) which has, as mentioned before, a compact support [0, tm] ⊂ [0, T [.
The radioactive decay constant is λ = log 2

τ > 0, where τ is the half-life of the radio-
element, and the initial concentration of the radio material in the soil is f0 ∈ L∞(Ω).

In the very worst possible scenario, a higher permeability in the disturbed zone
with a possible water inflow if the disturbed zone is connected to the handling galleries
and shafts will lead to a Darcy velocity vε = (vε1, v

ε
2, v

ε
3) much larger in the disturbed

zone than in the nondisturbed host rock. In order to describe the range of situations,
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from the best to the worst, we introduce a parameter β ≥ 0 and write the velocity in
the disturbed and nondisturbed zone:

vε(x) =

{
vh(x) in the nondisturbed host rock Ωε\Sε,
ε−β vd(x′, x2/ε, x3/ε) in the disturbed-drift zone Sε.

In this way, we relate the intensity of the water inflow to the drift diameter, in order
to see this water inflow in the macroscopic model.

Here we suppose, for simplicity, that the Darcy velocity in the drifts is unidi-
rectional, i.e., that vd = vd1 e1. This is a natural assumption for our model since
only the fast convection in the direction of the shaft should count in a macroscopic
model. General situations can be treated using our methods but with certain techni-
cal difficulties (see Remark 1 in section 6); if vd was not unidirectional the notations
would be more complicated, but the ideas would be the same. Moreover, due to
the incompressibility of the underground water flow, we also assume that the veloc-
ity vε is divergence free; and consequently vd1 will not depend on x1. We assume that
vh ∈ C0,1(Ω), vd1 ∈ C0,1([0, L] × C) and that vd1 �= 0.

As in [10], the effective diffusion/dispersion tensor is given by

Aε = d(x) I + |vε| {αε
L E(vε) + αε

T (I − E(vε) )},

with αε
L the longitudinal and αε

T the transversal dispersion coefficients, and

[E(vε)]ij =
vεi v

ε
j

|vε|2 .

For k = L, T

αε
k =

{
αh
k in the nondisturbed host rock Ωε\Sε,

αd
k in the disturbed-drift zone Sε,

while the molecular diffusion

d(x) ≥ d0 > 0, d ∈ L∞(Ω).(2.6)

Thus, we will assume herein that the effective diffusion/dispersion tensor has the form

Aε(x) =

{
Ah(x) in the nondisturbed host rock Ωε\Sε,
d(x/ε) I + ε−β Ad(x2, x2/ε, x3/ε) in the disturbed-drift zone Sε,

where, assuming that the convection in the drifts goes only in the direction of the drift
and that the transversal component of the dispersion, αε

T , is negligible, the matrix Ad

now has the form

Ad(x2, y2, y3) = |vd1 | (x2, y2, y3) ( e1 ⊗ e1 ).

Although the porosity ωε is also higher in the disturbed zone than in the nondisturbed
host rock, the difference is not as large as for the permeability, and we will assume
that in both zones the porosities are of the same order, i.e.,

ωε =

{
ωh in the nondisturbed host rock Ωε\Sε,
ωd in the disturbed-drift zone Sε,

where ωh, ωd are strictly positive, continuous, and uniformly bounded functions.
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The leaking of the waste packages is described by giving a boundary flux on
Γε = ∂Pε = ∪m

i,j=1∂Pε(i, j), the union of all interfaces between the waste packages
and the domain Ωε. In order to keep a nontrivial limit, we will assume that the flux Φε

on Γε depends on ε in such a way that there exists a continuous Φ(t):

lim
ε→0

εγ−1 Φε = Φ uniformly in t.(2.7)

In the following, for brevity, for any set X, we will use the superscript T to denote
XT = X × ]0, T [ .

According to all the previous assumptions and notations, the transport of the
solute concentration ϕ in a repository module is now described by

ωε ∂ϕε

∂t
− div (Aε∇ϕε) + (vε · ∇ )ϕε + λωε ϕε = 0 in ΩT

ε ,(2.8)

ϕε(0, x) = f0(x), x ∈ Ωε,(2.9)

n · (Aε∇ϕε − vε ϕε) = Φε(t) on ΓT
ε .(2.10)

We also need to impose some boundary condition on the exterior boundary of the
domain ∂Ω. For this, we split the exterior boundary of the repository module ∂Ω in
three parts:

Fε = Sε ∩ {x1 = L} the head of the disturbed-drift cylinders,

intersecting with the connecting gallery,

Bε = Sε ∩ {x1 = 0} the back of the disturbed-drift cylinders, sealed frontier,

Rε = ∂Ω\(Fε ∪ Bε) the rest of the exterior boundary of Ω.

On the back sides of the drifts, Bε, we have seals, and thus we assume that the con-
centration is equal to zero. But on Rε ∪ Fε including the drifts heads, we assume
that the concentration obeys the Fourier law, i.e., that the rate of flow is proportional
to the difference between concentrations inside and outside the repository module.
Denoting by gε ∈ L2(0, T ;L2(∂Ω)) the trace of the exterior concentration and by
κ(x) ∈ L∞(∂Ω), 0 < κ0 ≤ κ(x) ≤ κ1 the function describing the rate of proportion-
ality, we write the boundary conditions:

n · (Aε∇ϕε − vε ϕε) = κ (ϕε − gε) on RT
ε ∪ FT

ε ,(2.11)

ϕε = 0 on BT
ε ;(2.12)

we will make precise later the value of gε on Fε, the drift head/connecting gallery
intersection, according to the intensity of the water flow in the repository.

3. The three global models. The three different scenarii (considered in the
European exercise BENIPA) corresponding to the connected shafts galleries and drifts
being either perfectly sealed, poorly sealed, or not sealed at all are now mathematically
represented by means of different values of ε−β , the mathematical parameter used for
describing the water inflow regime, and the concentration rates on the head drifts.
We remark that there are three typical different behaviors for β equal to, strictly
greater than, or lower than one. The solutions ϕε of (2.8)–(2.10) are defined on a
family of domains ΩT

ε depending on the parameter ε, and in order to use the weak
convergence methods we should extend these solutions to the whole domain ΩT . After
this extension the a priori estimates are no longer in H1(Ω) but only in W 1,γ∗

(Ω),
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where γ∗ = 1
1− 1

2γ

. The detailed proofs for these extension properties follow the ideas

from [6] and were given in a previous paper [5]. In what follows we will denote ϕε the
solution of (2.8)–(2.10) and its extension by the same symbol.

In what follows we use the notation
2−dµ−→ for the two-scale convergence with

respect to the singular measure, defined in Appendix A.

Depending on the power in ε−β we distinguish three different cases:

β < 1 This is the simplest case when the EDZ (disturbed drifts) do not make any
contribution; i.e., the repository behaves as if this zone was not there. Then
ϕε → ϕ weakly in L2(0, T ;W 1,γ∗

(Ω)), where ϕ is the unique solution of the
problem (5.2)–(5.4).

β = 1 This is the most interesting case when the intensity of the processes inside and
outside the EDZ (disturbed drifts) are of the same order and there is strong
interaction between them. In this case ϕε → ϕ weakly in L2(0, T ;W 1,γ∗

(Ω))

and ϕε
2−dµ−→ ϕ(x1, x2, 0), where ϕ is the unique solution of the coupled problem

(6.4).
β > 1 In this case the process in the drifts is dominant, and we do not see the rest

of the domain in the limit. Indeed ε(1−β)/2 ϕε
2−dµ−→ ϕ0, where ϕ0 is the unique

solution of a one-dimensional problem posed on ]0, L[ . The cases 1 < β < 2,
β = 2, and β > 2 do not have the same dependency of the two-scale limit ϕ0

on the fast variable y. Nevertheless, the mean value of the limit remains the
same.

4. A priori estimates. As always, the asymptotic analysis starts with sharp a
priori estimates based on the variational formulation

−
∫

ΩT
ε

ωε ϕε
∂zε
∂t

+

∫ T

0

∫
Ωε\Sε

Ah ∇ϕε ∇zε

+ ε−β

∫ T

0

∫
Sε

(Ad + εβd I)∇ϕε ∇zε + ε−β

∫ T

0

∫
Cε

vd · ∇ϕε zε

+ λ

∫
ΩT

ε

ωεϕε zε +

∫ T

0

∫
Ωε\Sε

vh · ∇ϕε zε(4.1)

=

∫
Ωε

ωhf0 zε(0, x) +

∫
FT

ε ∪RT
ε

κ (gε − ϕε) zε +

∫ T

0

Φε

∫
Γε

zε.

Proposition 4.1. Let {ϕε} be the sequence of solutions to the problem (2.8)–
(2.12). Then there exists a constant C > 0, independent from ε, such that

|∇ϕε|L2(0,T ;L2(Ωε)) ≤ C,(4.2)

|ϕε|L∞(0,T ;L2(Ωε)) ≤ C,(4.3)

|ϕε|L2(0,T ;L2(Sε)) ≤ C ε
β
2 ,(4.4) ∣∣∣∣∂ϕε

∂x1

∣∣∣∣
L2(0,T ;L2(Sε))

≤ C ε
β
2 .(4.5)

Proof. The main difficulty is to estimate the surface integral over the waste
package boundaries Γε. To do so we use the study of such a surface integral given in
Appendix B. In particular we use the strong convergence (B.1) and the trace estimate
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on Σ, leading to∣∣∣∣ε1−γ

∫
Γε

z

∣∣∣∣ ≤
∣∣∣∣ε1−γ

∫
Γε

z −M
∫

Σ

z(x′, 0)dx′
∣∣∣∣ +

∣∣∣∣M
∫

Σ

z(x′, 0)dx′
∣∣∣∣

≤ C|z|H1(Ω), z ∈ H1(Ω).(4.6)

We use ϕε as the test function in (2.8)–(2.12) and apply (4.6). We obtain

1

2

∣∣∣√ωε ϕε( · , T )
∣∣∣2
L2(Ωε)

+ (Aε∇ϕε|∇ϕε)L2(ΩT
ε ) + λ |

√
ωε ϕε|2L2(ΩT

ε ) + |
√
κϕε|2L2(∂ΩT )

=

∫ T

0

Φε

∫
Γε

ϕε +

∫
∂ΩT

κϕε gε +
1

2

∣∣∣ √ωε f0

∣∣∣2
L2(Ωε)

.

The first integral on the right-hand side is estimated using (4.6). Thus it remains
only to estimate the integral over ∂Ω. Depending on β, we have three different cases:∣∣∣∣

∫
∂ΩT

κϕε gε

∣∣∣∣ ≤ C|ϕε|L2(0,T ;H1(Ωε)) in case β < 1,

∣∣∣∣
∫
∂ΩT

κϕε gε

∣∣∣∣ =

∣∣∣∣∣ε−p

∫
FT

ε

κ gd ϕε +

∫
RT

ε

κ gh ϕε

∣∣∣∣∣
≤ C +

1

2
ε1−2p |vd1 |

∣∣∣∣∂ϕε

∂x1

∣∣∣∣
2

L2(ST
ε )

+ C |ϕε|L2(0,T ;H1(Ωε)) in case β ≥ 1,

with

p =

{
β, β = 1,
β+1

2 , β > 1.

To prove (4.4) we need the Poincaré inequality

|ϕ|L2(Sε) ≤ 2L

∣∣∣∣ ∂ϕ∂x1

∣∣∣∣
L2(Sε)

,(4.7)

which can be proved by direct integration, using the Dirichlet condition on the
bottom.

5. The simplest case, 0 ≤ β < 1, where the EDZ effects do not appear
at the global scale. This case is an attempt to mathematically describe a situation
corresponding to a scenario where the connected shaft galleries and drifts are perfectly
sealed. The concentration rate on the drifts heads (inside the connecting gallery) is
of same order as everywhere else on the domain Ωε boundaries, and consequently we
assume that gε = g does not depend on ε. In this case the process in the disturbed-
drift zone is not important enough to appear in the corresponding global model.
According to the volume of the waste packages, εγ−1, we assume that the flux Φε on
the boundaries of the waste packages is big enough, i.e., that (2.7) holds.

Theorem 5.1. Let β < 1, and let {ϕε} be the sequence of solutions to the
problem (2.8)–(2.12). Then

ϕε ⇀ ϕ weak* in L∞(0, T ;L2(Ω) ) and weakly in L2(0, T ;W 1,γ∗
(Ω)),(5.1)
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where ϕ is the unique solution of the problem

ωh ∂ϕ

∂t
− div(Ah∇ϕ) + (vh · ∇ )ϕ + λωh ϕ = 0 in Ω̃T = (Ω\Σ) × ]0, T [ ,(5.2)

ϕ(x, 0) = f0(x), x ∈ Ω̃ = Ω\Σ, n · (Ah∇ϕ− vh ϕ) = κ (ϕ− g) on (∂Ω)T ,(5.3)

[ϕ] = 0,
[
e3 · Ah∇ϕ− (vh · e3)ϕ

]
= −ΦM on Σ,(5.4)

where [w](x′) = w(x′, 0+) − w(x′, 0−), x′ = (x1, x2), denotes the jump over Σ and
where M denotes the limit of the rescaled area of a waste package, i.e.,

M = lim
ε→0

ε1−γ |∂Pε |.(5.5)

Proof. The proof is essentially the same as the proof of Theorem 1 in [5], and it
relies on (B.1) with additional properties of the a priori estimates (4.2)–(4.5). The
only difference comparing to [5] is that in the variational form of (2.8)–(2.12) written
in (4.1) we now have two additional integrals

Jε
1 = ε−β

∫ T

0

∫
Cε

Ad ∇ϕε ∇ψ,

Jε
2 = ε−β

∫ T

0

∫
Cε

(vd · ∇ )ϕε ψ

coming from the drifts. Here ψ ∈ C1(ΩT ) is a test function. For given ψ, we estimate
those two integrals as

|Jε
1 | ≤ Cε−β |∇ϕε|L2(0,T ;L2(Cε)) |Cε |

1
2 ≤ C ε−β+ β

2 + 1
2 = Cε

1
2 (1−β) → 0

and similarly for Jε
2 . Additional technical difficulty comes from the Dirichlet condition

on Bε. It can be overcome using the construction from Appendix D and the existence
for any z ∈ H1(Ω) of a sequence of functions {zm}m∈N, zm ∈ C1(Ω), such that
zm(0, x2, 0) = 0 and zm → z in H1(Ω) since on a one-dimensional line c = {x ∈ R3;
x1 = 0, x3 = 0} the trace of a function from H1(Ω) cannot be specified.

6. The critical case, β = 1, when contributions from the EDZ and from
the undisturbed host rock are of the same order. This case is an attempt to
mathematically describe a situation corresponding to a scenario where the connected
shafts galleries and drifts are poorly sealed. In order to keep the influence of the
disturbed drifts at the global level, we assume the concentration rate gε to be stronger
on the drifts heads (inside the connecting gallery) and to have the form

gε =

{
ε−1 gd(t, x2,

x2

ε , x3

ε ) on the disturbed-drift head Fε,
gh(t, x) on Rε except on the interface with the connecting gallery,

(6.1)

with gh ∈ L2(0, T ;L2(∂Ω)), gd ∈ C([0, T ] × [0, L] × C). We assume again that the
leaking is described by (2.7). In this case both contributions from the disturbed drifts
and from the undisturbed host rock will appear in the corresponding global model.

In what follows we will use the notation 〈f〉 =
∫
C f(x, y2, y3) dy2 dy3 for the mean

value of any function f over the rescaled drift cross-section C. Before we continue we
need to define an appropriate functional space

V =

{
φ ∈ H1(Ω);

∂φ

∂x1
(x1, x2, 0) ∈ L2(Σ), φ(0, x2, 0) = 0

}
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equipped by the norm

|φ|V = |φ|H1(Ω) +

∣∣∣∣ ∂φ∂x1

∣∣∣∣
L2(Σ)

.

Obviously, V is a Hilbert space and the term in the norm
∣∣ ∂φ
∂x1

∣∣
L2(Σ)

gives sense to a

trace φ(0, x2, 0) in L2(0, L). Indeed, it is easy to prove that

|φ(0, x2, 0)|L2(0,L) ≤ C|φ|V .

The space V ∩ C1(Ω) is dense in V . In this section we use the notion of the two-

scale convergence with respect to the singular measure denoted
2−dµ−→ , introduced in

Appendix A.

Theorem 6.1. Let β = 1, and let {ϕε} be the sequence of solutions to the
problem (2.8)–(2.12). Then

ϕε ⇀ ϕ weak* in L∞(0, T ;L2(Ω) ) and weakly in L2(0, T ;W 1,γ∗
(Ω)),(6.2)

ϕε
2−dµ−→ ϕ0(t, x1, x2) = ϕ(t, x1, x2, 0),(6.3)

where ϕ ∈ L2(0, T ;V ) is the unique solution of the following variational problem:

∫ T

0

∫
Ω

(
−ωh ϕ

∂ψ

∂t
+ Ah∇ϕ∇ψ + (vh · ∇ )ϕψ + λωhϕψ

)
+

∫
∂ΩT

κϕψ

+

∫ T

0

∫
Σ

(
〈Ad

11〉
∂ϕ

∂x1
(t, x′, 0)

∂ψ

∂x1
(t, x′, 0) + 〈vd1〉

∂ϕ

∂x1
(t, x′, 0)ψ(t, x′, 0)

)

=

∫ T

0

∫
Σ

Φψ(t, x′, 0)M +

∫
Ω

ωh f0 ψ(0, x) +

∫
∂ΩT

κψ gh +

∫ T

0

∫ L

0

κ ψ(t, L, x2, 0) gd

for any ψ ∈ H1(0, T ;V ) such that ψ(T, x) = 0.(6.4)

Remark 1. If Ad was not diagonal, as, for instance, for nonunidirectional
fluid flow in disturbed drifts, it would be necessary to introduce R, the solution of the
auxiliary problem on the cross-section of the drift:

divy (Ad ∇yR) = −divy (Ad e1 ) in C,(6.5)

n · Ad ∇y R = −n · Ad e1 on ∂C.

The solution R would then enter the homogenized diffusion tensor on Σ, and it would
also produce an oscillatory part in the gradient of the two-scale limit ϕ1 which will
have the form

ϕ1 = R(y)
∂ϕ0

∂x1
.

Moreover, if the concentration is nonunidirectional in the drifts, the convergence proof
from Theorem 6.1 requires additional assumptions in order to get a priori estimates
on the gradient and an additional compactness theorem for the 2− dµ convergence of
the gradient.
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Proof of Theorem 6.1. Due to the compactness theorem, Theorem A.2 in Ap-
pendix A, there exists some ϕ ∈ L2(0, T ;W 1,γ∗

(Ω)), ϕ0 ∈ L2(0, T ;L2(Σ × C) ),
∂ϕ0

∂x1
∈ L2(0, T ;L2(Σ × C) ) such that

ϕε → ϕ weakly in L2(0, T ;W 1,γ∗
(Ω)),

ϕε
2−dµ−→ ϕ0,

∂ϕε

∂x1

2−dµ−→ ∂ϕ0

∂x1
.

Furthermore, due to Proposition A.3 in Appendix A, ϕ|Σ = ϕ0(t, x1, x2). Taking now

a simple test function z = z(t, x) ∈ H1(0, T ;V ) ∩ C1(ΩT ) such that z(T, x) = 0, we
modify it and get zε, as described in Appendix D, which is then used as a test function
in the variational form:

−
∫

ΩT
ε

ωε ϕε
∂zε
∂t

+

∫ T

0

∫
Ωε\Sε

Ah ∇ϕε ∇zε + ε−1

∫ T

0

∫
Sε

(Ad + εd I)∇ϕε ∇zε

+ ε−1

∫ T

0

∫
Sε

vd · ∇ϕε zε + λ

∫
ΩT

ε

ωεϕε zε +

∫ T

0

∫
Ωε\Sε

vh · ∇ϕε zε

=

∫
Ωε

ωhf0 zε(0, x) +

∫
FT

ε

κ (ε−1gd − ϕε) zε +

∫
RT

ε

κ (gh − ϕε) zε +

∫ T

0

Φε

∫
Γε

zε.

Using the above two-scale convergence and the weak convergence, we pass to the limit
and obtain∫ T

0

∫
Ω

(
−ωh ϕ

∂z

∂t
+ Ah∇ϕ∇z + (vh · ∇ )ϕz + λωhϕz

)

+

∫ T

0

∫
Σ

(
〈Ad

11〉
∂ϕ

∂x1
(t, x′, 0)

∂z

∂x1
(t, x′, 0) + 〈vd

1〉
∂ϕ

∂x1
(t, x′, 0) z(t, x′, 0)

)

=

∫ T

0

∫
Σ

Φ z(t, x′, 0)M +

∫
Ω

ωh f0 z(0, x) +

∫ T

0

∫ L

0

κ 〈gd〉 z(L, x2, 0)

+

∫
∂ΩT

κ (gh − ϕ) z.

The strong convergence of zε towards z (see Appendix D) enables us to drop the
subscript ε in the test function. Indeed, the only critical term is the integral

ε−β

∫
Sε

Ad
11

∂ϕε

∂x1

∂zε
∂x1

= ε−β

∫
Sε

Ad
11

∂ϕε

∂x1

∂(z − zε)

∂x1
+ ε−β

∫
Sε

Ad
11

∂ϕε

∂x1

∂z

∂x1
.

But, due to the construction of zε (see Appendix D) we estimate the last integral as∣∣∣∣ε−β

∫
Sε

Ad
11

∂ϕε

∂x1

∂(z − zε)

∂x1

∣∣∣∣ ≤ ε−β

∣∣∣∣∂(z − zε)

∂x1

∣∣∣∣
L2(Ω)

∣∣∣∣∂ϕε

∂x1

∣∣∣∣
L2(Sε)

≤ C ε1− β
2 .

Thus we get (6.4).

7. The case β > 1, where the dominant process is located in the EDZ.
This case is an attempt to mathematically describe a situation corresponding to a
scenario where the connected shafts galleries and drifts have no seals or barriers of
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any sort. In order to keep the influence of the disturbed drifts at the global level,
we assume the concentration rate gε to be much stronger on the drifts heads (inside
the connecting gallery) than on all the others drift or disposal hole boundaries. We
assume then that the concentration, gε, on the drifts heads (inside the connecting
gallery) and everywhere else on the boundaries is given by

gε =

{
ε−

β+1
2 gd on the disturbed-drift head Fε,

gh on Rε, everywhere except on the connection with the gallery,
(7.1)

with the same assumptions on gh, gd as in the previous section. In this last case the
conductivity in the EDZ (disturbed-drift zone) is so high that the process inside this
zone will dominate the global scale model. Again, for the flux Φε on the boundaries
of the waste packages, we assume that (2.7) holds.

Due to the a priori estimates (4.2)–(4.5), with assumption (7.1) we get the two-
scale limits.

Lemma 7.1. If β > 1, there exists ϕ0 ∈ L2(Σ × C) such that ∂ϕ0

∂x1
∈ L2(Σ × C)

and

ε
1−β

2 ϕε
2−dµ−→ ϕ0,(7.2)

ε
1−β

2
∂ϕε

∂x1

2−dµ−→ ∂ϕ0

∂x1
.(7.3)

Furthermore, in case β ≤ 2 we have in addition the following lemma.
Lemma 7.2. If β < 2, then ϕ0 does not depend on y2, y3. If β = 2, then ϕ0 may

depend on y2, y3, and

ε
1−β

2
∂

∂xα
ε ϕε

2−dµ−→ ∂ϕ0

∂yα
, α = 2, 3.(7.4)

Proof. Using the a priori estimate (4.2) we get

ε−
1
2

∣∣∣∣ε 1−β
2

∂

∂xα
ε ϕε

∣∣∣∣
L2(Sε)

≤ C ε1− β
2 .

Thus there exists some fα ∈ L2(Σ × C) such that

ε
1−β

2
∂

∂xα
ε ϕε

2−dµ−→ fα

with fα = 0 for β < 2. Since for η ∈ C∞
0 (C) and ψ ∈ L2(0, T ;H1

0 (Ω)) we have

∫ T

0

∫
Sε

∂ϕε

∂xα
η
(x2

ε
,
x3

ε

)
ψ = −

∫ T

0

∫
Sε

∂ψ

∂xα
η
(x2

ε
,
x3

ε

)
ϕε

− ε−1

∫ T

0

∫
Sε

∂η

∂yα

(x2

ε
,
x3

ε

)
ϕε ψ,(7.5)

multiplying (7.5) by ε
1−β

2 and passing to the two-scale limit, we obtain that fα = ∂ϕ0

∂xα
,

proving the claim.
Now we characterize the two-scale limits obtained in Lemmas 7.1 and 7.2. We

start with the case 1 < β < 2.
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Theorem 7.3. Let 1 < β < 2, and let {ϕε} be the sequence of solutions to the
problem (2.8)–(2.12). Then

ε
1−β

2 ϕε
2−dµ−→ ϕ0,(7.6)

ε
1−β

2
∂ϕε

∂x1

2−dµ−→ ∂ϕ0

∂x1
,(7.7)

where ϕ0(t, x1, x2) is the unique solution of the following problem:

− ∂

∂x1

(
〈|vd1 |〉

∂ϕ0

∂x1

)
+ 〈vd1〉

∂ϕ0

∂x1
= 0 in ]0, L[ ,(7.8)

ϕ0(0) = 0, −〈|vd1 |〉
∂ϕ0

∂x1
(L) + (〈vd1〉 + κ)ϕ0(L) = κ 〈gd〉.

Furthermore, this problem can be solved explicitly, and

ϕ0(t, x1, x2) =
〈gd〉

1 +
〈vd

1 〉
κ − esgn(vd

1 ) L
(1 − esgn(vd

1 ) x1).(7.9)

Proof. We already know that the two-scale limit ϕ0 does not depend on y2, y3.
We choose z ∈ C1(ΩT ) and modify it to get zε as in the proof of Theorem 6.1 (the
construction described in Appendix D). Taking such zε for a test function in (2.8)–

(2.12) and multiplying the variational form (4.1) by ε
β−1

2 we get

−ε
β−1

2

∫
ΩT

ε

ωε ϕε
∂zε
∂t

+ ε
β−1

2

∫ T

0

∫
Ωε\Sε

Ah ∇ϕε ∇zε

+ ε−
β+1
2

∫ T

0

∫
Sε

(Ad + dεβI)∇ϕε ∇zε

+ ε−
β+1
2

∫ T

0

∫
Sε

vd · ∇ϕε zε + ε
β−1

2 λ

∫
ΩT

ε

ωεϕε zε + ε
β−1

2

∫ T

0

∫
Ωε\Sε

vh · ∇ϕε zε

= ε
β−1

2

∫
Ωε

ωhf0 zε(0, x) + ε
β−1

2

∫
FT

ε

κ (ε−
β+1
2 gd − ϕε) zε

+ ε
β−1

2

∫
RT

ε

κ (gh − ϕε) zε + ε
β−1

2

∫ T

0

Φε

∫
Γε

zε.

Due to the a priori estimates (4.2)–(4.5) all the terms on the left-hand side disappear
on the limit except

ε−
β+1
2

∫ T

0

∫
Sε

Ad ∇ϕε ∇zε, ε−
β+1
2

∫ T

0

∫
Sε

vd · ∇ϕε zε.

Applying the two-scale convergence, as defined in Appendix A, leads to

ε−1

∫ T

0

∫
Sε

|vd1 |
∂(ε

1−β
2 ϕε)

∂x1

∂z

∂x1
→

∫ T

0

∫
Σ

∫
C

(
|vd1 |

∂ϕ0

∂x1

)
∂z

∂x1

and the same for the second integral. On the right-hand side one term remains:

ε−1

∫
FT

ε

κ gd z.
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Due to the assumption (7.1) it converges to∫ T

0

∫ L

0

κ

∫
C
( gd ) z(L, x2, 0) dx2.

Thus we obtain for the two-scale limit the following variational problem:
Find ϕ ∈ L2(0, T ;H1(0, L)), such that∫ T

0

∫
Σ

(
〈|vd1 |〉

∂ϕ0

∂x1

∂z

∂x1
+ 〈vd1〉

∂ϕ0

∂x1
z

)
=

∫ T

0

∫ L

0

〈gd〉 z(t, L, x2, 0) dx2 dt,

for any z ∈ H1(0, T ;H1(0, L)) such that z(T, x) = 0.(7.10)

As vd1 has a constant sign, by assumption, then 〈|vd1 |〉 = sgn (vd1) 〈vd1〉. Obviously,
y2, y3, t, x2 are just parameters in that problem, and it can be explicitly solved, giving
(7.9).

Now we characterize the two-scale limit obtained in Lemmas 7.1 and 7.2 in situ-
ation β > 2.

Theorem 7.4. Let β > 2, and let {ϕε} be the sequence of solutions to the
problem (2.8)–(2.12). Then

ε
1−β

2 ϕε
2−dµ−→ ϕ0,(7.11)

ε
1−β

2
∂ϕε

∂x1

2−dµ−→ ∂ϕ0

∂x1
,(7.12)

where ϕ0(t, x1, x2, y2, y3) is the unique solution of the following problem:

− ∂

∂x1

(
|vd1 |

∂ϕ0

∂x1

)
+ vd1

∂ϕ0

∂x1
= 0 in ]0, L[ ,(7.13)

ϕ0(0) = 0, −|vd1 |
∂ϕ0

∂x1
(L) + (vd1 + κ)ϕ0(L) = κ gd.

Furthermore, this problem can be solved explicitly, and

ϕ0(t, x1, x2, y2, y3) =
gd

1 +
vd
1

κ − esgn(vd
1 ) L

(1 − esgn(vd
1 ) x1).(7.14)

Proof. We first choose zε as in the proof of Theorem 6.1; then we take ψ ∈ C∞
0 (C),

extend it by zero outside C, and define ψε(x) = ψ(x2

ε , x3

ε ). The basic difference from
Theorem 7.3 is that here we use zε ψε as a test function for (2.8)–(2.12). We introduce
another test function ψε depending on the fast variable, since the limit is expected to

depend on y. Again, we multiply the variational form of (2.8)–(2.12) by ε
β−1

2 to get

−ε
β−1

2

∫
ST
ε

ωd ϕε
∂zε
∂t

ψε + ε−
β+1
2

∫ T

0

∫
Sε

(Ad + dεβI)∇ϕε ∇zεψε

+ ε−
β+1
2

∫ T

0

∫
Sε

vd · ∇ϕε zεψε

+ ε
β−1

2 λ

∫
ST
ε

ωεϕε zεψε + ε
β−3

2

∫ T

0

∫
Sε

d∇ϕε ∇y2y3
ψ
(x2

ε
,
x3

ε

)
zε

= ε
β−1

2

∫
Sε

ωdf0 zε(0, x)ψε + ε
β−1

2

∫
FT

ε

κ (ε−
β+1
2 gd − ϕε) zεψε.
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Similarly to Theorem 7.3, all the terms on the left-hand side disappear on the limit
except

ε−
β+1
2

∫ T

0

∫
Sε

Ad ∇ϕε ∇zε ψε, ε−
β+1
2

∫ T

0

∫
Sε

vd · ∇ϕε zε ψε.

Here, the test function depends on the fast variable and thus, passing to the two-scale
limit, leads to

ε−1

∫ T

0

∫
Sε

|vd1 |
∂(ε

1−β
2 ϕε)

∂x1

∂z

∂x1
ψε →

∫ T

0

∫
Σ

∫
C

(
|vd1 |

∂ϕ0

∂x1
ψ

)
∂z

∂x1

and the same for the second integral. On the right-hand side, one term remains:

ε−1

∫
FT

ε

κ gd z ψε.

Due to the assumption (7.1) it converges to∫ T

0

∫ L

0

κ

∫
C
( gd ψ ) z(L, x2, 0) dx2.

Thus we obtain for the two-scale limit the following variational problem:
Find ϕ ∈ L2(0, T ;H1(0, L)), such that∫
C
ψ

∫ T

0

∫
Σ

(
|vd1 |

∂ϕ0

∂x1

∂z

∂x1
+ vd1

∂ϕ0

∂x1
z

)
=

∫
C
ψ

∫ T

0

∫ L

0

gd z(t, L, x2, 0) dx2 dt,

for any z ∈ H1(0, T ;H1(0, L)) such that z(T, x) = 0, ψ ∈ H1
0 (C).(7.15)

This problem is a boundary value problem for an ODE where y2, y3, t, x2 are just
parameters. Thus it can be written in the differential form (7.13) and then explicitly
solved.

Only the case β = 2 remains. In this case, using the same techniques, it is not
possible to get the uniqueness either for the two-scale limit or for the weak limit

for 〈ϕε〉 = ε−1
∫
Sε

ε
1−β

2 ϕε (see Remark 2). Only with an additional assumption

vd1 = vd1(x2) are we able to prove the uniqueness of the weak limit 〈ϕ0〉 of 〈ϕε〉.
Repeating the proof of Theorem 7.3 we get, in the case where β = 2 and vd1 is
independent of y2, y3, the convergence of the mean values towards a mean value 〈ϕ0〉
that can be explicitly computed as in (7.9).

Proposition 7.5. For β = 2 and vd1 independent of y2, y3 we have

1

ε

∫
Sε

ε
1−β

2 ϕε ⇀ 〈ϕ0〉 weakly in H1(0, L),(7.16)

where

〈ϕ0〉 =
〈gd〉

1 +
vd
1

κ − esgn(vd
1 ) L

(1 − esgn(vd
1 ) x1).(7.17)

Remark 2. Actually, we can prove, in the case where β = 2 and vd1 depends on
y2, y3, the two-scale convergence, up to a subsequence:

ε
1−β

2 ϕε
2−dµ−→ ϕ0,
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where ϕ0 satisfies the partial differential equation

−d∆y2y3 ϕ
0 − |vd1 |

∂2ϕ0

∂x2
1

+ vd1
∂ϕ0

∂x1
= 0

in ]0, L[ × C. But we cannot identify the boundary conditions satisfied on ]0, L[ ×
∂C. Thus we are unable to prove the uniqueness of such ϕ0, and the convergence
remains up to a subsequence. However, under the assumption that vd1 is independent
of y2, y3, all possible two-scale accumulation points have the same mean value (7.17).
To see how the two-scale limit interacts with the rest of the domain the higher-order
asymptotic effects need to be studied.

Remark 3. The conditions (7.1), which we imposed on gε in order to see the
influence of the EDZ at the global scale, correspond to the same type of conditions
(see, for instance, (6.1)) imposed in all previous cases for 0 ≤ β ≤ 1.

Appendix A. Two-scale convergence. At the global scale, all the impor-
tant effects of the process will be concentrated on Σ, a two-dimensional domain. To
see them, it is necessary to consider the limit with respect to the rescaled measure
dµε(x) = ε−1 1Sε

dL3, where dL3 is the Lebesgue measure in R3 and 1Sε is the
characteristic function of the set Sε. Following the definition of two-scale convergence
with respect to the concentrated measure dµε(x) defined in [2] and adapted to thin
domains (as in [7] or [1]) and to parabolic problems (as in [3]), we recall the follow-
ing definition and properties of the two-scale convergence associated to the singular
measure dµ(x).

Definition A.1. A sequence {ϕε}ε>0, ϕε ∈ Lp(Ωε), is said to converge two-
scale, with respect to the singular measure dµ(x), to ϕ0 ∈ Lp(Σ × C) if for any ψ ∈
C(Ω;Lp′

(C) )

lim
ε→0

∫
Ω

ϕε(x)ψ

(
x,

x2

ε
,
x3

ε

)
dµε(x) =

∫
Ω

dδΣ(x)

∫
C
ϕ0(x1, x2, y2, y3)ψ(x, y2, y3) dy2 dy3.

(A.1)

In other words (A.1) can be written simply as

lim
ε→0

1

ε

∫
Sε

ϕε(x)ψ

(
x,

x′

ε

)
dx =

∫
Σ

dx1 dx2

∫
C
ϕ0(x1, x2, y2, y3)ψ(x1, x2, 0, y2, y3) dy2 dy3.

In the following, we will denote shortly the two-scale convergence, with respect to the
singular measure dµ(x),

ϕε
2−dµ−→ ϕ0.

The crucial result related to the above convergence is the following compactness
theorem.

Theorem A.2. Let

ε−
1
p |ϕε|Lp(Sε) ≤ C.

Then there exists ϕ0 ∈ Lp(Σ × C) such that

ϕε
2−dµ−→ ϕ0.
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Proof. We need only to prove that for any ψ ∈ C(Ω;Lp′
(C))

1

ε

∫
Sε

∣∣∣ψ(x, x2

ε
,
x3

ε

)∣∣∣p′

→
∫

Ω

dδΣ(x)

∫
C
|ψ(x, y2, y3)|p

′
dy2 dy3.

But we have

1

ε

∫
Sε

∣∣∣ψ(x, x2

ε
,
x3

ε

)∣∣∣p′

=

∫ �

0

⎛
⎝ M(ε)∑

i=1

ε

∫
C
|ψ(x1, ε(i + y2), y2, y3)|p

′
dy2 dy3

⎞
⎠ dx1

=

∫ �

0

M(ε)∑
i=1

ε

[ ∫
C
|ψ(x1, ε i, 0, y2, y3)|p

′
dy2 dy3 + o(ε)

]

→
∫

Σ

∫
C
|ψ(x′, 0, y2, y3)|p

′
dy2 dy3 dx1 dx2.

Finally, under the assumptions of Theorem 6.1 we find the link between the weak
limit and the two-scale limit with respect to the singular measure dµ(x).

Proposition A.3. Let ϕ be the weak limit of {ϕε}ε>0, the sequence of solutions
of (2.8)–(2.10) for β = 1, and let ϕ0 be its two-scale limit, with respect to the singular
measure dµ(x), as in Theorem 6.1. Then ϕ0 does not depend on y2, y3 and

ϕ(t, x1, x2, 0) = ϕ0(t, x1, x2), (x1, x2) ∈ Σ.

Furthermore, ϕ ∈ L2(0, T ;V ).
Proof. Let η(y2, y3) ∈ C∞

0 (C) (extended by 0 to Ω), and let Ω+
ε = Ωε ∩ {x3 > 0},

Ω+ = Ω ∩ {x3 > 0}.
Denoting C+ = C ∩ {y3 > 0} and S+

ε = Sε ∩ {x3 > 0}, for any function ψ from
H1

0 (Ω) we obtain ∫
Ω+

ε

∂ϕε

∂x2
ψ

(
1 + η

(x2

ε
,
x3

ε

))
→

∫
Ω+

ψ
∂ϕ

∂x2
.

The integral on the left-hand side can be transformed by partial integration to

−
∫

Ω+
ε

ϕε
∂ψ

∂x2
(1 + η ) − ε−1

∫
S+
ε

ϕε ψ
∂η

∂y2

(x2

ε
,
x3

ε

)
→ −

∫
Ω+

ϕ
∂ψ

∂x2

−
∫

Σ

ψ

∫
C
ϕ0 ∂η

∂y2
.

Thus ϕ0 does not depend on y2. We proceed in the same manner with y3:∫
Ω+

ε

∂ϕε

∂x3
ψ

(
1 + η

(x2

ε
,
x3

ε

))
→

∫
Ω+

ψ
∂ϕ

∂x3
.

As before, the integral on the left-hand side can be transformed to

−
∫

Ω+
ε

ϕε
∂ψ

∂x3
(1 + η ) − ε−1

∫
S+
ε

ϕε ψ
∂η

∂y3

(x2

ε
,
x3

ε

)
−
∫

Ωε∩{x3=0}
ϕε ψ

(
1 + η

(x2

ε
, 0
))

.

Using the weak convergence for the first integral, the two-scale convergence for the
second, and the strong convergence of the trace for the third, we pass to the limit and
get∫

Ω+

ψ
∂ϕ

∂x3
= −

∫
Ω+

ϕ
∂ψ

∂x3
−
∫

Σ

ψ

∫
C+

ϕ0 ∂η

∂y3
−
∫

Σ

ϕψ

(
1 +

∫
C∩{y3=0}

η(y2, 0) dy2

)
.
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Choosing η equal to zero on y3 = 0, we first conclude that ϕ0 does not depend on y3

either. Second, we have∫
Σ

ϕ0 ψ

∫
C+

∂η

∂y3
= −

∫
Σ

ψ(x1, x2, 0)ϕ(t, x1, x2, 0)

∫
C∪{y3=0}

η(y2, 0) dy2 dx1 dx2.

Since ∫
C+

∂η

∂y3
= −

∫
C∩{y3=0}

η(y2, 0) dy2,

choosing η such that
∫
C∩{y3=0} η(y2, 0) dy2 �= 0, due to the fact that ψ is arbitrary,

we prove that ϕ|Σ = ϕ0. It remains to prove that ϕ ∈ L2(0, T ;V ). It is obvious
that ∂ϕ

∂x1
(t, x1, x2, 0) ∈ L2(0, T ;L2(Σ)). To prove that ϕ(t, 0, x2, 0) = 0 we take a test

function ψ ∈ H1(Ω) such that ψ(L, x2, x3) = 0 and η is the same as before. Then we
pass to the two-scale limit in

1

ε

∫
Sε

∂ϕε

∂x1
ψ η

(x2

ε
,
x3

ε

)
= −1

ε

∫
Sε

∂ψ

∂x1
ϕε η

(x2

ε
,
x3

ε

)
,

leading to ∫ L

0

ϕ(t, 0, x2, 0) ψ(0, x2, 0) dx2 = 0,

implying the claim.

Appendix B. Estimating the flux on Γε, the interface host rock/waste
packages. For any function ψ from H1(Ω) we can define the integral Lε by

Lεψ = ε1−γ

∫
Γε

ψ;

obviously, Lε ∈ [H1(Ω)]′.
For continuous ψ we have

Lεψ = ε1−γ
m∑

i,j=1

∫
∂Pε(i,j)

ψ ≈ ε1−γ
m∑

i,j=1

|∂Pε(i, j)|ψ(xij
ε ),

with xij
ε an arbitrary point from Pε(i, j). As (see Figure 2.1)

|∂Pε(i, j)| = εγ+1 (M + o(1) ), where M is defined from (5.5),

we have

Lεψ ≈ ε2
m∑

i,j=1

M ψ(xij
ε ).

The expression on the right-hand side is the Riemann integral sum for Mψ(x′, 0),
and thus it converges to

∫
Σ
M ψ, i.e.,

lim
ε→0

Lεψ =

∫
Σ

M ψ.
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Using the density argument we could prove the same for ψ ∈ H1(Ω). We want to do
better. We want to prove that

Lε → M δΣ strongly in [H1(Ω)]′.(B.1)

To do so we estimate the difference |Lε −M δΣ|[H1(Ω)]′ by using the solution wε of
the auxiliary problem (C.1).

We start with

Lεψ = ε1−γ

∫
Γε

ψ = ε2−γ

∫
Γε

ψ n · A∇x w
ε

(
.

ε

)
(B.2)

= ε2−γ

∫
Gε

∇ψ · A ∇xw
ε

(
·
ε

)

− ε2−γ

∫ L

0

∫ L

0

[
ψ(x′, γ ε log(1/ε)) e3 · A ∇xw

ε

(
x′

ε
, γ |log ε|

)

− ψ(x′,−γ ε log(1/ε)) e3 · A ∇xw
ε

(
x′

ε
,−γ |log ε|

) ]
dx1 dx2,

where x′ = (x1, x2) and

Gε = Ωε ∩ {−γ ε log(1/ε) < x3 < γ ε log(1/ε)}.

Due to (C.2) we have

ε A∇x w
ε

(
x′

ε
,± γ |log ε|

)
= ∓1

2
|∂Pε| + O(εγ),

where the term O(εγ) comes from the pointwise exponential decay

A∇y w
ε(y) ± 1

2
|∂Pε| → 0 as y3 → ±∞

by taking y3 = γ |log ε| = |log εγ |. Thus, the last integral can be written as

ε1−γ

2

∫ L

0

∫ L

0

(|∂Pε| + O(εγ) )[ψ(x′, γ ε |log ε|) + ψ(x′,−γ ε |log ε|) ] dx′.

It remains to estimate the first integral on the right-hand side of (B.2). We have∣∣∣∣ε2−γ

∫
Gε

∇ψ · A ∇xw
ε
( ·
ε

)∣∣∣∣ ≤ C ε2−γ |∇ψ|L2(Gε)

∣∣∣∇xw
ε
( ·
ε

)∣∣∣
L2(Gε)

.

Using (C.3), we get

∣∣∣∇xw
ε
( ·
ε

)∣∣∣2
L2(Gε)

≤ C

(∣∣∣∇xR
ε
( ·
ε

)∣∣∣2
L2(Gε)

+
∣∣∣∇xvε

( ·
ε

)∣∣∣2
L2(Gε)

)
≤ C(ε2γ−3 |log ε| + |∂Pε|2 |Gε| (log ε)2 ) ≤ Cε2γ−3 |log ε|.

Thus ∣∣∣∣ε2−γ

∫
Gε

∇ψ · A ∇xw
ε
( ·
ε

)∣∣∣∣ ≤ C
√
ε |log ε | |∇ψ|L2(Gε).(B.3)
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We now have

〈Lε −M δΣ | ψ 〉 = ε2−γ

∫
Gε

∇ψ · A∇x w
ε
( .

ε

)
−
∫ L

0

∫ L

0

{
Mψ(x′, 0)(B.4)

− ε1−γ

2
(|∂Pε | + O(εγ) ) [ ψ(x′, γ ε log(1/ε)) + ψ(x′,−γ ε log(1/ε)) ]

}
dx′.

We have already estimated the first integral on the right-hand side of (B.4) in (B.3),
and we proceed with the second. To estimate the easiest term∣∣∣∣∣ε

∫ L

0

∫ L

0

{[ ψ(x′, γ ε log(1/ε)) + ψ(x′,−γ ε log(1/ε)) ]} dx′

∣∣∣∣∣
we use the trace theorem∣∣∣∣∣

∫ L

0

∫ L

0

{[ ψ(x′, γ ε log(1/ε)) + ψ(x′,−γ ε log(1/ε)) ]} dx′

∣∣∣∣∣ ≤ C|ψ|H1(Ω).

Next, since

M = lim
ε→0

ε1−γ |∂Pε |

and ∣∣∣∣∣
∫ L

0

∫ L

0

{2ψ(x′, 0) − [ ψ(x′, γ ε log(1/ε)) + ψ(x′,−γ ε log(1/ε)) ] dx1 dx2 }
∣∣∣∣∣

=

∣∣∣∣∣
∫ L

0

∫ L

0

(∫ γ ε log ( 1
ε )

0

∂ψ

∂x3
−
∫ 0

−γ ε log (1/ε)

∂ψ

∂x3

)
dx1 dx2

∣∣∣∣∣
≤ C

√
ε log (1/ε) |∇ψ|L2(Ω),

we have proved (B.1).

Appendix C. The auxiliary problem in the infinite strip Pε. In Ap-
pendix B we made use of the following auxiliary problem, introduced in a previous
paper [5]: ⎧⎪⎪⎨

⎪⎪⎩
−div (A∇wε) = 0 in Gε,
n · A∇wε = 1 on ∂Pε,
wε is 1-periodic in y′ = (y1, y2),
limy3→±∞ A∇wε(y) = ∓ 1

2 |∂Pε| e3,

(C.1)

where Gε = ( ]0, 1[
2 ×R ) \Pε represents an infinite strip in the direction y3 where the

waste package Pε has been removed. Here A is some positive matrix (not necessarily
related to our previous diffusion tensor). Solvability of the problem (C.1) is classical
(see, e.g., [5]). Indeed the problem (C.1) admits a unique solution, and the convergence
in the last line of (C.1) is exponential. Furthermore, for large |y3|, wε possesses the
following asymptotic behavior for large |y3|:

wε(y) ≈ −(A33)
−1|y3|

1

2
|∂Pε| + exponentially decaying part(C.2)
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(see [5] and [8] for details).
We need the following auxiliary result.
Lemma C.1. Let

η(y3) =

⎧⎨
⎩

0, |y3| < 1,
1, |y3| > 2,
smooth otherwise

such that 0 ≤ η ≤ 1, and let

vε(y) = −A−1
33

1

2
|y3| |∂Pε| η(y3).

The function Rε = wε − vε satisfies the estimate

|∇Rε|L2(G̃ε)
≤ C εγ−1

√
|log ε | ,(C.3)

with G̃ε = Gε ∩ {−γ |log ε| < y3 < γ |log ε|}.
Proof. By direct computation we obtain

−div (A∇Rε) = div (A∇vε)

= −div

{
A (|y3|η′(y3) + η(y3) sgn y3 )A−1

33

1

2
|∂Pε| e3

}
.

Thus

−
∫
G̃ε

div (A∇Rε)Rε =

∫
G̃ε

A∇Rε · ∇Rε ≤ C|∂Pε| |∇Rε|L2(G̃ε)

√
|log ε| .

Appendix D. The test function. In this appendix, starting from a z ∈ C1(Ω)
we construct the test functions zε satisfying the Dirichlet condition on Bε that we
used in the proofs of Theorems 6.1, 7.3, and 7.4.

Lemma D.1. For any z ∈ C1(Ω), such that z(0, x2, 0) = 0, there exists zε ∈
C1(Ω) such that zε → z in H1(Ω) as ε → 0, |zε|W 1,∞(Ω) ≤ C,∣∣∣∣ ∂

∂x1
(z − zε)

∣∣∣∣
L2(Ω)

≤ C ε

∣∣∣∣ ∂z∂x1

∣∣∣∣
L∞(Ω)

,

and zε = 0 on Bε.
Proof. Let z ∈ C1(Ω) be such that z(0, x2, 0) = 0. We start by noticing that for

|x1| ≤ ε and |x3| ≤ ε we have the pointwise behavior

|ε−1z(x)| =

∣∣∣∣x1

ε

z(x) − z(0, x2, x3)

x1
+

x3

ε

z(0, x2, x3) − z(0, x2, 0)

x3

∣∣∣∣ ≤ |∇z|L∞(Ω).

We now define the auxiliary function η ∈ C∞(Y ) on unit cell Y such that 0 ≤ η ≤ 1
and

η = 0 for y1 = 1,

η = 0 for y2 = 0, 1,

η = 0 for y3 = −1

2
,
1

2
.
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The function (y2, y3) �→ η(0, y2, y3) defined on square Q = [0, 1]× [−1/2, 1/2] belongs
to C∞

0 (Q), and we impose, in addition, that it equals 1 on C. We now pose ηε(x) =
η(x/ε) for x1 ∈ [0, ε] and x3 ∈ [−ε/2, ε/2]. Then we extend ηε by zero for x1 > ε and
|x3| > ε/2. Finally, we define

zε(x) = (1 − ηε(x) ) z(x).

Obviously,

|zε|L∞(Ω) ≤ |z|L∞(Ω)

and

|∇zε|L∞(Ω) ≤ |∇z|L∞(Ω) + |∇yη|L∞(Y ) |ε−1 z|L∞(Ω) ≤ C|∇z|L∞(Ω).

Now the convergence of zε → z follows directly from the fact that the support of ηε
shrinks as ε → 0. Finally,∣∣∣∣ ∂

∂x1
(z − zε)

∣∣∣∣
L2(Ω)

=

∣∣∣∣ηε ∂z

∂x1

∣∣∣∣
L2(Ω)

≤ C |supp ηε|1/2
∣∣∣∣ ∂z∂x1

∣∣∣∣
L∞(Ω)

.

Conclusions. According to the range of the mathematical parameter ε−β we
introduced for describing the water inflow regime and the concentration rates on the
head drifts, we have captured the different behaviors corresponding to the three sce-
narii considered in the European exercise BENIPA [9] (the connected shafts galleries
and drifts being either perfectly sealed, poorly sealed, or not sealed). Corresponding
to each of the three scenarii, we now have a global (macroscopic) model which can be
used for numerical far field simulations in performance assessment.
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