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Homogeneous settin

m Let () be a bounded, open, polyhedral domaiﬂRth > 1, with
boundaryof2 ( 2 represents amdeformable, isothermadorous
medium)

m Consider 2-phasdiuid (wetting)andgas (non-wetting)
2-componentlfydrogen and watgpartially miscible (o water
vaporisatiol and partially compressiblevater
incompressibility flow in ©

m The two phases are thermodynamical equilibrium



Homogeneous setting (continue

m The flow is described by
» Darcy-Muskatelocity for each phase (no gravity) :

Uo = —KX\aVpa, a€{l,g}

v

saturatiorrelation :g + 55 =1
capillary pressurtaw : m(sg) = pg — pi
mass conservatioeguation for each component :

v

v

x(mg) +V-FP=Q° pe{wh}

v

Henrymodel is used to close the system



Including phase appearance /disappearal

m We treat gas phase appearance and disappearance

= To avoid the change of variables and equations in saturated /
unsaturated regions we introduce as hew unknthen
normalized total hydrogen mass density

x=7T(p,S) := (1 - sg)Rs + CypgSy,

whereRs = x['/x54is the solution gas/liquid ratio and

Cy = M"/(RTp§%) (seeBourgeat, Jurak & Smai (0$9r more
details)



Governing equation:

m Use new unknowry andp = p; (liquid-phase pressure) to write
the model as follows if2 x [0, T]

ab(p, x) + div(uer) = Q1
POrx + div(up) = Q2

where

Ut = —Ag,1(P, X) VP — A12(p, X) VX,
un = —A21(P, x)VP — A22(p, X)Vx

m Initial conditions forp andx

= Dirichlet boundary conditions on the sé&5, 9Q° c 09 for p
andy respectively

m Neumann boundary conditions that prescribe the normal
component of the fluxes: andu; on the rest obS)



Sequential scheme in time

m Form=0,1,... ,N:
» Solve quase-linear elliptic equatiopréssure equatin
T 'D(P™E ™) = V- (AL (P, X™) V™)
= V- (AL2(p™, XM VX™) + F1 + 7 'b(p", X™)

with respective boundary conditions

> CalculateU (p™2, x™) = —Aq 1 (p™2, ™) V™

» Solve quase-linear reaction-advection-diffusion equeaginass
transport equation

ST X+ V- (F (P MU (™ X))
— V- (A 2(p™E XM V™) = Fa+ ¢rn ™,
with respective boundary conditions, here
f(pa X) = A2,l(pﬂ X)/Al,l(pﬂ X)

» p?andy? are given from the initial conditions



Sequential scheme in time : advantac

m decompose the system in an (non-linedtiptic-parabolic
equationand a (non-linearjeaction-advection-diffusion
equation weaklycoupled by Darcy velocity of liquid phase

m in the absence of gas-phase, the equations are coupled
coefficients only

m reduce computational cost with respect to fully coupledraggh
(one step of fixed point iteration)



Discontinuous Galerkin (dG) methoc

m dG methods can be viewed as
» FE-based methods usipgecewise polynomials discontinuous
across mesh elements
» FV-basedigh-ordemethods using numerical fluxes
m Attractive features include
weaklyimposed inter-element continuity
local conservatioproperties
flexibility (non-matching grids, variable polynomial degree)
ability to capture shocks sharply

v

vV vy



dG for 2 phase 2 component flo

m Key ingredientsErn, Mozolevski & Schuh (09), (1)
» Sequential dG methdor decoupling of the system describing
two-phase two-component flows
» Accurate (total)elocity reconstruction from pressure gradient
using Raviart-Thomas FE
» Weighted averagdn the consistency terms am@rmonic
averagedn the penalties



Homogeneous 1D numerical resu

m Consider MOMAS benchmark Problem 1 :
http://sources.univ-lyon1.fr/cagest.html

m 1D geometry2 = (0, 200)

m The porous medias characteristics and the fluids propentées
from http://sources.univ-lyonl.fr/casst/multi-mat.pdfin
particularg = 0.15 K =5-10729, n = 1.49Pr = 2 10°,
Sr=0,9r =04

= Boundary and initial conditions

Uwlx=0 = 0, plx=200 = 1C° Pa
uh]X:() =75. 1¢5m/years, X‘Xzzoo = O,
Plizo = 1%, x|=o =0

m Meshes : uniform in spaceEl = 20, adaptative in time starting
from 7 = 100 yearsT = 7 - 10° years



Total hydrogen molar density at several times (in yes
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Liquid pressure at several times (in yeal
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gas saturation (%

Hydrogen saturation at several times (in yea
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Heterogeneous setting

Capillary pressure discontinuities lead to nonlinearrfatze
conditions, se®ear (72); Chavent and Jaffre (78)

Theoretical analysis of nonlinear interface problem fausaion
equation, se®uijn, Molenaar, Neef, (95); Bertsch, Passo, Duijn,
(03)

Existence and unigueness of the weak solution to the imkerfa
problem for coupled system of pressure - saturation equatio
seeAmaziane, Bourgeat & EI Amri (96)

FV methods for heterogeneous two-phase flows with capillary
pressure discontinuities, seachéry, Eymard & Michel (06),
Cances (09), Cances, Gallouét & Porretta (09)

dG methods fo two-phase flows with capillary pressure
discontinuities, se&rn, Mozolevski, Schuh (10)



Heterogeneous setting

= Qis decomposed i), r € {1, 2} by an interfacd’

m The characteristics of porous media (in particwapillary
pressurkcould be different in each(");

m Physical hypothesis : capillary pressuresish at zero (no entry
pressurg)e.g. van Genuchten model

1

() = <<1 sger%) . )
where
(2)

is the effective saturation.



Heterogeneous setting |

= Interface conditions :

» Since the liquid phase is always present in both subdomthies,
liquid pressure and the respective flux should be continuous

» Owing to mass conservation theydrogen flux should be
continuous

» When gas phase &bsent at least in one of the subdomains
hydrogen mass density should dentinuousat interface

» If gas phase is present in the subdomains, normalized total
hydrogen mass density can tdecontinuous to ensure continuity
of the capillary pressure

» Note thatdissolved hydrogen density and respective flux remain
continuous



Interface conditions

m Vu € L2(Q) let us denote by(") the restriction ofi to Q")
m Interface conditions fop :

nr - (—A% (P, xP)vp®) = np - (-AZ) (p?, x@)Vp®@)

p) = p@
m Interface conditions fox :
nr - Ut(]l) =Nr- Ut(]z)
= denotes)’) = §7(p", x0), re1,2;
mifsy) - s? =0
> D = @
m else

» M) = 7@(?)



Capillary pressure continuity conditior

1 sg? | sg

205 0
Saturation

m Define

I, xW;p@ @) =

0, if - s =0,

XD =1 (p?), my Yy (S (pY, xD));
otherwise

m Then the above interface condition fpiis equivalent to

YD =@ = 3p®, D). p@ @)



dG setting

m Family of shape-regulamesheq 7p }n-0 exactly fittedto the
partition 2 = QM U Q@
m Key ingredients, the same as in homogeneous case
» Sequential dG methdor decoupling of the system describing
two-phase two-component flows
» Accurate (total)elocity reconstruction from pressure gradient
using Raviart-Thomas FE
» Weighted averagdn the consistency terms am@rmonic
averagedn the penalties

m New : weak implementation of non-linear interface condition



1D numerical results

Consider MOMAS heterogeneous benchmark Problem 2 :
http://sources.univ-lyonl.fr/catest.html

m 1D geometryf2 = (0, 200) with an interface at = 100

m The porous medias characteristics and the fluids propentées
from http://sources.univ-lyonl.fr/casst/multi-mat.pdfin
particularg = [0.3;0.15),K = [10718;5. 1072,
n=[1541.49 Pr =[2-10% 15 10°],

Sgr = [0; 0], 9r = [0.01;,0.4]

Boundary and initial conditions

Uw|x=0 = 0, Plx=200 = 10° Pa
Uh|x=0 = 7.5 10~°m/years, x|x=200 = O,
pli—o = 1%, x|=0 =0

Meshes : uniform in spacefl = 20 in each subdomain,

adaptative in time starting from = 100 years,
T=27-1C years



Hydrogen saturation at several times (in yea
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Total hydrogen molar density at several times (in yes
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