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Homogeneous setting

LetΩ be a bounded, open, polyhedral domain inR
d, d ≥ 1, with

boundary∂Ω ( Ω represents anindeformable, isothermalporous
medium)

Consider 2-phase (liquid (wetting)andgas (non-wetting))
2-component (hydrogen and water) partially miscible (no water
vaporisation) and partially compressible (water
incompressibility) flow in Ω

The two phases are inthermodynamical equilibrium



Homogeneous setting (continued)

The flow is described by
◮ Darcy-Muskatvelocity for each phase (no gravity) :

uα = −Kλα∇pα, α ∈ {l, g}

◮ saturationrelation :sl + sg = 1
◮ capillary pressurelaw : π(sg) = pg − pl
◮ mass conservationequation for each component :

∂t(mβ) +∇ · Fβ = Qβ , β ∈ {w, h}

◮ Henrymodel is used to close the system



Including phase appearance /disappearance

We treat gas phase appearance and disappearance

To avoid the change of variables and equations in saturated /
unsaturated regions we introduce as new unknownthe
normalized total hydrogen mass density

χ = Υ(pl, sg) := (1− sg)Rs + Cvpgsg,

whereRs = χh
l /χ

std
g is the solution gas/liquid ratio and

Cv = Mh/(RTρstd
g ) (seeBourgeat, Jurak & Smaï (09)for more

details)



Governing equations

Use new unknownχ andp = pl (liquid-phase pressure) to write
the model as follows inΩ× [0,T]

∂tb(p, χ) + div(utot) = Q1

φ∂tχ+ div(uh) = Q2

where

utot = −A1,1(p, χ)∇p − A1,2(p, χ)∇χ,

uh = −A2,1(p, χ)∇p − A2,2(p, χ)∇χ

Initial conditions forp andχ

Dirichlet boundary conditions on the sets∂ΩD
p , ∂Ω

D
χ ⊂ ∂Ω for p

andχ respectively

Neumann boundary conditions that prescribe the normal
component of the fluxesutot andutot on the rest of∂Ω



Sequential scheme in time

For m = 0,1, . . . ,N :
◮ Solve quase-linear elliptic equation (pressure equation)

τ−1
m b(pm+1, χm)−∇ · (A1,1(p

m, χm)∇pm+1)

= ∇ · (A1,2(p
m, χm)∇χm) + F1 + τ−1

m b(pm, χm)

with respective boundary conditions
◮ CalculateU(pm+1, χm)) = −A1,1(pm+1, χm)∇pm+1

◮ Solve quase-linear reaction-advection-diffusion equation (mass
transport equation)

φτ−1
m χm+1 +∇ · (f (pm+1

l , χm+1)U(pm+1, χm))

−∇ · (A2,2(p
m+1, χm)∇χm+1) = F2 + φτ−1

m χm,

with respective boundary conditions, here

f (p, χ) = A2,1(p, χ)/A1,1(p, χ)

◮ p0 andχ0 are given from the initial conditions



Sequential scheme in time : advantages

decompose the system in an (non-linear)elliptic-parabolic
equation and a (non-linear)reaction-advection-diffusion
equation, weaklycoupled by Darcy velocity of liquid phase

in the absence of gas-phase, the equations are coupledvia
coefficients only

reduce computational cost with respect to fully coupled approach
(one step of fixed point iteration)



Discontinuous Galerkin (dG) methods

dG methods can be viewed as
◮ FE-based methods usingpiecewise polynomials discontinuous

across mesh elements
◮ FV-basedhigh-ordermethods using numerical fluxes

Attractive features include
◮ weaklyimposed inter-element continuity
◮ local conservationproperties
◮ flexibility (non-matching grids, variable polynomial degree)
◮ ability to capture shocks sharply



dG for 2 phase 2 component flow

Key ingredients (Ern, Mozolevski & Schuh (09), (10)) :
◮ Sequential dG methodfor decoupling of the system describing

two-phase two-component flows
◮ Accurate (total)velocity reconstruction from pressure gradient

using Raviart-Thomas FE
◮ Weighted averagesin the consistency terms andharmonic

averagesin the penalties



Homogeneous 1D numerical results

Consider MOMAS benchmark Problem 1 :
http://sources.univ-lyon1.fr/castest.html

1D geometry,Ω = (0,200)

The porous medias characteristics and the fluids propertiesare
from http://sources.univ-lyon1.fr/castest/multi-mat.pdf, in
particularφ = 0.15,K = 5 · 10−20, n = 1.49 Pr = 2 · 106,
Sgr = 0, Slr = 0.4

Boundary and initial conditions











uw|x=0 = 0, p|x=200 = 106 Pa,

uh|x=0 = 7.5 · 10−5m/years, χ|x=200 = 0,

p|t=0 = 106, χ|t=0 = 0

Meshes : uniform in space,nEl = 20, adaptative in time starting
from τ = 100 years,T = 7 · 105 years



Total hydrogen molar density at several times (in years)
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Liquid pressure at several times (in years)
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Hydrogen saturation at several times (in years)
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Heterogeneous setting I

Capillary pressure discontinuities lead to nonlinear interface
conditions, seeBear (72); Chavent and Jaffre (78).

Theoretical analysis of nonlinear interface problem for saturation
equation, seeDuijn, Molenaar, Neef, (95); Bertsch, Passo, Duijn,
(03)

Existence and uniqueness of the weak solution to the interface
problem for coupled system of pressure - saturation equations,
seeAmaziane, Bourgeat & El Amri (96)

FV methods for heterogeneous two-phase flows with capillary
pressure discontinuities, seeEnchèry, Eymard & Michel (06),
Cancès (09), Cancès, Gallouët & Porretta (09)

dG methods fo two-phase flows with capillary pressure
discontinuities, seeErn, Mozolevski, Schuh (10)



Heterogeneous setting II

Ω is decomposed inΩ(r), r ∈ {1,2} by an interfaceΓ

The characteristics of porous media (in particularcapillary
pressure) could be different in eachΩ(r);

Physical hypothesis : capillary pressuresvanish at zero (no entry
pressure), e.g. van Genuchten model

π(sg) = pr

(

(1− sge)
−

1
mG

)
1

nG
, (1)

where

sge =
sg − sgr

1− sgr − slr
(2)

is the effective saturation.



Heterogeneous setting III

Interface conditions :
◮ Since the liquid phase is always present in both subdomains,the

liquid pressure and the respective flux should be continuous
◮ Owing to mass conservation the,hydrogen flux should be

continuous
◮ When gas phase isabsent at least in one of the subdomains

hydrogen mass density should becontinuousat interface
◮ If gas phase is present in the subdomains, normalized total

hydrogen mass density can bediscontinuous to ensure continuity
of the capillary pressure

◮ Note thatdissolved hydrogen density and respective flux remain
continuous



Interface conditions

∀u ∈ L2(Ω) let us denote byu(r) the restriction ofu toΩ(r)

Interface conditions forp :

nΓ · (−A(1)
1,1(p

(1), χ(1))∇p(1)) = nΓ · (−A(2)
1,1(p

(2), χ(2))∇p(2))

p(1) = p(2)

Interface conditions forχ :

nΓ · u(1)h = nΓ · u(2)h

denotes(r)g = S(r)g (p(r), χ(r)), r ∈ 1,2;

if s(1)g · s(2)g = 0
◮ χ(1) = χ(2)

else
◮ π(1)(s(1)g ) = π(2)(s(2)g )



Capillary pressure continuity condition
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Define

J(p(1), χ(1); p(2), χ(2)) =










0, if s(1)g · s(2)g = 0,

χ(1) −Υ(p(2), π−1
2 (π1(S

(1)
g (p(1), χ(1)))))

otherwise

Then the above interface condition forχ is equivalent to

χ(1) − χ(2) = J(p(1), χ(1); p(2), χ(2))



dG setting

Family of shape-regularmeshes{Th}h>0 exactly fittedto the
partitionΩ = Ω(1) ∪ Ω(2)

Key ingredients, the same as in homogeneous case
◮ Sequential dG methodfor decoupling of the system describing

two-phase two-component flows
◮ Accurate (total)velocity reconstruction from pressure gradient

using Raviart-Thomas FE
◮ Weighted averagesin the consistency terms andharmonic

averagesin the penalties

New : weak implementation of non-linear interface condition



1D numerical results

Consider MOMAS heterogeneous benchmark Problem 2 :
http://sources.univ-lyon1.fr/castest.html
1D geometry,Ω = (0,200) with an interface atx = 100
The porous medias characteristics and the fluids propertiesare
from http://sources.univ-lyon1.fr/castest/multi-mat.pdf, in
particularφ = [0.3;0.15],K = [10−18;5 · 10−20],
n = [1.54;1.49] Pr = [2 · 106;15 · 106],
Sgr = [0;0], Slr = [0.01;0.4]
Boundary and initial conditions











uw|x=0 = 0, p|x=200 = 106 Pa,

uh|x=0 = 7.5 · 10−5m/years, χ|x=200 = 0,

p|t=0 = 106, χ|t=0 = 0

Meshes : uniform in space,nEl = 20 in each subdomain,
adaptative in time starting fromτ = 100 years,
T = 2.7 · 105 years



Hydrogen saturation at several times (in years)
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Total hydrogen molar density at several times (in years)
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Liquid pressure at several times (in years)
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