

Simulations de problèmes d'écoulements diphasiques en milieu poreux dans un environnement paralllèle

Eli Laucoin, Florian Caro

CEA Saclay

Journées MOMAS diphasique 4-5 septembre 2008

Plan

- 1. Cadre de travail
- 2. Modèle
 - Modèle mathématique
 - Schéma numérique
- 3. Validations
 - Cas test non-linéaire stationnaire homogène
 - Cas test non-linéaire stationnaire hétérogène
 - Cas test non-linéaire instationnaire homogène
- 4. Cas d'application
 - Contexte physique
 - Performances
- 5. Conclusions et perspectives

Cadre de travail

Problème de stockage des déchets radioactifs de moyenne activité à vie longue (déchets B) :

- Loi 2006 sur le stockage des déchets radioactifs : prise en compte du dégagement d'hydrogène par corrosion de l'acier contenu dans les colis car possibilité de fracturation de la roche environnante
- Besoin de simulations numériques permettant de mieux prévoir l'évolution à long terme de ces stockages
- Benchmark Couplex Gaz proposé par l'ANDRA : mise en évidence des difficultés liées à ce type de problèmes (échelles d'espace et de temps considérées, temps de calcul, dégénérescence du modèle . . .)
- Retour d'expérience sur Couplex Gaz
 - Temps de calcul séquentiel ⇒ besoin de simulations dans un contexte de calculs haute performance afin de traiter des géométries réalistes avec plusieurs millions de mailles
 - Développement de modules sur la base d'un noyau numérique parallèle actuellement utilisé au CEA pour les problèmes d'hydraulique monophasique et diphasique (Trio_U, OVAP, MP-Cube)

Modèle mathématique et shéma numérique

— Modèle continu

$$M(u,v) \begin{bmatrix} \partial_t u \\ \partial_t v \end{bmatrix} - \operatorname{div} \left(A(u,v) \begin{bmatrix} \nabla u \\ \nabla v \end{bmatrix} \right) = \begin{pmatrix} \mathcal{F}_u \\ \mathcal{F}_v \end{pmatrix}.$$

u, v inconnues, $M \in \mathbb{R}^{2 \times 2}$ matrice de masse pleine, $A \in \mathbb{R}^{4 \times 4}$ matrice de diffusion pleine et \mathcal{F}_u , \mathcal{F}_v termes sources sur les inconnues u et v.

Schéma numérique : volumes finis diamants pour la discrétisation en espace, shéma d'Euler implicite pour la discrétisation temporelle et méthode de point fixe pour la résolution du système non linéaire (inconnues u_{n+1}^{k+1} et v_{n+1}^{k+1})

$$\frac{1}{\Delta t} \mathcal{M}(u_n^k, v_n^k) \begin{bmatrix} u_{n+1}^{k+1} - u_n^k \\ v_{n+1}^{k+1} - v_n^k \end{bmatrix} - \mathcal{A}(u_n^k, v_n^k) \begin{bmatrix} u_{n+1}^{k+1} \\ v_{n+1}^{k+1} \end{bmatrix} = \begin{pmatrix} \mathcal{F}_u \\ \mathcal{F}_v \end{pmatrix}.$$

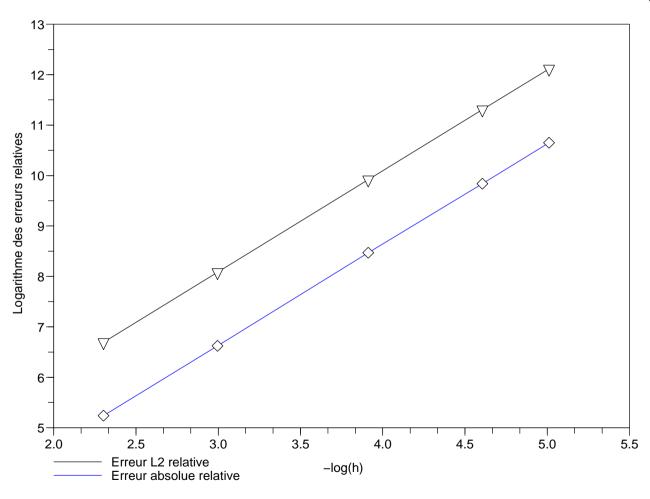
Validations

Cas test linéraire stationnaire homogène

$$-\mathrm{div}\left[\left(\begin{array}{cc} 1 & 1/2 \\ 1/2 & 1 \end{array}\right) \nabla \left(\begin{array}{c} u \\ v \end{array}\right)\right] = f \ \mathsf{dans} \ \Omega = [-1,1]^2,$$

- Conditions aux limites : Dirichlet et Neumann
- Solutions exactes :

$$\begin{cases} u = 2 + \cos(\pi x) \\ v = 2 + \sin(\pi x) \end{cases}$$


- Solveur BICGSTAB et préconditionneur ILU 4 (seuil relatif à 10^{-13})
- Erreurs L^2 et L^{∞} relatives

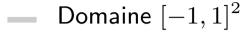
Maillage	Nombre de mailles	Erreur L^2	L^{∞}
10×10	800	1.24×10^{-3}	5.31×10^{-3}
20×20	3 200	3.09×10^{-4}	1.33×10^{-3}
50×50	20000	4.93×10^{-5}	2.1×10^{-4}
100×100	80 000	1.23×10^{-5}	5.34×10^{-5}
150×150	180 000	5.48×10^{-6}	2.37×10^{-5}

Cas test linéraire stationnaire homogène

Evolution des erreurs relatives en fonction de la taille du maillage

Cas test non-linéaire stationnaire homogène

Modèle


$$-\operatorname{div}\left[\begin{pmatrix} -\lambda_l P_c' \mathbf{k} & \lambda_l \mathbf{k} \\ \mathbf{0} & \lambda_g P_g \mathbf{k} \end{pmatrix} \nabla \begin{pmatrix} S_l \\ P_g \end{pmatrix}\right] = \begin{pmatrix} \mathcal{F}_l \\ \mathcal{F}_g \end{pmatrix},$$

avec

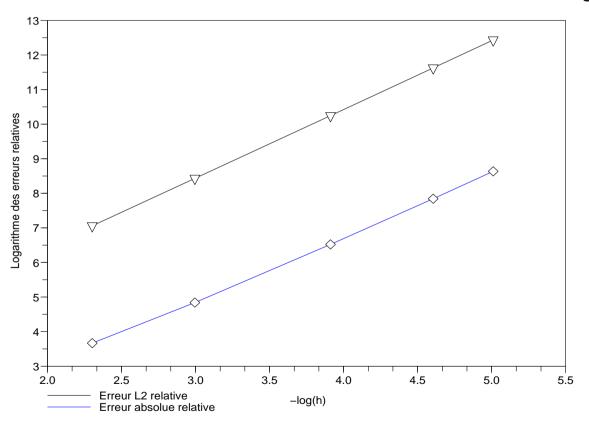
$$\begin{cases} \lambda_{l} = \frac{\sqrt{S_{l}} \left[1 - \left(1 - S_{l}^{1/m} \right)^{m} \right]^{2}}{\mu_{l}}, \\ \lambda_{g} = \frac{\sqrt{1 - S_{l}} \left(1 - S_{l}^{1/m} \right)^{2m}}{\mu_{g}}, \\ P_{c} = P_{r} \left(S_{l}^{-1/m} - 1 \right)^{1/n}. \end{cases}$$

et k tenseur de perméabilité absolue constant en espace.

Solutions exactes et paramètres

$$\begin{cases} S_l^e = S_0 - \frac{(1-x^2)(1-y^2)}{\alpha} \\ P_g^e = P_0(1+0.2\sin(\pi x)x\sin(\pi y)). \end{cases}$$

Paramètres physiques


Viscosité du liquide $(Pa \cdot s)$	804×10^{-6}
Viscosité du gaz $(\mathrm{Pa}\cdot\mathrm{s})$	185×10^{-7}
P_r (Pa)	2×10^6
Paramètre de Van Genuchten	1.5
Perméabilité absolue (m^2)	10^{-18}
α	3
S_0	0.2
P_0 (Pa)	5.5×10^6

Résultats numériques

Paramètres de calculs : solveur BICGSTAB et préconditionneur ILU 2 (seuil relatif 10^{-15})

Evolution des erreurs relatives en fonction de la taille du maillage

Cas test non-linéaire instationnaire homogène

Modèle

$$\Phi \begin{pmatrix} 1 & 0 \\ -P_g & (1 - S_l) \end{pmatrix} \begin{bmatrix} \partial_t S_l \\ \partial_t P_g \end{bmatrix} \\
-\operatorname{div} \left[\begin{pmatrix} -\lambda_l P_c' \mathbf{k} & \lambda_l \mathbf{k} \\ \mathbf{0} & \lambda_g P_g \mathbf{k} \end{pmatrix} \begin{pmatrix} S_l \\ P_g \end{pmatrix} \right] = \begin{pmatrix} \mathcal{F}_l \\ \mathcal{F}_g \end{pmatrix}$$

avec λ_l , λ_g et P_c définies comme auparavant

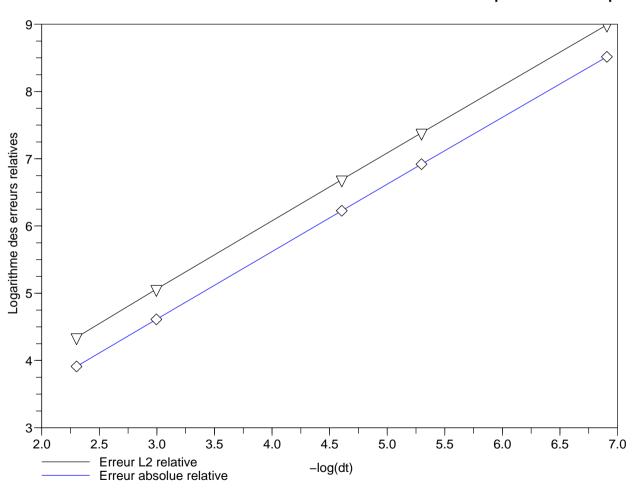
- \longrightarrow Domaine $[-1,1]^2$
- Solutions exactes

$$\begin{cases} S_l = \frac{1 + \sin(\pi x) \exp(-t)/2}{2}, \\ P_g = 10^5 \times ((1 - x^2) \exp(-t) + 2) \end{cases}$$

Paramètres

— Paramètres physiques

Viscosité du liquide (Pa.s)	804×10^{-6}
Viscosité du gaz (Pa.s)	185×10^{-7}
P_r (Pa)	2×10^6
Paramètre de Van Genuchten	1.5
Perméabilité absolue $(m^2.s^{-1})$	10^{-18}
Porosité (-)	0.3


Paramètres numériques

Solveur	BICGSTAB
Préconditionneur	ILU 2
Maillage	12 800 triangles
Temps final (an)	1

Résultats numériques

Evolution des erreurs relatives en fonction du pas de temps

Cas d'application

Contexte physique

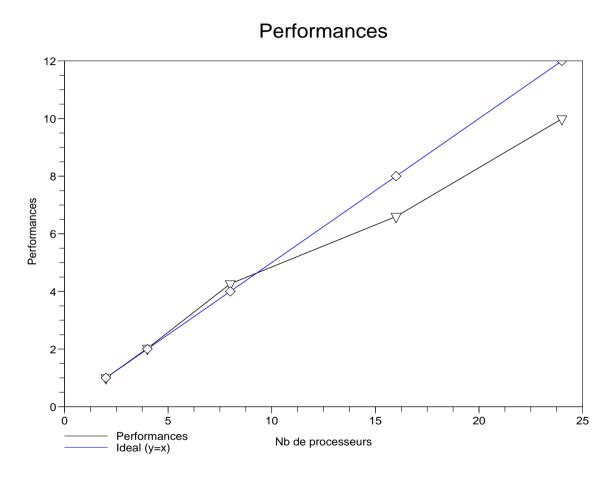
Cas d'application Couplex gaz 1b simplifié

Modèle physique

$$M(S_l, P_g) \begin{bmatrix} \partial_t S_l \\ \partial_t P_g \end{bmatrix} - \operatorname{div} \left[A(S_l, P_g) \begin{pmatrix} S_l \\ P_g \end{pmatrix} \right] = \begin{pmatrix} \mathcal{F}_l \\ \mathcal{F}_g \end{pmatrix}$$

avec M et A matrices dépendant non linéairement des inconnues saturation liquide S_l et pression de gaz P_g

- Constantes physiques : données couplex gaz 1b
- Paramètres des milieux : pas de jeux résiduels, hétérogénéités "moindres" dans les autres milieux géologiques


Paramètres de calcul

- Solveur linéaire : BICGSTAB
- Préconditionneur : SPAI 1 0.4
- Maillage: 466522 triangles
- Mombre de pas de temps : 115 (400 ans)

Performances

 ${f Remarque}: 30$ heures de calcul sur 2 processeurs et 3 heures sur 24 processeurs

Conclusions et perspectives

- Développement d'un module permettant de traiter les problèmes d'écoulements diphasique en milieu poreux dans un environnement parallèle
- Flexibilité pour passer d'un jeu de variable un autre (4 jeux de variables testés
- Convergence en temps et en espace sur des cas tests analytiques
- Bonne scalabilité
- Test avec d'autres jeux de variables
- Problèmes pour traiter les fortes hétérogénéités (choix d'une autre discrétisation spatiale?)