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• Integer solutions between 1 and X
• N(X) denotes the number of such solutions
• Asymptotic behaviour of N(X ) when X → +∞

A few examples:

x = y −→ N(X ) ∼ X
x1 + · · ·+ xs = y1 + · · ·+ yt −→ N(X ) ∼ X s+t−1{

x1 + x2 = y1 + y2

x21 + x22 = y 2
1 + y 2

2

−→ N(X ) ∼ 2! · X 2

Not-risky-at-all observation
N(X ) ∼ C · X something
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x1 + · · ·+ xs = y1 + · · ·+ ys

x21 + · · ·+ x2s = y 2
1 + · · ·+ y 2

s

. . .

xk1 + · · ·+ xks = y k
1 + · · ·+ y k

s

If s is sufficiently large in terms of k , the number Ns,k(X ) of

solutions satisfies Ns,k(X ) = C ·X 2s− k(k+1)
2 + error term, where

C ≥ 0 does not depend on X .
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Ns,k(X ) = C · X 2s− k(k+1)
2 + error term

General rule
Number of solutions = order of X at the power of (number
of unknowns minus sum of degrees)

First issue : How large must be s in terms of k ?
Second issue : What if C = 0 ?
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Proof overview

We write e(t) = exp(2iπt).∫ 1

0

e((x j1 + · · ·+ x js − y j
1 − · · · − y j

s )t)dt

This integral is 1 if (x1, . . . , xs , y1, . . . , ys) is a solution of the
j-th equation, and 0 otherwise. So

k∏
j=1

∫ 1

0

e((x j1 + · · ·+ x js − y j
1 − · · · − y j

s )t)dt

is 1 if (x1, . . . , xs , y1, . . . , ys) is a solution of the system, and 0
otherwise.
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We can count the number Ns,k(X ) of solutions:

Ns,k(X ) =
∑

1≤x1,...,xs≤X
1≤y1,...,ys≤X

k∏
j=1

∫ 1

0

e((x j1+· · ·+x js−y
j
1−· · ·−y j

s )t)dt

A calculation shows that

Ns,k(X ) =

∫
[0,1]k

∣∣∣∣∣ ∑
1≤x≤X

e(α1x + · · ·+ αkx
k)

∣∣∣∣∣
2s

dα
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By writing f (α) =
∑

1≤x≤X e(α1x + · · ·+ αkx
k), we have

Ns,k(X ) =

∫
[0,1]k
|f |2s

The underlying idea here is to divide [0, 1]k into two parts M
and m, called respectively major and minor arcs. Then

∫
M

|f |2s ∼ C · X 2s− k(k+1)
2∫

m

|f |2s = error term



By writing f (α) =
∑

1≤x≤X e(α1x + · · ·+ αkx
k), we have

Ns,k(X ) =

∫
[0,1]k
|f |2s

The underlying idea here is to divide [0, 1]k into two parts M
and m, called respectively major and minor arcs.

Then

∫
M

|f |2s ∼ C · X 2s− k(k+1)
2∫

m

|f |2s = error term



By writing f (α) =
∑

1≤x≤X e(α1x + · · ·+ αkx
k), we have

Ns,k(X ) =

∫
[0,1]k
|f |2s

The underlying idea here is to divide [0, 1]k into two parts M
and m, called respectively major and minor arcs. Then

∫
M

|f |2s ∼ C · X 2s− k(k+1)
2∫

m

|f |2s = error term



GENERALISATION


a1,1x

d1
1 + · · ·+ a1,sx

d1
s = 0

. . .

ak,1x
dk
1 + · · ·+ ak,sx

dk
s = 0

with ai ,j nonzero integers and di positive and strictly
increasing integers. What can we say ? It works:

Theorem
If s ≥ 2d2

k − 2dk + 1 and if there exists one nonsingular real
solution and one nonsingular p-adic solution (for every p),
then there exists C > 0 such that

Js,k(X ) ∼ C · X s−(d1+···+dk )
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First issue

We should be able to find a better condition on s
when some degrees are missing.

Second issue It becomes incredibly difficult if we allow too
many ai ,j to be zero.
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Thanks for your attention


