home page of Lorenzo Brandolese
Lorenzo Brandolese
Address:
Institut Camille Jordan
Université Lyon 1
43, bd du 11 novembre 69622 Villeurbanne Cedex,
FRANCE
Ph. +33 4 72447939
Fax +33 4 72431687
email: brandolese*math.univ-lyon1.fr
(replace * with @)
Position: Professor
Editorial responsabilities:
Past editor of
Nonlinear Analysis TMA (2014-2020).
Pedagogical responsabilities:
Responsible of the bachelor (Licence)
Mathématiques et économie
at Lyon 1 University.
Curriculum Vitae
Short english version. (Updated Janaury 2024)
French version. (Updated Janaury 2024)
Main research interests
- Asymptotic behavior in nonlinear partial differential equations.
- Incompressible fluid mechanics: Navier-Stokes, Boussinesq, MHD systems, etc.
- Nonlinear dispersive wave equations (shallow water, Camassa--Holm, rod equations, etc.)
- Well-posedness and blowup issues
- Applications of harmonic analysis to PDEs
Habilitation à diriger des recherches
(Dec. 8th, 2010.
pdf file, 76 pages, in French).
Referees
E. Feireisl, I. Gallagher, Yoshikazu Giga.
Committee:
M. Cannone, I. Gallagher, D. Iftimie, Y. Meyer, J.-C. Saut (Chair), D. Serre
Short english version of the habilitation
(pdf file, 18 pages, 2010).
Book's chapter
L. Brandolese, M.E.~Schonbek,
Large time behavior of Newtonian viscous incompressible fluids.
Chapter 3.4 in Handbook of Mathematical Analysis in Mechanics of
Viscous Fluids. Springer (2018), ISBN: 978-3-319-13344-7. Under the coordination of Yoshikazu Giga and Antonin Novotny.
Preprints
L. Brandolese, G. Karch
Large self-similar solutions to Oberbeck--Boussinesq system with Newtonian gravitational field,
submitted.
Published or accepted papers
-
Y. Samoilenko, L. Brandolese, V. Samoilenko,
Soliton-like solutions of the modified Camassa-Holm equation with variable coefficients, Chaos, Solitons and Fractals, to appear
(pdf).
-
L. Brandolese, Ling-Yun Shou, Jiang Xu, Ping Zhang
Sharp decay characterization of solutions to the
compressible Navier-Stokes equations in the critical \(L^p\)
framework,
Adv. Math. 456, Article ID 109905, 60 p. (2024).
(pdf).
-
L. Brandolese, C.F. Perusato, P.R. Zingano,
On the topological size of the class of Leray solutions with algebraic decay,
Bull. Lond. Math. Soc. 56, No. 1, 59-71 (2024).
(pdf).
-
P. Biler, A. Boritchev, L. Brandolese,
Sharp well-posedness and blowup results for parabolic systems of the Keller-Segel type
Methods Appl. Anal. 30, No. 2, 53-76 (2024).
(pdf).
-
P. Biler, A. Boritchev, L. Brandolese,
Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions
J. Diff. Equ. 344 (2023) 891-914.
(pdf).
-
L. Brandolese, T. Okabe,
Forced rapidly dissipative Navier-Stokes flows,
SIAM J. Math. Anal. 56, No. 1, 412-432 (2024).
(pdf).
-
L. Brandolese,
Hexagonal structures in 2D Navier-Stokes flows,
Comm. PDE (https://doi.org/10.1080/03605302.2022.2037633), 2022.
(pdf).
-
L. Brandolese, S. Monniaux,
Well-posedness for the Boussinesq system
in critical spaces via maximal regularity, Ann. Inst. Fourier 73 (2023) 1--20
(pdf).
-
L. Brandolese,
Far field geometric structures of 2D flows with localised vorticity,
Math. Annal. 383 no. 1-2, (2022) 699-714 .
(pdf , published version)
-
L. Brandolese, T. Okabe,
Annihilation of slowly-decaying terms of Navier-Stokes flows
by external forcing, Nonlinearity, 34 no.3 (2021), 1733--1757.
(HAL)
- L. Brandolese, J. He,
Uniqueness theorems for the Boussinesq system,
Tohoku Math. J. (2) 72 no.2 (2020), 283--297.
(pdf)
- L. Brandolese, F. Cortez,
Blowup for the nonlinear heat equation with small initial data in scale-invariant Besov norms,
J. Funct. Anal. 276 (2019), 2589--2604.
(pdf)
- L. Brandolese,
On a non-soleinoidal approximation to the incompressible Navier--Stokes equations,
J. London Math. Soc. 96, N.2 (2017), 326--344.
(pdf)
- L. Brandolese, C. Mouzouni,
A short proof of the large time energy growth for the Boussinesq system
J. Nonlinear Sci. 27, N.5 (2017), 1589-1608.
(pdf)
(publisher file)
- L. Brandolese, M.E. Schonbek,
Large time behavior of Newtonian viscous incompressible fluids,
Chapter 3.4 of the book (to appear): Handbook of Mathematical Analysis in Mechanics of Viscous Fluids.
Springer. Yoshikazu Giga and Antonin Novotny editors. DOI 10.1007/978-3-319-10151-4_11-1.
(pdf)
- L. Brandolese,
Characterization of solutions to dissipative systems with sharp algebraic decay,
SIAM J. Math. Anal. 48, N. 3 (2016), 1616-1633.
(pdf),
- L. Brandolese,
A Liouville Theorem for the Degasperis-Procesi Equation
Ann. Scuola Norm. Sup. Pisa XVI, N. 3 (2016), 759--765
(pdf)
- L. Brandolese, Manuel Fernando Cortez,
On permanent and breaking waves in hyperelastic rods and rings
J. Funct. Anal. 266 (2014), 6954-6987 (pdf)
- L. Brandolese, Manuel Fernando Cortez,
Blowup issues for a class of nonlinear dispersive wave equations
J. Diff. Equ. 256 (2014) 3981-3998 (pdf)
- L. Brandolese, Local-in-space criteria for blowup in shallow water and dispersive rod equations,
Comm. Math. Phys., 330 (2014) 401--414 (pdf)
- L. Brandolese, Breakdown for the Camassa--Holm
equation using decay criteria and persistence in weighted spaces,
Int. Math. Res. Not. rnr218 (2012), 5161--5181.
(pdf)
-
L. Brandolese, M. E. Schonbek,
Large time decay and growth for solutions of a viscous Boussinesq system,
Trans. Amer. Math. Soc. 364 (2012) 5057-5090 (pdf)
-
C. Bjorland, L. Brandolese, D. Iftimie, M.E. Schonbek,
L^p solutions of the stady-state Navier-Stokes equations with rough external forces,
Comm. Part. Diff. Equ., 36 (2011),
216--246
(pdf)
-
H.-O. Bae, L. Brandolese,
On the effect of external forces on the motion of incompressible flows at large distances
Ann. Univ. Ferrara, VII Sci. 55 N.2, 225--238 (2009).
(pdf)
-
P. Biler, L. Brandolese,
On the Parabolic-elliptic limit of the doubly parabolic Keller--Segel system modelling chemotaxis,
Studia Math., 193 N.3, 241--261 (2009).
(pdf)
-
L. Brandolese, Concentration-diffusion effects in viscous incompressible flows,
Indiana Univ. Math. J., 58, N.2, 789--806 (2009).
(pdf)
-
H.-O. Bae, L. Brandolese, B. J. Jin,,
Asymptotic behavior for the Navier--Stokes equations with nonzero external forces,
Nonlinear analysis 71, N.12, e292-e302 (2009). Doi: 10.1016/j.na.2008.10.074
(pdf)
-
L. Brandolese,
Fine properties of self-similar solutions of the
Navier-Stokes equations
Arch. Rational Mech. Anal., 192, N.3, 375--401 (2009)
(pdf)
-
L. Brandolese, G. Karch, Far field asymptotics of solutions to convection equation
with anomalous diffusion
J. Evol. Equ. 8, 307--326 (2008)
(pdf)
- L. Brandolese, F. Vigneron ,
New asymptotic profiles of nonstationnary solutions of the Navier-Stokes system
J. Math. Pures Appl. 88,64--86 (2007).
(pdf)
- L. Brandolese, F. Vigneron , On the
Localization of the magnetic and the velocity fields in the
equations of magnetohydrodynamics ,
Proc. Roy. Soc. Edinburgh 137A, 475--495 (2007).
(pdf)
- P. Biler, L. Brandolese, Global existence versus blow up
for some models of interacting particles,
Colloq. Math.
106, N.2, 293--303 (2006).
(pdf)
- L. Brandolese, Application
of the realization of homogeneous Sobolev spaces to Navier-Stokes,
SIAM J. Math. Anal.
37, N.2, 673-683 (2005)
(pdf)
- L. Brandolese, Poisson kernels and sparse wavelet expansions,
Proc. Amer. Math. Soc.
133, N. 11, 3345-3353 (2005)
(pdf)
- L. Brandolese,
Weighted-L^2 spaces
and strong solutions to the Navier-Stokes equations,
Progr. in Nonlinear Diff. Eq. and Appl. 61, 27-35 (2005)
- L. Brandolese, Space-time decay of Navier-Stokes flows
invariant under rotations,
Math. Ann.
329, 685-706 (2004)
(pdf)
-
L. Brandolese, Atomic decomposition for the vorticity of a
viscous flow in the whole space,
Math. Nachr. 273, 28-42 (2004)
(pdf)
- L. Brandolese, Asymptotic behavior of the energy and
pointwise estimates for solutions to the Navier-Stokes equations,
Rev. Mat.
Iberoamericana 20, 223-256 (2004)
(pdf)
- L. Brandolese, Localisation de la vorticité et
applications au comportement asymptotique de Navier-Stokes,
Journées
Equations aux dérivées partielles, Forges-les-eaux, pp.
III 1--13 (2002)
- L. Brandolese, Y. Meyer, On the instantaneous spreading for
the Navier-Stokes system in the whole space,
Contr. Optim. Calc.
Var. 8, pp. 273--285 (2002)
(pdf)
- L. Brandolese, On the localization of symmetric and
asymmetric solutions of the Navier--Stokes equations in R^n,
C. R. Acad. Sci. Paris, Série I t. 332, pp. 125--130 (2001)
Ph.D dissertation
Localisation, oscillations et comportement asymptotique pour
les équations de Navier-Stokes, Ecole Normale
Supérieure de Cachan (2001).
Ph.D avdisor:
Yves MEYER
Referees:
Jean-Yves CHEMIN and
Maria Elena SCHONBEK