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Abstract

The low-frequency L' assumption has been extensively applied to the large-time asymptotics of
solutions to the compressible Navier-Stokes equations and incompressible Navier-Stokes equations
since the classical efforts due to Kawashima, Matsumura, Nishida, Ponce, Schonbek and Wiegner. In
this paper, we establish a sharp decay characterization for the compressible Navier-Stokes equations
in the critical L? framework. Precisely, it is proved that the Besov space Bg}loo—boundedness condition
(with g — % <o < g —1) of the low-frequency part of initial perturbation is not only sufficient, but
also mecessary to achieve those upper bounds of time-decay estimates. Furthermore, we show that
the upper and lower bounds of time-decay estimates hold if and only if the low-frequency part of the
initial perturbation belongs to a nontrivial subset of Bgloo To the best of our knowledge, our work
is the first one addressing the inverse problem for the large-time asymptotics of compressible viscous

fluids.
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1 Introduction and main results

In 1933, J. Leray in his pioneering work [32] introduced the concept of weak (turbulent) solutions
to the incompressible Navier-Stokes equations and established the global in time existence of solutions
with energy bounded initial data. Also, he addressed the question whether or not the energy of weak
solutions uniformly decays in L?(R3) as the time t goes to infinity. Schonbek [41-43| introduced the
Fourier splitting method and deduced uniform decay for solutions in the L?-energy space, provided the
L'-assumption on the initial data was additionally imposed. Wiegner [49] addressed the optimal decay by
a careful analysis of the relationship between the heat kernel and incompressible Navier-Stokes equations.
See for instance the recent survey by the first author and Schonbek [4].

In this paper, we are concerned with the following compressible Navier-Stokes equations

Op + div (pu) = 0,
(1.1)
9¢(pu) + div (pu ® u) + VP (p) = Au,
which govern the motion of a general barotropic compressible fluid in whole space R? (d > 2). Here
u=u(t,r) € RY with (t,7) € Ry x R? and p = p(¢,z) € R denote the velocity and density of the fluid,
respectively. The pressure function P(p) depends only upon the density and is assumed to be suitably

smooth. The Lamé operator A takes the form
Au 2 pAu + (u+ \)Vdivu,

where the shear viscosity p and the bulk viscosity A are assumed to be constants for simplicity and to
satisfy
>0, vE2u+A>0.

System (1.1) is supplemented with the initial data
(p,u)(x,0) = (po,up)(z), z€RL (1.2)

We investigate the solution (p,u) to the Cauchy problem (1.1)-(1.2) fulfilling the constant far-field be-
havior

(p,u) = (p,0),  [x] = o0,



where p > 0 is a given constant.

The local existence and uniqueness of smooth solutions for System (1.1) were proved by Serrin [45] and
Nash [37]. The local existence of strong solutions with Sobolev regularity was obtained by Solonnikov
[47], Valli [48] and Fiszdon-Zajaczkowski [19]. The global smooth solutions to the Cauchy problem
of compressible and heat-conductive Navier-Stokes equations were first established by Matsumura and
Nishida [35,36], in the case that initial data are small perturbations of a linearly stable constant state
in three dimensions. With the additional L!(R3) assumption of initial data, they deduced the following

decay rate of smooth solutions:
1(p = pu)(B)|paay S ()77 with (t) £ /142, (1.3)

which coincides with that of heat kernel. Furthermore, Kawashima, Matsumura and Nishida [28] proved
that the solutions to the Boltzmann equation and the incompressible Navier-Stokes equations for small
initial data were asymptotically equivalent to that of the compressible and heat-conductive Navier-Stokes

equations at the rate with (t)=5/4

, as t — oo. Ponce [40] obtained decay estimates in the general L”
norm:

IV (p = A u) ()| pr(ray S (720772 2<r<co, 0<k<2, d=23. (1.4)

Later, Matsumura-Nishida’s results were extended to more physical situations, where the fluid domain is
not the whole R?. For example, the exterior domain was investigated by Kobayashi [29] and Kobayashi-
Shibata [30], the half-space by Kagei & Kobayashi [26,27]. For more general data, Xin [50] found that
any smooth solution to the Cauchy problem of the full compressible Navier-Stokes system without heat
conduction (including the baratropic case) would blow up in finite time if the initial density contains
vacuum. Huang, Li and Xin [22] constructed the global existence of classical solutions that have large
highly oscillations and can contain vacuum states. For the theory of weak solutions, a breakthrough is
due to P.-L. Lions [34], who obtained the global existence of weak solutions with finite energy initial
data. Later further developments were achieved by Feireisl, Novotny and Petzeltova [18] and Jiang &
Zhang [25] and since then this remained a very active research field.

As shown by earlier works [35,36,40-43,49|, the additional L' assumption for the data usually plays
a key role in the derivation of large-time decay rates for the solutions. Notice that the following Sobolev

embeddings
. . d
L'RY) < BY ., < B, 2. (1.5)

Although the latter space does not embed into 3872, any function belonging to this space and concentrated
in low frequencies does also belong to BSQ ~ L2(R%). This actually indicates the L' regularity is stronger
than the L? regularity at low frequencies. Inspired by this simple observation, it will be natural to

investigate the decay properties of the solutions, not under the stringent L'-condition, but rather under



a more general low-frequency assumption for viscous compressible fluids in the Besov framework with
critical (minimal) regularity, in which the uniqueness of solutions holds.

As for many evolutionary equations coming from mathematical physics, scaling invariance plays a
fundamental role and suitable critical quantities (scaling invariance norms) may control the possible blow-
up of solutions. This approach is now classic. Recall the global existence results for the incompressible
Navier-Stokes equations which go back to the pioneering work [20] by Fujita-Kato (see also results by
Kozono-Yamazaki [31], Cannone [6], Cannone-Planchon [7], Chemin [9] for a small sample of the vast

literature). Observe that the compressible Navier-Stokes system (1.1) is invariant by the transform
p(x,t) ~ p(lx,1?t), u(z,t) ~ lu(lz, 1*t), [>0,

up to a change of the pressure term P into I2P. Danchin [12] solved (1.1)-(1.2) globally in the critical
homogeneous Besov space (Bf N "N Bf 1) X Bf N " Subsequently, the result of [12] has been extended
to the general Besov spaces modelled on LP-norms by Charve-Danchin [8] and Chen-Miao-Zhang [11]
independently. Inspired by Hoff’s viscous effective flux in [23]|, Haspot [21] developed the LP energy
argument and achieved essentially the same result. The readers are also referred to [13,14] on the local
well-posedness subject to general initial data with critical regularity.

For convenience of the readers, we would like to recall a result about the global existence and unique-
ness of solutions to the Cauchy problem (1.1)-(1.2) in the critical LP framework. Denote by X, and X,
the functional space and the corresponding energy norm:

X, 2 {(a,u)] (a,0) € Co(Ry; BET ) NI Ry BETY,

d_1

.4 .4 .4 L4
a" € G(Ry; BY ) NLY(Ry; BEy), u € Co(RisBE, )NLY(R;BE, )}

and

X 2w g el s s
L?O(Bz,l ) L;,X) B;f),l L?O(Bxfj,l )

+ |[(a,u) (1.6)

4 h h
P PR LT

1B ) 1B, +(Bpa )
The definition of Besov spaces and the ¢/h notation of low/high-frequency are referred to Section 2
below. Moreover, E;’o(B;q) = 1~L°°(R+,B§7q) denotes a class of mixed space-time spaces, which are
first introduced by Chemin and Lerner [10] and can be regarded as the refinement of the usual spaces

L (B;’q). Some assumptions are labeled as follows.
(Hy): P(p) > 0;
. d Ld_ cd_
(Hs): ap = po—pE€ Bp, and ug € B}, 1, besides, (af,u§) € B3, ! such that

Xp0 £ [l(a0, wo)|l 4, + llaol”
B3, B

+ luo)"a_, < 1. (1.7)

d
P
p;1 p;1



The global existence and uniqueness of solutions to (1.1)-(1.2) in the critical LP-framework are stated as

follows. See [8,11,12,21].

Theorem 1.1. Let d > 2 and p satisfy
2 <p<min(4,d*) and, additionally, p#4 if d=2, (1.8)

where d* = 2d/(d—2). If assumptions (Hy)-(Hs) are fulfilled, then the Cauchy problem (1.1)-(1.2) admits
a unique global-in-time solution (p,u) with a = p—p and (a,u) in the space X,. Furthermore, there exists

some constant C' = C(p,d, A\, u, P, p) > 0 such that X, < CX) .

A natural problem is how to exhibit the large-time asymptotic behavior of the solution constructed
in Theorem 1.1. Although providing an accurate long-time asymptotics picture is still open, there are
a number of works concerning time-decay rates of L"-type as in (1.3)-(1.4). Okita [39] established the
decay estimates of solutions to (1.1)-(1.2) in the L? critical framework, by using a slight modification
of the method in [12]. The low-frequency assumption with respect to B?’Oo was additionally imposed.
However, the 2D case could not be covered. In the survey [15], Danchin proposed another description
of the time decay, which allows to handle any space dimensions d > 2. Subsequently, Danchin and
the third author [17] further established the decay rates in the LP critical spaces under the additional
condition that the low-frequency part of initial perturbation is suitably small in some Besov space Bg‘?x
(002 4— %d) which is exactly linked with the critical embedding LP/? < Bg%o (2 < p <min{4,d*}). The
third author [52] claimed a general low-frequency assumption in terms of Bgloo for the upper bound of
decay estimates, where the regularity exponent fulfills oy < oy < % —1 (implies that |- || 4 <|- H%ﬂm ).
In other words, the optimal decay rates of strong solutions in Theorem 1.1 can be obtaineiit provided fhat
the low-frequency assumption is reasonably strengthened. These results all depend on the time-weighted
energy approach in the Fourier semi-group framework and the smallness of low frequencies of initial data
is usually needed. Later, Xin and the third author [51] developed a Lyapunov-type energy method in the
LP critical spaces to obtain the time-decay rates. Their approach still requires the Bgloo condition on the
low-frequency part of initial data but not necessarily small.

To the best of our knowledge, whether the low-frequency assumption Bgloo s sharp or not for the large-
time behavior of strong solutions to the compressible Navier-Stokes equations in critical spaces remains an
open question. In the present paper, we shall give a positive answer to that issue and provide a necessary
and sufficient condition for the sharp time-decay rates of solutions to the Cauchy problem (1.1)-(1.2).
More precisely, we establish that both upper and lower bounds of time-decay estimates of solutions to
the Cauchy problem for (1.1)-(1.2) in the L? critical spaces hold if and only if the low-frequency part of
initial data is bounded in a non-trivial subset of Bgloo

Without loss of generality, we set p = 1. We denote by a = p— 1 and reformulate the Cauchy problem



(1.1)-(1.2) as
Ora + divu = —div (au),

Ou+ Va— Au = g, (1.9)

(av u)(x, O) = (aOa UO)(J:)
with the nonlinear term

g2 —u-Vu—k(a)Va — I(a)Au, (1.10)

P'(1+4
where k(a) = % —1and I(a) & =
To study the decay characterization of solutions to (1.9), we introduce a subset of the Besov space
Bg} (0'1 S R):

(oo}

Bg’loo e {f € Bgloo | 3 two constants ¢y, M > 0 and a sequence of integers {ji}r=12, .
o (1.11)
such that lim ji = —00, |ji — ji+1| < M and 274 Ay, flz2 = co.-}-
—00
Note that B’g}oo (with o7 € R) has a nontrivial intersection with Bil when o > o1, which will be
characterized in Section 2.

Our main result is stated as follows.

Theorem 1.2. Let (a,u) be the global solution to the Cauchy problem (1.9) constructed in Theorem 1.1.

Let the real numbers o, o1 satisfy o9 = g — %d and og < o1 < % — 1. Then

o (Upper bounds): For any time to > 0, the solution (a,u) fulfills

law @l g <C. t>0, (1.12)

e w)®llgg, < COTH, >t a<o<s, (1.13)

N Q.

if and only if (ag,up)® € Bg,loo'

o (Upper and lower bounds): There exists a time t1 > 0 such that the solution (a,u) fulfills (1.13)

and

d
ety 2 < (@, u)D)llzg, <O, t>h, a<o<g, (1.14)
if and only if (ag,ug)t € Bg}m,

Here the hybrid norm ||(a,u)(-,t)\|]]¥g is defined by
P

H(a=u)('=t)”ﬂ3%gm = H(a7u)e('7t)”3§”1 + H(a, u)(-,t)||j;%



The proof of Theorem 1.2 is motivated by Wiegner’s argument regarding the energy decay of Leray
solutions to the incompressible Navier-Stokes equations in the seminal work [49] and inverse Wiegner’s
argument in [46]. The inequality (1.12) can be interpreted as the nonlinear evolution of initial regularity.
In the “if” part, it plays a key role in the derivation of the two-sided time-decay estimates (1.13)-(1.14).
In fact, it is also indispensable in the “only if” part, see Proposition 5.1. As a direct consequence, one

can also get the sharp characterization of two-sided decay estimates in the L? framework.

Corollary 1.1. There exists a time t; > 0 such that for o9 < 0 < %, the global-in-time solution (a,u)

in Theorem 1.1 fulfills (1.12) and
c(t)"2 ™) < A7 (@, u) ()]l gy, < OO, >,

if and only if (ag,uo)’ € BSL, with —4 <oy < & —1.

2,00
We comment on a few points of immediate relevance:

e The low-frequency assumption in terms of Bgfoo(Uo <o < g — 1) is firstly introduced to give
the sharp decay characterization for the compressible Navier-Stokes system (1.1) in critical spaces.
To our knowledge, “only if” part is completely new, and this question has not been addressed for
compressible fluid flows in the existing literature. In addition, Theorem 1.2 actually indicates that

the upper bounds of algebraic time-decay rates obtained in [17,51,52] are optimal.

e It follows from Proposition 3.2 (see Section 2) that the low-frequency assumption (ag,ug)? € Bg}oo

is equivalent to that

r—0+

Py, (a0, o)+ 2 lim supr—2(7—) / €27 (1@ (€) 2 + [0()]?)dé < oo,
Py, (a0, uo)— £ liminf 7=2 =) / P ()2 + [0(&)2)de > 0
{1¢1<r}

r—0+

for any o0 > o1, which is closely linked with the theory of decay characters for incompressible

Navier-Stokes equations and related dissipative equations (see for example, [2, 3, 38]).

e Corollary 1.1 recovers the classical L? decay rates of solutions if choosing oy = f%. The initial data
(ag,up)’ € Bg}oo are sharp in comparison with previous works [26-28,33, 36, 40|, which is not only
sufficient, but also necessary to achieve two-sided limits of decay estimates. For instance, Kagei
and Kobayashi [26,27| investigated the special case that initial data satisfy that (ag,ug) € L*(R?)
and @ (0) = [ps ao(0)da # 0. Indeed, by the continuity of @g(§) near & = 0, there exists a small
constant r; > 0 such that for 0 < r <y, [ag(€)| > 0 for || < r. Thus, it is not difficult to deduce
that (01 = —2,0 =0 and d = 3)

w7 (O + @) 2 5 i [ >0, 0<r <

[gl1<r



and

7‘*3/ (Jao (&)1 + [@0(€)1*)d€ < ll(ao, uwo)l® _5 < ll(ao, uo)ll7,, 7> 0.
{lgl<r} B

2,00
.8

Hence, it follows from Proposition 3.2 that (ag,uo)’ € B, 2, Li and Zhang [33] studied some

special initial data in B(l),oo satisfying |aog(€)| 2 1 and |up(§)| = 0 for || < 1, which also implies

._3
that (ag,ug)’ € B, 2, due to (1.5).

o1

e We can construct the initial function (ag, uo) fulfilling (1.7) and (aq,uo)" € B for example,

2,007
av(r) =7 (Il 16 @), wolw) = F(F(sin(E ) (1 - 63 @), (116)

where ¢ > 0 is a suitably small constant, ¢(£) is a smooth cut-off function such that ¢(§) = 0 for
|€] > 1, and w;,ws stand for any unit vectors of R?. Clearly, the initial data u presented by (1.16)

is large highly oscillating if p > d in physical dimensions d = 2, 3. See [8,11] for more details.

e Last but not least, we would like to mention that the sharp decay characterization in critical spaces
is of independent interest, which gives a new attempt in the Fourier semi-group framework. Indeed,
our approach is to develop the theory of decay characters for linear compressible Navier-Stokes
equations with respect to Bg}oo. On the other hand, Inspired by Hoff-Zumbrun’s spectral analysis
( [24]), Wiegner’s argument and inverse Wiegner’s argument (bounding the discrepancy between
the nonlinear solution and the linear solution) first employed in the critical framework, which
allow us to remove the smallness of low frequencies of initial data in contrast to prior works [17,52].
The suitable modification of approach is likely to be effective for other incompressible/compressible

fluid equations.

In what follows, let us introduce the theory of decay characters, first developed for a large class of

dissipative system

o.U = LU, zeRY t>0,
(1.17)
U(z,0) = Uy(z),

where L is a pseudo-differential operator with symbol
M(&) = PE)TIDE)P(E), ae (R

D(¢) and P(&) are, respectively, diagonal and orthogonal matrices of order n, with D(£);; = —c¢;[€]**8;;
and ¢; >c>0foralli=1,..,n and o > 0. P(£); ; are homogeneous smooth functions outside £ = 0.
Basic examples include the heat equation (in this case £ = A with P(¢) = I, and D(§) = —|¢|1,,) or
the fractional diffusion equation (P(¢) = I, and D(¢) = —[£]?*1,,). Bjorland-Schonbek [2] and Niche-

Schonbek [38] proved that any solution has a two-sided time decay estimate (1 +t)~7/2% < ||et“Up| 12 <



(1 +t)~9/2% if the initial data satisfy

0 < lim r_2”/ |Uo (€)[2d¢ < o0 (1.18)
T le|<r

for o > 0. The condition (1.18) is closely linked with the decay character (see [2,38]), however, it
is somehow too stringent as such a limit might not exist. In order to overcome this restriction, the
first author [3] improved the original definition of decay character and proved that a slight modification
of (1.18) is not only sufficient but also necessary condition for the two-sided decay estimates of solutions

to (1.17). More precisely,

s —20 77 2
lim inf 7 /|£|§7-|UO(§)| d¢§ >0,

= Uy eByl > (L+1) % < |e“Upllre S (1+1) "2 (1.19)

lim sup 7'72‘7/ |UO(§)|2d§ < 00
r—0+ lel<r

He also discussed the application to the decay of Leray-Hopf’s weak solutions to the incompresible Navier-
Stokes equations.

Generally speaking, those parabolic arguments in [2,3,38] cannot be directly applied to the compress-
ible Navier-Stokes system (1.9) due to its hyperbolic nature. We need to investigate the precise pointwise

behavior of solutions to the linear hyperbolic-parabolic mixed system

Ora + divu = 0,
Ou — Au+ Va = 0, (1.20)
(a,u)|i=0 = (a0, uo)(x) £ Up(2).

Let {G(t) }+>0 be the semi-group associated with (1.20). Observe that there is the following key pointwise

estimate at low frequencies (|¢] < 1):

e maxLEmE (G0 (6)] + [a0(€)]) S 1G(T(E)] S e ™™ MHEPL (5o (&)] + [ ()],

which enables us to obtain sufficient and necessary conditions for sharp decay estimates of solutions to
(1.20) under the the low-frequency assumption in terms of Bgloo or Bg}oo (see Proposition 3.1). Fur-
thermore, we also perform Schonbek’s Fourier splitting methods (see [44]) and establish the equivalence

between the low-frequency assumption B3 _ and the theory of decay characters (see Proposition 3.2).

2,00

To establish the optimal time-decay bounds of the solution to the nonlinear problem (1.9), we will
adapt to the compressible Navier-Stokes equations (1.9) well known Wiegner’s argument from incom-
pressible flows (see [49]): namely we compute faster time-decay rates of the nonlinear terms compared
with that of the solution to the linear problem in LP-type Besov spaces (see Proposition 4.2). Here, the

major difficulty lies in nonconservative terms, for example, u - Vu and I(a).Au, which cannot provide

faster time-decay rates. To overcome the obstacle, as in [24], we consider the following Navier-Stokes



system in terms of the momentum formulation:

Oia +divm = 0,
(1.21)
oym — Am 4+ Va = —div F,

where the nonlinear terms are given by
F2(1—-1I(a))ym@m+ H(a)ly+ pV(I(a)m) + (u+ A)div (I(a)m) (1.22)

with H(a) £ P(1 + a) — P(1) — P'(1)a. Let (ar,mr) be the corresponding solution to the linearized

problem of (1.21). Precisely, one has
Orar, +divmy =0,
ormy, — Amp, + Vay =0, (1.23)
(ar,mr)(x,0) = (ao, mo) () £ (ag, pouo) ().

It should be noted that due to the smallness condition (1.7) and product laws for hybrid norms, (ag,u)* €
Bgloo (resp. Bgloo) if and only if (ag, mo)* € Bgloo (resp. Bgloo) Therefore, our key ingredient is to perform
time-weighted estimates on the difference (a,m) £ (a — ar, m — my) satisfying the difference system
&g?i + le 7’71 = 07
om — Am + Va = —div F, (1.24)
(a,m)(x,0) = (0,0).
Indeed, by Duhamel’s principle, the structure of conservation law in (1.9) allows to the improvement
of time-decay rates of (a,m) up to %—order in low frequencies. In order to remove the smallness of

H(ao,uo)ZHB;lm as in [17,52], we take advantage of the decay of linearized system and decompose the

nonlinear terms in F' as the sum of the linear part and the error part, for example,
me@m=mr@mr+mOmr +m®em.

Note that the time-decay rates of my ® my (quadratic) are fast and are given by linear analysis, and
m®mp+m®®m can be bounded by the faster decay estimates of the difference with a small quantity from
(1.7). On the other hand, when we handle the high-frequency part of (@, m), one has to overcome the
difficulty coming from the higher order term A(I(a)m) in (1.24), as it may cause a loss of one derivative
on a. For that end, we have to resort to the weighted LP-energy estimate of (a,w), which, together
with the product law on m = u + au, implies the desired decay estimate of m. These new observations
enable us to establish refined time-weighted estimates for (a,m) in the Fourier semi-group framework.
Furthermore, by combing the decay of (ar,mr) with the faster decay of (@,m), one can establish the
upper and lower bounds of (a,m) (1.14), which depends mainly on non L? standard product laws and

the elaborate use of Sobolev embeddings.

10



Finally, we prove the necessary part of the low-frequency assumption in terms of Bgloo on the upper
and lower bounds for decay rates. For that purpose, we develop inverse Wiegner’s argument from incom-
pressible flows (see Skalak [46]) to the compressible Navier-Stokes equations (1.9) in the framework of
LP-type Besov spaces. It can be shown that the solution (ar,mp) to (1.23) has the same decay rates as

the global-in-time solution (a,u) constructed in Theorem 1.1.

The rest of the paper unfolds as follows. In Section 2, we briefly recall the Littlewood-Paley de-
composition, Besov spaces and Chemin-Lerner spaces. Section 3 is devoted to the sharp time-decay
characterization for the linear compressible Navier-Stokes equations. In Section 4, we establish Wiegn-
er’s argument for nonlinear compressible Navier-Stokes equations and deduce the two-sided bounds for
decay rates. In Section 5, we develop the inverse Wiegner’s argument and justify the implication of
low-frequency assumptions. Appendix 6 collects some useful lemmas for non standard product laws and

composition of functions that will be used throughout the text.

Notations. For simplicity, C' denotes a generic positive constant that may change from line to line.
A < B (A 2 B) means that both A < CB (A > CB), while A ~ B means that both A < B and
A 2z B. For Banach space X, p € [1,00] and T" > 0, the notation LP(0,T;X) or L4.(X) designates
the set of measurable functions f : [0,7] — X with ¢t — [|f(¢)||x in LP(0,T), endowed with the norm
I 1lze x) 2 Ix lpe (o, - Let F(f) = f and F~(f) = f be the Fourier transform of f and its inverse,
and A°f £ F=1(|¢[°F(f))(c € R). In addition, we write (t) = v/1+¢2, and for any s > 0, s— means
that s — e for all ¢ > 0.

2 Preliminary

For the convenience of reader, we recall the Littewood-Paley decomposition, Besov spaces and Chemin-
Lerner spaces in this section. The reader is referred to Chapters 2 and 3 in [1] or [15] for more details.

Choose a smooth radial non-increasing function x(§) compactly supported in B(0, %) and satisfying

x(€) =11in B(0,2). Then (&) 2 x(5) — x(€) satisfies

g 3 8
doe(27)=1, Supppc{eeR!| T <[¢ <)
JEL

For any j € Z, define the homogeneous dyadic blocks Aj by
Aju s FHp277)F(u)) = 27h(27) x u, h&F o

Let P be the class of all polynomials on R? and S; £ &’/P stand for the tempered distributions on R?
modulo polynomials. One can get
u:ZAju in S, Yues,, AjAju=0, if [j—1>2

JEZ

11



With the help of those dyadic blocks, we give the definition of homogeneous Besov spaces and mixed
space-time Besov spaces as follow. For s € R and 1 < p,r < oo, the homogeneous Besov space B;T is
defined by

By, 2 {ue s | |ulls, 2 IH2*1Aullr}jeal < oo}

For T >0,s € Rand 1< p,7q < oo, we recall a class of mixed space-time Besov spaces EQ(O,T; B;’r)

that were initiated by Chemin and Lerner in [10]:
Le(0,T; By ,) = {u € L0, T:8,) | Nullzs s, ) = {271 A5ull g ) bsezlir < o0}
By the Minkowski inequality, it holds that
||U||Z§(B;,T) < ||U||L§(Bgﬂ,) ifr >0 (resp. ||UH’L'9 Bs,) = ||UHL9 (Bs,) if r < o),
where || - || Le(B: ) is the usual Lebesgue-Besov norm. Moreover, we denote
Co(R:B3,) 2 {ueC(Ry; B, | 1z ey ;) < oo}

In order to restrict Besov norms to the low frequency part and the high-frequency part, we often use

the following notations for any s € R and p € [1, o0]:

lull, = {2 1A5ullr }i<joller, lull, = 1271 A5ull o sz o -1llers

lall7 Bs)© 2 {27114 ull g ooy Yi<io lers  Nlullka ¢ (B3.) 2 {21 Ajull g Loy bizgo—1llers
where jj is called threshold between low frequencies and high frequnencies which was chosen in [8,11,21].
Denote by u* (resp. u") the low-frequency (high-frequency) part of u € Sj, as follows:
Z A]’U, Uhé’UJ7u€:ZAjU.
j<jo—1 Jj2Jjo

It is easy to check for any s’ > 0 that

ltlls, S Ny, Sl Sl Sl

. ’
Bsts I

(2.1)

||u[||LQ (BS )~ HuHLQ (BS )~ HuHLe (Bsf )’ HuhHLQ (Bg ) ~ ||U’HL@ (BS D~ ||U’HL9 (Bs+s )’

3 Two-sided bounds of decay for the linear compressible Navier-
Stokes equations

In this section, we are interested in establishing the theory of decay characters for the linear com-

pressible Navier-Stokes system
Ora + divu = 0,

O — Au+Va =0, (3.1)
(a,u)(z,0) = (ag,ug)(x).

12



Denote by © £ A~!curlu the incompressible part of u and by v £ A~'divu the compressible part of w.
y Yy

Therefore, we see that ) satisfies the heat equation
02 — pAQ =0, Q(z,0) = A curl ug (). (3.2)
On the other hand, one can get the hyperbolic-parabolic mixed system for (a,v):

Ora+ Av =0,
(3.3)
0w —vAv — Aa =0,
with v = A\ + 2u and (a,v)(z,0) = (ag, A~ divug)(z).
It should be noted that the theory of decay characters developed in [2,3,38] is not applicable to (3.3) in

general due to the dispersion form in hyperbolic part, even though (3.2) is a pure heat equation. Indeed,

we have the following pointwise estimates of (a,u) to the system (3.1) in Fourier spaces.

Lemma 3.1. Let (a,u) satisfy System (3.1). It holds that

ja(g, 1)l + la(e, )| < e ([ao(§)] + o (€))), if 1€ = %, -
(e, 1) + 16, )] S e ™M EBF L fao()] + [Bl@)), o 16 < 2 |
for Ry £ min{%,pu}% >0 and
(g, )] + e, )] 2 e EmNE Y (Go ()| + [Ao(©))),  if [¢] <, (3:5)
where n > 0 is sufficiently small.
Proof. Taking the Fourier transform to (3.2) with respect to the space variable yields
Q& 1) = e Q)] £ R (3.6)

On the other hand, we have the following explicit expression for the Green matrix G of system (3.3)

([24]):

G =

§(§ t) A A=A Ay —A_
’ et _r-t Apertt_x_er-t

( Al )|§| Al

with the eigenvalues

[ V)

As @) —E2 £y /[€2 — gt i Jgl < 2,
i =
e (IR R VAl 4 il A RS A 1

The upper bound (3.4); in high frequencies |{| > 2/v is classical (see for example [8,24,33]). We omit

NI

details for brevity.

13



In low frequencies |¢| < 2/v, we write b = 4/|¢|2 — %|§\4. The direct computation gives

Mt —ert —E sin(bt)
A b
Aper=t — \_eMt _ze? vsin(bt), o
o = ((coset) + 5 =5=1¢l?).
Aper+t — \_er-t _ig? v sin(bt)
o = (COb(bt) - = |§|)
Therefore, we obtain
R )\ 6)\7t _ )\_6)\+t/\ 6)\+t _ e)\ft N L e
a6 1) = =) - S (e = e F e (3.7)
and
N e/\+t _ e)\ft N )\ 6)\+t _ )\_6)\7t/\ L o
D) = = €Al + =T e(e) = e H ), (3:8)
where afj(z) and v (z) are defined by
o N vsin(bt), o5\~ sin(bt) .
@ (6,8) 2 (cos(bt) + 5 = |¢[? o () — T €l &),

sm(bt) v sm(bt)

€lao(€) + ((cos(bt) — 2 =221 )T €).

Thus, the upper bound (3.4) in low frequencies can be derived from (3.6), (3.7) and (3.8) directly. Next,

vr(&t) =

we turn to prove (3.5) from below in low frequencies.

Since b is real when |¢] < 2/v, we have

( t) |bln(bt)

12O 2y
m(<><®+%@fﬁﬂ (3.9)

(607 =" (€ 0FED) = (coston) +
7 LsnG)P ()0<g)+ao<£>m)

) lao(©)1* +
cos(bt) sin(bt)

2

and

| s1n(bt) v sin(bt)

(0 =€ 07 En = 2 epa o + (eoston) - L2 i) 5, o)
2m“mHa(<>aa+%@%@0+9ﬂ@ﬂﬁ@m@m><®+%@‘@) (3.10)

Owing to the fact that , we see that the last terms on the right-hand side of
(3.9) and (3.10) are of zero-order with respect to the variable £, which turn out to be some obstacles to
get the dissipative estimate (3.5). To handle the difficulty, special assumptions were imposed in earlier
works (e.g., [26,27,33]). In the present paper, it is observed that the two “bad" terms standing for
the hyperbolic dispersion effect could be cancelled if one adds (3.9) and (3.10) together. Indeed,

14



| sm(bt) sm(bt) cos(bt) | sm(bt)

@€ OF +[5°(E O =(|cos(er) + D gz 2+ 2 SROOE o) gy
+(|cos(bt)|2 |sm(bt)\ €2 = sm(bt)cos(bﬁ)lﬂ2 v? |sm(bt)| €] )|A )2

_% |§‘3(m60(5)+6o(5)m>

= CulEN([@o(©) + [00()[*) — Culélfan(&)l[To(8)]
> ([ao (€)1 + [5o(€)]*)

l\')\r—l [N

for |€] < n £ min{1/3C,,2/v}. Therefore, (3.5) is followed by (3.6) and the fact that [0(€,)|2+|Q(&, t)|2
e, 1)1, -

The pointwise estimates (3.4)-(3.5) indicate that the total energy of (a,u) to (3.1) behaves like that
of heat kernel from above and below in low frequencies, which motivates us to establish a sharp decay
characterization for (3.1) in terms of the Besov regularity. First of all, we establish the following sufficient

and necessary conditions for the upper and lower bounds of decay of solutions to (3.1).

Proposition 3.1. Let 0,01 € R such that o > o1. Assume that (a,u) satisfies System (3.1) and
(ag,up) € Bgl For any given time t;, > 0, the following properties hold:

(1) The solution (a,u) has upper bounds of time-decay estimate

—Lo—-0o
la )@l s, S @7H, b1, (3.11)

~

if and only if (ag,uo) € B _;

2,007

(2) The solution (a,u) has upper and lower bounds of time-decay estimate

—Lo-0y —3(o—01
()2 S l(a,u) )l gg, SOV, t> 1, (3.12)

if and only if (ap,ug) € Bg,loo

Proof. We first justify (3.11). Under the additional condition (ag, 1) € BJL_, it follows from (3.4) that

2,007

—_ 9 minfv 23 ; A _ . .
(@, )5, < > em e BT A (ag, uo)l|z2 + Y e 1207 A (ag, uo)| L
j<[log, 2] j>[logy 2]+1

—Llig— B
72l (a0, wo) gy, + e (@0, o)l

N

)"zl g

where we used the fact

supZtQ(” 01)2](0 01)6 16mln{2,u}2 Jt<OO
t>0]EZ
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for o > 0.

On the other hand, since (ag,ug) € Bgyl, one can get from (3.4) and Parseval’s theorem that
(@ 0)®)lpg, S la0u)llsy, S O, o<t (3.13)

Therefore, the upper bound (3.11) follows.
Conversely, assume that (a,u) satisfies (3.11) for ¢ > ¢1. In fact, by virtue of (3.13), (3.11) holds for
t > 0. The Fourier transform (ag,uy) can be represented by

2max{g,u}

(@0,10)(€) = 51— 1

A e AR TR SICTS
0
where I'(s) = [;° t*"te~'ds. This implies for any integer j < [log, 2/v] that

14 (a0, uo)llz= ~ llp(277|€]) (@0, Go) | 2

® 2)4 9 .. v 927 v 2, (3'14)
5/ phlo=a)g(—oa2)j o= fy max{ §.0)2t | g0 o= maxl 5.} € (G0 G0 | ot
0
In view of (3.5), (3.11) and Parseval’s theorem, it holds that
—max{¥% 2t~ o~ o (o —L(o—0o
llg]7 e mextE #HE @, o) | 2 S NI1€17 @ @) (D2 ~ (@, w) ()]l S (1) 720770 (3.15)
Substituting (3.15) into (3.14) and using the fact that ||(a0,u0)\|3g1 < 00, we get
(a0, uo)llgrr < sup 27V[|A (a0, uo)|lr2 +  sup 27 Aj(ao, uo)l| 2
7 j<logs 2] j2llogy Z1+1
(3.16)

00 ) . . 2\ —o+o A
S et tay (5775 sl 51
v
0 7> [log, 2]+1

Next, we turn to prove the two-sided bounds (3.12). Assume (ag,ug) € Bgloo The upper bound in
(3.12) follows directly from (3.11). In order to derive the lower bound, it follows from the definition ngoo

as in (1.11) that there exists two constants ¢, M > 0 and a sequence {ji}x=1,2, . such that
Jr — —o0 as k — 00, |jk — jria| < M, 299%||A; (ag,uo)|2 > ¢, k=1,2,... (3.17)

Without loss of generality, we assume that ji, k = 1,2, ..., is less than [logy n]. It follows from Parseval’s

theorem and (3.5) that

law®llgg, > 3 27914, u)(0)] 2

Jj<[logy 1]

= > 27277 @) (3.18)
J<[log, 1]

2 Z e_%max{%,#}22jt2”j\|Aj(ao,UO)HL?-

J<[logy n]
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For all ¢ > t1, since ji tends to —oo as k — oo, we are able to find a maximal integer ji, satisfying
Jro < —310gy(1+tr +t). Then we have jr, > —M — Llog,(1 + t1, +t); otherwise, from (3.17) another
integer jy,—1 fulfills jx,—1 < jk, + M < —Flogy(1+ ¢ +¢) which contradicts with the maximality of ji,.
Therefore, it follows from (3.17) and the fact 27k ~ (t)~= that

>0 e T mlEaY ) A g, uo) 1o

j<[log, 1]

vV

o % max{ 513270 Lo (0—01) kg 91k, HAjkg (a0, uo)|| L2

> 9(0—01)jk,
2 (1) Hem,
from which one can deduce the lower bound in (3.12).

Conversely, if we assume that (a,u) satisfy the two-sided bounds (3.12) for ¢ > ¢,. The upper
bound in (3.12) implies that (ag,up) € Bgloo It suffices to construct a sequence {ji}x=1,2,. such that
G — =09, |k — jrr1| < M, and 2719% || A, (ag, uo)|| > ¢. For that end, we deduce from the high-frequency
bound in (3.4) and (3.12) that

Yo 2714wl = e w)Olzg, = D, 2714(@w) (O]
j<llogs 3] j[logy 2]+1

27RO et YT 27 A (a0, wo)llze
j>[logy 2]+1
> HTEem) s
which, together with the low-frequency bound (3.4), implies that there exists a suitably large time ¢, > tr,

and a constant 7, > 0 independent of time such that
Zef% min{%xﬂ}22jt20jt%(aigl)||Aj(a0,UO)HLz > Ny > O, t>t,. (319)
JEZL
In particular, (3.19) holds true with ¢t = ¢, 4+ k for all k = 1,2, ..., and then we define
) 1
Jik 2 — 510g2(t* +k)|.
Making use of (3.19) and the fact 2727172 < ¢, + k < 2721+ we get
3 e~ s min{§.}27 T 9(0—01)(1=010) 9913 || A s (ag, wo) | 12 > 1 > 0.
JEL
Shifting the index j — j1 x to j', we deduce that
3 etz g (o) (Q0 N A (a0, ) |z2) > e > 0. (3.20)

=

221‘/—2

Due to the fact that e~ 16 min{5.x} 27'(7=01) € [1(Z) holds for o > o1, there exists a sufficiently large

integer J > 0 such that

_ 9 minfy 25 =2 a0 US
e~ 16 mln{ b 1”}2 27 (U Ul) < .
2 2[[(ao, uo)ll gg2_+1

l51>J
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Consequently, we have
_1%min{%,u}22j/722j/(g—al) 2(j/-}-j1,k)01 A . 777* 3.21
doe 18g7+i1 1 (a0, uo) |22 ) < =~ (3.21)

51>

It follows from (3.20) and (3.21) that

— 2 min{¥% 2'=2 il (oo i +51,6)01 || A *
D e fomin(t Ty o) (U N Ay, (a0, u0) [ 12) > > 0. (3.22)
3 1<

For every given ji i, let jo i € [—J, J] be the integer such that

U2t KT AL L (a0, u0)l L = max 2U' Lo | A (g, uo)| 2.
NARRS

If we define
jk éjl,k: +j2,k7 k= 172a"'a

then it follows from (3.22) and the definitions of ji x, jo i that jr — —oo as k — oo,
. . 1 1 o114 A M)« —64 min{¥,u}2?’
lik — 1] < 2J + ilogz(l + t—) +1 and 27Y%||A;, (ag,uo)|/r2 > ¢ 9 THET
This implies that (ag,ug) € Bg}w. The proof of Proposition 3.1 is complete. O

Furthermore, it is shown that (ag,ug) € Bg’loo is equivalent to those conditions on the theory of decay

characters developed by [2,3,38]. Precisely, we have the following proposition.

Proposition 3.2. Let 0,01 € R such that o > 1. Assume that (a,u) satisfy System (3.1) and (ag,up) €
Bgyl, Then the following two statements are equivalent:
(1) (ao,uo) S Bal )

2,007

(2) (ag,ug) satisfies

Py (a0, o)+ 2 limsup =21 / €27 (G0 (€) 2 + [0(€)]?)dé < oo,
r—0+ {IgI<r}

(3.23)
Py (a0, u0)— 2 lim inf =2 =) /{ o [T + [ > 0

r—0+

Proof. We first prove that (ag,uo) € B3, implies (3.23). For r > 0, let the integer j = [log, 7] such

2,00

that 29 <r < 29+, Owing to (ag,ug) € Bgloo, we have
reont [ R (ale) + [B0())dg
{l€1<r}

< g 2omons / e @0 () + lao(©)2)dg
{lg]<29+1}

<272l 3T 9 ) sup 24| Aji(ao, wo) I3

< (a0, w0) 31,
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which implies Py, (ag,uo)+ < 00.

Moreover, from our assumption we can take {ji}x=1,2,... as in the definition of Bg ', Forany 0 <r <

271 let 5 be the largest integer of the sequence {Jk}rk=1,2,.. such that 27k < . Then we have 27+tM > -
otherwise, from [|jx — jx+1/ie < M we would find another integer j; € [jk, jx + M] such that 29t < r,

which contradicts the maximality of j,. Hence, we have 27% < r < 27*TM  Consequently,
roemei / €17 (1o ()1 + [0 ()1*)dé
{I1¢1<r}
> 92—k / 2279 ([do (€)” + [0 (€)]?)d
{§29r<[g|<g20r}

Z 2261ijAjk (ao,uO)H%? Z 1

~

This indicates Py, (ag,ug)— > 0.
Conversely, if (3.23) holds, then there exists some constants rg, ¢1, co > 0 such that for any 0 < r < rg,
it holds that

0<err?o=on) < / €27 ([0 (€)[? + [0 (€)[?)dE < ear@=on). (3.24)
{1¢§1<r}

o1

In order to show (ag,up) € BQVOO,

it suffices to prove the two-sided bounds of decay estimates of the
solution (a,u) to (3.1) under the condition (3.24). To do this, we perform Schonbek’s Fourier splitting
methods as in [44] to the compressible Navier-Stokes equations (3.1). Applying the operator S,A” with

the low-frequency cut-off S,z 2 3 2) Ajz to (3.1), we get

j<[log,

9:S,A%a + div S, A%u = 0,
. . . (3.25)
0:S,AN°u — AS,A°u + VS, A% = 0.
Multiplying the first equation of (3.25) by S, A%a, the second one by S, A%u, adding the resulting equations

together, then integrating it over R, we have

1d

= 118, A% (a, w) (1)]|22 + / (MVSDAUUF + (1 + \)(div SVA"u)z)dx =0. (3.26)
2dt R4

To capture the dissipation of S, A%a, it follows from (3.25) that

d . ) .
pn S,A%u -V S,A% dz + ||[VS,A%a|3-
ke (3.27)
— ||div S, A%ul|2. — / AS,Au-VS,A% dx = 0.
Rd
Define
1, . )
L(t) = §HSVA"(a,u)(t)||2L2 + 6/ SyAu-VS,A% dx
Rd
for some constant € > 0. We are able to choose ¢ sufficiently small such that
L(t) ~ S0 (a,u) ()], (3.28)
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Furthermore, combining with (3.26)-(3.27), we obtain
L)+ eIV S, (a, )%, <0, (3.29)
where ¢, > 0 is a uniform constant. For any function R(t), the classical Fourier splitting idea [44] is then

used to deduce the estimate

1V (a ), > / €242 (1S, af? + | Syul?)de
{I¢I>R(t)}

> RO [ 6P (50l + |5uf?)a - 27 (1Sual? + [S,uf)de)

{IEISR@®)}

> REOL) - R () [ (Sl + |
{IEISR®)}

This, together with (3.29), leads to

iﬁ(t) + e R2()L() < Rz(t)/

= €P7 (@, ) + [ae I?)de. (3.30)
{IEISR®)}

For some sufficiently large constant 3, choosing now

1 2 2
R(t) = 2@*5 < min{;,ro} for t>t] = (cmlnﬂ{2r0}> )

Hence, it follows from (3.4) and (3.24) that

/ (€127 (Ja(e, 1)> + (g, 1)) de < / €127 ([ao(€)1* + [0 (§)[*)de
{IE1<R(®)} }

{lel<R®) (3.31)
SR ~ ()=o) s
Multiplying (3.30) by the factor (t)? with 3 > o — oy + 1, furthermore, we obtain
9 (07ew) 5 o=, (332
Then integrating (3.32) over [t},t] yields

(61150 (a, W) ()%, S )7 1180 (a, w) () 170 + (0770

On the other hand, one deduces from the pointwise estimates (3.4) and Parseval’s theorem that

150 (a, w) ()11 < 1l(a0, uo)lI%. -
Therefore, we obtain
1S (a,u) Ol € ()27, £ >0.
Consequently, noticing that the exponential decay property in (3.4) at high frequencies, the upper bound
of decay follows that

(@, WOl o < 180 (a, ) ()]l o + 13 = S,) (@, w) (0)]| 7

S ()72 e (ag, wo)ll g, (3.33)

< ()72,

~
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Finally, performing the same procedure leading to (3.14)-(3.16), we arrive at (ag,ug) € Bgloo

On the other hand, it follows from (3.5), (3.24) and Parseval’s theorem that
(@, w) (@), 2 A7 (a,u)(B)]1Z:

ettt [ + (o)) (3:34)

z ,,,2(0—01) ~ <t>—(o—al)

)

where we have chosen r = rg (t)‘é < rg. According to Proposition 3.1 and (3.34), we therefore prove

(ag,up) € Bgloo The proof of Proposition 3.2 is complete. O

By employing a similar argument in the proof of Propositions 3.1-3.2; one can present the sharp decay

characterization with the Besov regularity for a large class of dissipative systems (including incompressible

Stokes flows) studied in [2, 3, 38].

Corollary 3.1. Let 0,01 € R such that o > o1. Assume that U satisfies System (1.17) and Uy € Bgl
Then the following three statements are equivalent:

(1) Uy € B3 _;

2,007

(2) Uy satisfies

r—0+

Py, (Uo)+ = limsup 7"72(”7"1)/ €177 10 (€)]7d¢ < oo,
figl<r}

r—0+

Py, (Uo)— £ liminf r—2(—) / €T (6)Pde > 0;
{l¢1<r}

(3) For any tr, > 0, U has upper and lower bounds of time-decay:

1

(6777 S Ul gy, S ()72, >t

~

4 Sufficient condition

It suffices to show that the solution constructed in Theorem 1.1 satisfies (1.13) (resp. (1.14)) if
and only if (ag,ug) € Bgloo (resp. (ag,up) € Bg}oo), since (1.12) is the direct consequence of Lemma
5.1 in [51]. In this section, we shall develop Wiegner’s argument from incompressible Navier-Stokes
equations to compressible Navier-Stokes equations, and prove the “if" part. Compared with the classical
works [17,52], the additional smallness of low frequencies is no longer needed in the Fourier semi-group

framework.
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4.1 Wiegner’s argument for compressible Navier-Stokes equations

Our argument depends on the momentum formulation of compressible Navier-Stokes equations (1.1)
and is to establish the decay estimate of difference (@,m) = (a — ar,m — mp), where (az,my) is the
solution to the linear problem (1.23) subject to the initial data (ag,mg) with mo = (1 + ag)ug. First of

all, we have the following sharp decay characterization of (ay, myz,).
Proposition 4.1. Let p satisfy (1.8). It holds that

I, mo)ll o, + e (Vap,mo) " a o, +leTme|"
Ly (B ) Le(BF, )

L dyq
LOO(l,it;B]fy1 ) (4 1)
+lar,m)ll 4y, +la, V)" 4 < X,

Ly (B3 ) Ly(B 1)

where R > 0 is some constant and X, o is defined by (1.7). Moreover, if assume that og < o1 < % -1

and o > o1, then for any t, > 0 the following decay properties hold:

laz,mo) @)llpg, S (727, >t (4.2)
if and only if (ag,up)’ € BSLO,
(07277 < (ap,mp) (Ol g, S 07207, t> 1, (4.3)

if and only if (ag,ug)’ € Bg)loo.
Proof. By employing the same procedure as in [15] (see pages 1882-1884), one can arrive at

I(aL,mz) g0 FI(Var,mo) 4 +||(flL’mL)||ZL1 ‘g+1)+||(aL»VmL)||hl

||{oo 32 -
Lg (B271 b 1 . 2,1 t ;1)

(4.4)
S ||(ao7mo)||2%71 + H(Vaoamo)ﬂ}fgfl = X0

2,1 p,1
In addition, the LP energy method developed in [17] implies that there exists a generic constant R > 0
such that

e (Var, mo)|" a4 S X (4.5)
L& (Bgy )

To establish gain of regularity and decay altogether for the high frequencies of momentum, we reformulate

the second equation in (1.23) as follows
F(x(t)mr) = Alx(t)mr) = X'(t)mr — x(t)Var, (4.6)

where x(t) € C'(Ry) satisfies x(t) = ¢ for 0 <t < L and x(t) = e for ¢ > 1. Then it follows from the

maximal regularity estimate for Lamé semi-group in Lemma 6.11 that

Ix@mell® g SN Van)l! S X, (47)

F By ) L (Bgy )
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where we used the fact x(¢t)mr|:=o = 0. Hence, in order to get (4.1), it only need to show that

X*O 5 Xp,0~ (48)

P,

Indeed, from Lemma 6.3 and Bernstein’s inequality, we arrive at

lmoll” 4, < lluoll” 4, + llao]l

HUOH Sd-1 S Xp,Ov
Bpl Bpl BP

d
BP
p 1

1

where the boundedness of X, in (1.7) is used. On the other hand, bounding ||mol|* ,_| is a little bit
B3,
complicated and follows from the similar strategy as in [15]. To this end, we employ the following two

inequalities:
: d : «
17590 seg g S galloly, ifd 2 2and 7= <p<min(4d?), (4.9)
21 P
d d
IR0 yrorrg-g S 111 1ol ifs>1-min(5, S)and1<p<a  (410)
Bsa ? p P

with 1/p+1/p’ =1 and d* £ %. By using Bony’s para-product decomposition, one has
agug = Tyya0 + R(ug, ap) + Taoug + Taoug. (4.11)

Thanks to (4.9) and (4.10) with s = g, one can get

ITuaoll’ g1 S luoll a_sllaoll s [1R(ao, w0l 4, S lluoll a_sllaoll
le Bpl p1 B21 Bpl pl
cd_ cd_
Since T' maps L X By, ' to B3, 1, we have
ITagusl’, o, S laolleellugll g2 S llaoll s lluoll’ 4,
BZ, B3, ,f) B3,

In order to handle the last term on the right-side of (4.11), we observe that owing to the spectral cut-off,

there exists a universal integer Ny such that

(Taoug)lzskoﬂ( Z S’j,laoAjug).

|7—ko|<No

Hence || T,,ul||*

. d_q
2
By,

lj = kol < No,

s 2ko(5—1) > kol <No I1S;-1a0Ajul||p2. If 2 < p < min(d, d*) then one may use for

2o D)8 a0dsufle 5 1851a0lle (P FVNA o) 5 ol s ol 4.

p,1 p,1

and if d < p < 4, then it holds that
283 D)18; 1a0Azuflize S (27818510l ) (2740 Ay 14

(2 _ d_
S (20 Vllaoller ) (275 1A ub 0 Sl ol
BP

p,1

23



Hence, the inequality (4.8) follows directly by combining above estimates.
Under the assumption (1.7), we claim that (ag,mg)’ € Bg‘oo <= (ag,up)" € Bgloo for og <oy < 4-1.

Indeed, it follows from mg = ug + agug that
¢ ) )
Il e, S Tublligs, +laouollse, (1.12)

It is convenient to decompose the product agug in terms of low-frequency and high-frequency parts:

agug = aoug + aou’O’. According to Lemma 6.7, we arrive at

14 Y4 L 14
laou§lgs S Nooll s Tugligs. S (Nabll g + ol s Il - (1.13)

d
p
p,1 1 p,1

Bounding aguf is divided into cases 2 < p < d and p > d. If 2 < p < d, then (6.8) with o = % -1

yields

laouf e S laoubltyen S (llaoll gy + labller )bl o (4.14)
2,00 2,00 Bp,l Bp,l

since g9 < 1. In the limit case p = d, one can get by the Sobolev embedding that

laoufllye, < ool < ool 4 < llaolloellufle < llaolzg Il (4.15)
L d . Ld_ :
Furthermore, combining (4.14)-(4.15) and using the embeddings By, — LP and B}, b Bj,, we
obtain
e < (1t h h
o g 5 (a6l g0+ Nl g Yl (4.16)

due to the fact % —-1< % and 1 — % < % — 1. If p > d, applying (6.8) with o0 =1 — % once again implies
that

laoufltyer S (llaoll omg + Nabllor )bl g (4.17)

2,00 Bp,lp B]f,l

.d .d
By using the embedding By ; — By, < LP* in low frequencies and the fact % -1<1- % < % owing to
p > d, we obtain

L < ¢ h h

Joouligs S (loblygos + labl g Yol o (1.13)
Together with (4.12), (4.13), (4.16) and (4.18), we conclude that the “if" part of this claim is true.
Conversely, the proof of “only if" part follows from the similar procedure if noticing that ug = mg +
I(ag)mo and using the composite estimate in Lemma 6.9.

Furthermore, it can be shown that (ag,mg)* € 5"2’"00 if and only if (ag, ug)? € Bg}oo. If (ag, mo)* € 5"27’100,
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then it follows from (4.12)-(4.13), (4.16) and (4.18) that
2794(|A, (ag, uo)* | 2
> 2794|Aj, (a0, mo)" |12 — llaouoll s,

> 20’1jk||Ajk (a07m0)€”L2 — C(Hagﬂ 241 + Ha/gH .
B B

Ylugll g + gl a0)
2. ,00 BP

d
P
p;1 p,1

2 Co — CXp,O - CX;?,O 2 %) > 0,

a1
2,007

which implies that (ag,uo)’ € B where the sequence {ji}r=1,2,.. comes from the definition (1.11) of

Bg}w and the smallness assumption in (1.7) has been used. Similarly, one can prove that (ag,uo)’ € Bg}m

implies that (ag, mg)? € Bg,loo'

Applying the low-frequency cut-off operator Sjo to (1.23) gives
dral 4+ divm® =0,
Ormy, — Amy + Vaf, =0, (4.19)

(aéamKL)('%O) = (a€7mé)(x)
Note that ||(ao, m0)€||351 < ||(a0,m0)€||32alm with o > o7, the upper bound (4.2) and two-sided bounds

(4.3) hold for ¢ > ty,, respectively, according to Proposition 3.1. O

From Theorem 1.1, we see that the Cauchy problem (1.21) with initial data (a, m)|—o = (ag, (14+ag)uo)

admits the global-in-time unique solution (a,m) with m = (1 4 a)u satisfying

‘ BN A LR BEY, o B AR B
(a,m) eC’b(RJmB2,1 )ﬂL (R+7B271 )7 a Ecb(R+va,1)ﬂL (R+7Bp71)7

.d_q
m" € Cy(Ry; B,

- . d
)NL*(Ry; B ). (4.20)
For the case of compressible fluids (1.21), we get the following analogue of Wiegner’s theorem (see [49]).

Proposition 4.2. Assume that the initial data satisfy (ag,uo)’ € B3 with o9 < 0y < % — 1. Then the

2,00

difference (a,m) £ (a — ar,m —myz) fulfills the time-weighted inequality
Dy(t) S 1 (4.21)

for t > 0, where the difference functional ﬁp(t) is defined as

~ Lo ~ ~ ~
Dy(t) & sup [[(r)2 D@ m)| [ e )+ IO (Va, @ llrmt
Ul<0’<% ) ’ Ltoo(B;f,l ) Loo(lat§B:1)
with o, = (% — 01 + 02)— and the number o3 € (0,1] given by
1, if O'1<O'§%—1, 01<%—2,
1-, if o1<o<%-1, oy=%-2, (422)
09 = .
g—l—al, if 01<0§g—1, %—2<01<%—1,
min{i, (¢ —1-0y)-}, if 4-1<o<i.
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4.1.1 Bounds for the low frequencies

Let us keep in mind that due to product laws on m = u + au, the global solution (a,m) in Theorem

1.1 satisfies

lal._ g
Ly (Byy

tlml a w4 SXe<l forall ¢>0. (4.23)
Ly(BY, ) L3

(By1)

o1

5.~ 18 equivalent to the upper bound of decay

As shown by Proposition 4.1, the assumption (ag, o) € B
of solutions to (1.23):

~

@z me)'®llg, S 07H0, g >0 t>0. (124)

In what follows, we shall use repeatedly that for 0 < v < 79,

()=, i o> 1,
t
/ (t =) ()R < -, oy 1, (4.25)
0
(Y=t < 1.

Apply A; to the difference system (1.24). Tt follows from Lemma 3.1 and Duhamel’s principle that
¢ _ o
185@ @Oz S [ APl padr (4.26)
0

for j < jo € Z and R3 = max{R,, 25> min{%, u}}. It is easy to see that (¢’ € (0,1])

*3 129270
—0o U, y j . A
L gl ategi(er =) R A
J<jo
. _ ’ — 27
SIFI 1o S (VAR RS
200 jEZ -

and

Z 2j(afal+a’)2j(al+17(,/)e*R32?it||AjF||Lz < ||F||f361+1,0/ Z 9i(o—o1+0") < ||F||261+176,
2,00 2,00

J<jo J<Jjo

for 0 — o1 + 0’ > 0, where we used the series inequalities (s > 0):

> 20 <, sup Y #5290~ < ¢
<o t20 jez
Consequently, we get
¢ 1 ’
1GA Oy, S [ =) 3 NP dr, oo (427)
’ 0 2,00

Regarding the integral on right-hand side of (4.27), we consider cases 0 < t < 2 and ¢ > 2 separately.
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Lemma 4.1. Let p satisfy (1.8) and o9 < 01 < % — 1. It holds that

t
/0 <t - T>7%(0701+G/)HFHEB;’Hl—a'dT

-1 o—0 g
S 072X 0+ X0 (1@ m) N e 55y + Xo) (4.28)

1
for 0 <t <2 and o’ 09 € (0,1].
Proof. The case 0 < ¢ < 2 implies that (t) 1 and (¢t —7) = 1 for 0 <7 <t < 2. Set
F=F'yFh

with
F'=F +F+F;, F'=F+F +Fy,

where
Ff =1 -TI(a)mem’, Ff=(P"(1)+G(a))aa‘ly, Fi=puV(I(a)m®)+ (u+ Ndiv(I(a)m®*)l,

Ff' =1~ I(a)mem", F=(P"(1)+G)aala, F = pV(I(a)m")+ (u+ N)div (I(a)m")lg.

Here G(a) satisfies G(0) = 0 and (P"(1) + G(a))a® = P(1+a) — P(1) — P’(1)a. Due to 4 — 1 < %, it

follows from the lemmas 6.7 and 6.9 that

A4 A4 A4
IET i t1-or S N0 S NIEY g S (1+all
2 2,00 B B

coit+d-4

2,00

L
Ml gl eyen g

d
p
,00 p,1 p,1 2,00

£ 2 V4
S+ laloOlml g S Koo+ A20) Im o1

da
P
p,1 p,1

Similarly, one also has

[T 4 J4
12l o1 a-or S (Lt llall 2 )lall g Tlalsg S (%o + X 0)llall e 51,
’ p;1 p,1

and

1E5 1,0 Nl

2,00

Imllpg S %o
1

¢ 4
& M g (Bg1 )
P,

To limit the term with m®m”, we use a similar procedure leading to (4.16) and (4.18). More precisely,

if 2 < p < d, then (6.8) with o = % — 1 yields

ht £ h
lm®m* g, < (Il g+ Il ) Im®] s (4.29)

p,1 p,1

In the limit case p = d, one can get

h|€ h |t h h
Im e m*l S lm@m e S lImemtl, g S lmllgy Im"l5 (4:30)
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. d . Ld_ )
Employing the embeddings By, < L? and B}, te, Bg1 in (4.29)-(4.30) gives

I @ g, S (Il g+l g )l g0 S 2 (1.31)

2,1 p,1

due to the fact that % —-1< % and 1 — % < % — 1. If p > d, applying (6.8) with o0 =1 — % again implies
that
Im @ m"|he, < (||m|| a ||meLp*)||mh|\ (4.32)
2,00 B p BP

p,1 p,1

d

By using the embedding lejao — B:,;E and g —1< 14 0g owing to p > d, we obtain

h€ L h h
I m* g, S (Il g0+ ) s Jiml s S X (4.3
> P

,1 p,1
On the other hand, using Lemma 6.9 and Bony’s decomposition, we follow from those lines of bounding

(4.11) and arrive at

(1 (@)ym)" || o S NI (@m)]| oy S llall o (Hmell 4o +||th ) (4.34)
B2 1 ,f),l Bz 1
and one can thus bound the term corresponding to I(a)m ® m” as m ® m". Consequently, we deduce
that
I i1 SN N e S (U llall e ) (llml gy + Im]] )Ilmh\l i S (14 X,0)%, 0. (4.35)
By 2,00 BY, B3, BY, B,

In order to bound the term with FJ*, we mimic the proof of (4.35) and get

2 P
2, p,1

”1 2h||z‘al+1—a’ N (1 ||a|| .a ) ”aZH d_q ||ah|| 4 Hah” L4 N (1 Xp,O)XIiO- (4~36)
B
2,00 BP, B2, BP, B

. d . .
Using the composition inequality in Lebesgue spaces and the embeddings By, — B;fl — LP | we get

11(a) |l Lo S llall o S Hazll a +la" g < IIGZIIBg +lla"|| e (4.37)
2 1 2,1 p,1
Consequently, we have
o (I I [ Vg v (4.38)
) B2,1 B,fj,l p 1
Therefore, the proof of Lemma 4.1 is complete. 0

For the nontrivial case ¢ > 2, we shall proceed differently depending on whether o1 < o < % —1lor

g -1l<o< %. For the case 01 < 0o < % — 1, we choose ¢/ =1 in (4.27) and have the following lemma.

Lemma 4.2. Let p satisfy (1.8) and oo < 01 < % — 1. It holds that
t
[ =B PG dr S @A 0+ o) g + o)

()3 (14 2 0)((an i 0, m) | g 02 + Xp0)Dp(t))  (4:39)
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fort>2 and01<a§%—1, where

1, ’Lf o1 <

|
0

09 = 1—

[VISURR S lI=H
I
N

) Zf 01 =
d—1-0y, if 2-2<o01<g-1

Proof. For t > 2, we write
t
-1 o—01
[e=nriemm ey, o
1 1 t 1
— /0 <t,7—>*§(0701+1)|‘F‘|%g{xd7'+/1 <t*7'>7§(0 01+1)HFH£ o dr. (4.40)
It follows from the same computations in Lemma 4.1 that
1
—LY(o—0c —LY(o—0140
[ = m e OB, dr S ) HO  + A2 m) o + o)
0 yo0 100

To handle with the second integral on [1,¢] for ¢ > 2, we decompose F in terms of linear part and

difference part of solutions:

F:FL+ﬁL+ﬁ

with
Fp 2 (1—I(a))ymy ® mg, + (P"(1) + G(a))a} 14
+uV((1+I(a))apmp) + (u+ Ndiv (1 + (a))armr) £ Fip + For, + Far, (4.41)
Fp 2 (1—I(a)m @ myg + (P"(1) + G(a))darly
+ uV((1+ I(a))amy) + (u+ Ndiv (1 + I(a))amy) 2 Fip + Far, + Fap, (4.42)
2 (1 1I(a))m®m+ (P"(1) + G(a))adly
+ uV((1 + I(a))am) + (p+ N)div ((1 + I(a))am), (4.43)

where I(a) is a smooth function I vanishing at zero and satisfies I(a) = (1 + I(a))a.

We first claim that
1Ee e S (4 Xpo+ X200 2E D, 1> 1. (4.44)
Indeed, decompose my @ my, = meL ® meL + m}LL ® m% +mp ® m’i. It follows from Lemma 6.3 that

0
Imz @ millpg S ImLll g lImil g, (4.45)
2,1

where we used the fact that o1 < % —1and o1 + % >d— % > 0. Thanks to Lemma 6.5, we get

2o (4.46)

SlImil a-geolmill o S UmLll ailmil
BP, B BP,

& m g, S mf o m |

f" N\m.

d
P
2,
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To handle the term corresponding to my ® m’i, we observe that applying Lemma 6.8 and tracking those

lines from (4.29) to (4.33) yields

Iz ©m e, < (Ml g+ Iml g Yl g (147
o0 B2, BP, BP,
Hence, in view of (4.1) and (4.2), we deduce that
lmr @mplle < (1+ X)) 2E=0) ¢ > 1, (4.48)
2,00

Similarly, we write
I(a)my @ mp, = I(a)m4 @ m4 + I(a)m} @ m% + I(a)my @ mh.

Now, arguing as for proving (4.45), it easily follows from Lemmas 6.5 and 6.9 that

¢ € < ¢ 0 < ¢ e
[1(a)m, ®mL||B;1m S Hf(a)llelllmL @mypllpg S llallel||mL||B§1_1HmLHB;gl- (4.49)
Note also that if o9 < 01 < % —1 and % —-1< %, as (4.46), we have
h 0 h ¢
[1(a)m7, ®mL||Bg}m S ||f(a)mL||Bgfg+gl ||mL||Bg
> (4.50)
< la|| « ||m? 7_7(,m£7<a,mh a mil .
Sl g 1D g g S hal g oI

where we used the second item of Lemma 6.3 with o9 + 01 > 0. If 01 = 09, then by (6.4) it holds that

N (4.51)

[SoY

h N4 h 4 h 14
[H(a)my, @ mp e S H(@)mpll oallmill g0 Sllall g Imzll s lmzll -
e Bpa 2, By By Bya

S

Keep in mind that (4.34), one can bound the term corresponding to I(a)mr ®m} as my @m’. Precisely,

hpe < ( ¢ h ) h
IH@me & m g, 5 Nl (1l + g ) e (4.52)
Consequently, by combining (4.49)-(4.51) and (4.1)-(4.2), we obtain
_1d_,
[E(ayms © el < (o + X200 2E=D, 151, (453)

Bounding Fy;, and F3p, follows from the same arguments as Fi;. As a matter of fact, it can be shown

that
¢ < ( ¢ . h ‘ h||2 )
IFaclagy, % (o4 ol g ) (g ok g+ okl g Nl g+ IR o
S 1+ X,0)%(1) 725
and
1o

< ¢ . h ¢ ¢ h h )

S+ HGHBEI)(HG’LHBEl—l||mL||B2’1£1 + ||aLIIB§1IImLIIB§;1 + (HaLllle_l + ||aL||B§1)||mL||B§;1

S (L+ X,0)2 (1) 227,
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Therefore, the claim (4.44) is proved.

Regarding F 7, our aim is to show that
(4.54)

S Ldo~
(L, F)ll0: S(1+Xp,o)(ll(a,m,ame)fHB;goz+Xp,o)<> 25770, (t)

for t > 1, where o3 € (0, 1] is to be confirmed.
Firstly, we write my, @ m = mi @ mt + mh ® mt +mp @m. Owing to o1 + 09 < o1 +1 < g, it

follows from the third item of Lemma 6.3 and the definition of D,(t) that
_ld_, ~
lm @ mll g1 S Imllpgaees W]l B S 72 E ) [m | g1 +a2 Dy ().

(4.55)

Arguing as (4.46), we have
(4.56)

Im} @ mfl g1 < llmll, o llmfl a3-
Bpl B3,

where we used (4.1

(4.1)-(4.2), we get
e @ gy, S (g + Il IR gy S @3RB80
for t > 1. Together with (4.55)-(4.57), we thus get
(4.58)

- _1(d_ ~
Imz @ mlge < (1) 2 (| m | gortes + Xp0)Dp(t), > 1.
51) and yields

Bounding the composite term with I(a)my ® m follows essentially from (4.49)-(4

~ _ 1 1_0 ~
(@)@ me e < 07HE (Iml | grrsen + Xp0)XpoDp(t), ¢ > 1. (4.59)
Similarly, we have
1Bocllfyer S+ llall o ) (labll ggios @1 g, + 0kl s 131 g
2,00 ; 21 ;1 2,1
+ (gl g+ ol I e ) (4.60)
3,1 BP,
S 7HETI A+ X 0) (laf | o + Xp0) Di(t)
and
1Fsellye S+ llall o ) (Il spres @ g, + IRl s ol e
Bp 21 pl 21
(4.61)

1
+(lmzll gy + llazll 4 )Hﬁhll.g_l)
,1 B;f Bgf),l
(

ST (14 A, 0) I ggres + Xp0)Dp(t), £> 1.
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In addition, those terms in F can be treated along the same lines as fL, and is thus omitted. Consequently,

(4.54) holds. It follows from (4.44) and (4.54) that

t
[ a=n e oypg, ar
1 2,00
~ “3lo-oite p,0 ar,mr,a,m oo (31 +02 p,0 ~p ,
S O7HEm oD (14 2,0)(1( Vll e (102 + X0) (1))

where o9 is given by (4.22). In fact, we performed the following inequality that due to (4.25),

(t)y—z(e—or+l) if 1(¢-0)>1,
/;(t — )T EmnE (= E) g < 8 b emat D) - if L(d—oy)=1,
<t>—%(0—01+%—1—”1), if %(% —0)<1

forop <o < % — 1. The proof of Lemma 4.2 is complete. O

The case % —l<o< g requires more elaborate estimates. In (4.27), we take ¢’ = o5 on the part of

F;, and ¢/ = 1 on the part of ﬁL + F and prove the following lemma.

Lemma 4.3. Let p satisfy (1.8) and 09 <01 < 4 —1. Forallt >2 and % —1 < o < &, it holds that

t t
(t =y st p b, L dr 4 [ (¢ —7) 2D (B, B[S, dr
0 B2 o0 0 P20
—Y(o—0140o
S ()72 (X0 + 200) (1@ m) | e g1y + Xpio)

(B (14 2,0)(l(a, mis a,m) | e o108 + X0 Dp(1)),

where Fr, Fy, and F are defined by (4.41), (4.42) and (4.43), respectively, and og,03 > 0 are given by

—min{1 (g—l— )—} —min{ﬁ— g—l— — }
02 = 27 2 01 ) 03 = 2 072 01 02 (.

Proof. We deal with the first term on the left-hand side of (4.62). Since the integral on [0, 1] can be

handled similarly as in Lemma 4.1, we deal with the following integral with ¢ > 2 only:
t . ,
/1 (t — 7—>7§(0'70'1+0'2)||FLHB;1;_1_U2 dr,
where o9 € (0,1) is to be confirmed. According to Lemmas 4.1 and 6.3, we arrive at

0 £ 1€ 0
I, @m0 5 I g

—-i(g-¢ —0o
Hm%HBZalJrl—az ,S <t> 3(§—01+1 2)' (462)

Here we noticed that 01 < o1+ 1—09 < % and o1 +1— 09 + g >d— %fl +1— 09 > 0. Combining with
(4.46)-(4.47), one can get

—1(d_gi41—0
e @ me ey rimes S (14 o)) 4o 172 gy, (463)
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Let us next look at the composite term with I(a)my, ® my,, which resorts to the more elaborate analysis.
We consider cases 01 +1—09 < % —1 and % —1<o01+1—-03< % separately. The case o1 +1—09 < g -1

implies that o1 +1 — 09 < %. Note that 01 +1 — 09 + % > 0, it follows from Lemmas 6.6 and 6.9 that

7(@)ml, & mi o1 100 S lall Imf, @ mf || gorri-en S (1) 2(ET1HI702), (4.64)

1

ST

If%—1§01+1—02<%,thanksto%—lg%,weendupwith

1(a)my, ® mi [ ger1-0n S [H(a)m] @ m’i\\;gfl
B 2,00

Vi _led_
Sllmil g < 672 E ) fal]
3, B

<

4 4
S lall g b @mi |y S llal

1 2,1

. Il g o (465)
P, 2,1

d
P
p,1 1

TN

Furthermore, due to the decomposition a = ay, + a, it follows from Proposition 4.1 and the definition of

D,(t) that

d ~

lall & <llacll o +@l, o« S @& 20 +Dy(t)). (4.66)
Br, BY, BY,

Noticing that 2(4 — o1 +1—02) < (% — 01+ 1) < 4 — oy, from (4.65)-(4.66) we obtain

[1(@mf @ mi [0, 1m0 S ()72 (14 Dy (1)), (4.67)

To handle those terms involving I(a)m? @ m{ and I(a)my ® m?, by repeating the procedure leading to

(4.50)-(4.52), we conclude that

[H(@me @ melfe o0y S ()72 E DAL DY(1)), > 1, (4.68)

The nonlinear terms F5;, and F3;, can be essentially estimated at the same way. Consequently, one can

arrive at .
/ (t — T>_%("_‘”+"2)HFLH%aﬁl—oz dr
1 2,00

d

t
S (1+ X0+ Dy(t)) / (t =7y 2lrm ey T3t gy (4.69)
0

< (f)TEemare) (14 X, o+ Dy(1)),

~

if choosing

ortmin{ (4120 ),

which leads to that o — oy + 02 S%—O’l—f—l—(fg and %(%—014—1—02) > 1for%—1<a< g.
Then, we bound the second term on the left-hand side of (4.62) concerning the integral with the

difference (a, m). Without loss of generality, we only estimate
t ) o
[ = A L g, ar
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Let o3 € (0,1) be sufficiently small (to be confirmed). Applying the product law in Lemma 6.3 gives

—Lled_ — Vi ~
Im @ g S Imllgguees PN g0y S OTFETT T2 i || oy 2o Dy (1), (4.70)
B3, ’

where we noticed that o1 + o3 < ¢ and o1 + 4 > 0. Similar to (4.56)-(4.57), we obtain
LS ()T HETTea e & oDy (1) (4.71)

L
Im @ g S Imzll ol g
1

d
B2
pl 2

and

M a, S(TEET ey  D(t), t> 1. (472)

IImL®ﬁ%hIIEB;; (IlmLIIBf_1+||mL|| z)l\m 53
p,1

2,1 BY

Likewise, we see that, using those inequalities for composition in Lemma 6.9,
~ —1(d—014+09—0: ')
1 I(a)my ®m||%§1x < (t)y~3(a—outoe s)(HmeHngog + Xp,0)Xp0Dp(t), t>1. (4.73)

Bounding ﬁg L, ﬁg r, and F can be proceeded along the same lines as ﬁl - The details are left to the

interested reader. Thus, we conclude that
t
[ty e B, dr
1 2,00

t
S / (t =7y Bt G ) (14 2,0) (s mi, a,m)' [ g ses + Xp0) ) Dy(0).
0 00

~

It follows from (4.25) that
¢
/ <t - T>—%(o—01+1) <T>—%(%—01+02—a‘3)d7_
0

(t)y=zlo—or+1), if 1(¢-01+02—03)>1,

Sq (t)ymElem ot — 01402 —03) =1,

—01+02—03)<1,

—
-
=
—

e, Nl NI

<t>7%(0'70'1+%7170'170'3)7 if l(
if L(c—01+1) < i(%—01+03—03) or that
t
/(t_7->_%(‘7_‘71+1)< > I (4—01+02— og)dT
0

()~ 3§ -ortor—0s), if 3(0—01+1)>1,

(SIS

S S () 3(Eoitoa—on)— if Lo—0,4+1)=1,

[N

<t>,%(0701+%,1701,(,3)’ if %(0’ —o+1)<1,

if%(%—ol—i—ag—ag)g%(a—al—l— 1). Recalling that oo = min{3,(¢ —1—0y)—} < % —1 -0y and

d_1<o<d 5, it is shown that above two integrals can be both controlled by (t}‘i("_‘”""’?) provided

that o3 > 0 is chosen small enough such that

d d
2

agzmin{f—a,

~1-01- .
2 g1 g9

Hence, the proof of Lemma 4.3 is finished.
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Combining those time-weighted estimates in Lemmas 4.1-4.3, we conclude from (4.27) that

sup |[(r)37=7 oD (@, )
01<U<%

< (X0 + X 0)(I(@m)" | e (1) + Xp.0) (4.74)

¢
Ieee 55 )

+ (14 o) (@, mi, 6, m) e 1500 + Xp0) ) Dy(2),

where the exponent o, > 0 is given by g, = 05 for 07 < 0 < % — 1 and o, = o3 for % —1l<o< g.

4.1.2 Bounds for the high frequencies

To achieve the high-frequency estimates of (a,m) in Proposition 4.2, it is natural to look at the
difference system (1.24) with the nonlinear term div F'. The problem is that div ' (for example A(I(a)u))
will cause a loss of one derivative. In the critical regularity framework, however, one cannot afford any

loss of regularity for the high frequency part of a. To overcome the difficulty, we use the decomposition
a=a—ap, m=14+a)u—my,

which implies that it suffices to estimate (a,u) instead of (@, m). The proof is proceeded into two steps.
Firstly, we consider the system (1.9)-(1.10) and track the decay exponent for high frequencies according
to the definition of ﬁp(t), by the energy approach in terms of effective velocity w = V(—A)~!(a — divu)
that has been successfully developed by Haspot [21] to prove Theorem 1.1 (see also [15]). Precisely, we

have the following lemma about weighted estimate of (a,u) in high frequencies.
Lemma 4.4. If p satisfy (1.8), then it holds that

« h T
[ (Va, w2 ay + [l

L4
L (B, ) Loo(1,t:B) ) (4 75)
ST+ X0+ X2+ Ir8E 07y o (Irul__ an +D,(1))
Loo(l,t;Bil) Lw(l,t;Bgl )

with o, = 3(% — 01 + 02)—.

Proof. We shall modify the L? time-weighted energy argument performed in [17] slightly. With the aid

of the effective velocity, one can end up with

) (Va,w)®
LE(Bgy )

§||(Va0,u0)||h.%_l+ Z 271 gup ((T)a*/o e_C(T_S)Zj(s)ds)

0<7r<t

(4.76)

Pl Jj2jo—1

wichj:Z}—F---—i—Z;’ and
Z; 2| Aj(au)le, 27 2| VA (adiva)|e, 27 2 |[divulpe|[VA;al| e,

782Nt AjNo%all e, 25 2 Aglle.
i,k
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Without loss of generality, one can assume that ¢ > 2. First, let us handle the time-weighted integral in

(4.76) for 0 < 7 < 2. It is easy to see that
T 2
I £ sup <<T>0‘* / e_C(T_S)Zj(s)ds) < / Zj(s)ds.
0<r<2 0 0
For the integral with 2 < 7 < ¢, it is convenient to split it into two parts: [0,1] and [1,7]. It is also simple

to handle:
1 ) 1 1
I, % sup ((T)a/ e_C(T_S)Zj(s)ds) < sup (<T>a*6_57—)/ Zj(s)dsg/ Zj(s)ds
2<7<t 0 2<7<t 0 0

since 2 < 7 < tand 0 < s < 1. On the other hand, note that s = 1 + s & (s), the integral on the part

[1,7] can be dealt with as follows:

Is 2 sup (<T>a*/ eiC(T*S)Zj(s)d{s)
1

2<r<t

.
< sup sup (so‘*Zj(s))<T>°‘*/ efC(Tfs)sfo‘*ds,S sup (7% Z;(1)).
2<7r<t 1<s<7 1 1<r<¢t

Consequently, by employing Lemmas 6.9 and 6.10, we obtain

ST 2601+ 1)
JjZjo—1 (4.77)

Slall_, o Qull_ o +llal® o +lal. o full 4y S
L2BE,)  L2BE) 287, Lesr,) Lier )~ Y

where the interpolation inequalities are also used. Next, we focus on the nontrivial case

S 26 g S 2670 sup (7 Z5(n).

i>jo—1 i>jo—1 tsrst
We shall use repeatedly the following inequalities:
&0 an] a0 S Xer IDEll g S Dy(t). (4.78)
L (Byy) L (Byy)

Indeed, it follows from the embedding, the definition of 51, and tilde norms that

2 Gmoman] o SIERETTag] e e Marlt s ST+ X
L?C(B:J) L (B3, ) L?"(B;l)
and
* =€ « | h i~
[(m*al_ o SI0*™al® o +[Kn)*™all” o+ S Dp(t)
LSO(B:J) LtOQ(BQ2,1) Lf"(B:l)

Noticing that a, < % — 01, it is clear that

3= 276G sup (10 ZH(r) = || aul|" L
3701 1<r<t Lee(1L,,B), )
Slrapul™ o @)t L
Leo(1,:B7)) L1687, ) (4.79)
SIMEE=mar|| a rEET e ] a0
L;”(B;I) Lm(l,t;Bil) L°<>(1,t;Bp”y1 ) Lf"(BIf’J)
< [rEEr) || s+ X 0D,(1),

Leo(1,6:BP))
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where we used the decomposition au = apu+au and (4.78). Furthermore, it follows from the embedding

. d
By, < L* and Lemma 6.10 that

ST 26D sup (1o (22 + 23 + Z1)(7))
2Go-1 tsrst (4.80)
Slal__ 4 lI7%ul
L3°(BP

p,1

S Xp ol T ul| 4y

1
L Lee(1,:BP, )

_ a
Lo (1,68
Next, let us pay attention to the term Z? associated with g = —u - Vu — k(a)Va — I(a)Au. Tt follows

from product laws in Lemma 6.3 adapted to the tilde spaces that

7w - Vul|" iy NHuIL d 1||T u||~ A SXp,ollT“*uIL 4y
Le(LBY, ) Le(BE, ) = (LtBE, ) ©(LEBP, )

and
|7 I (a) Aul" iy Sa ||~ |7 UII a0 S Aol ull 4y -
Le(L,5BP, ) (Bpn = (1,82, ) L=(1t:B), )

Regarding to the pressure term with k(a)Va, we use the following decomposition:
k(a)Va = k(ar)Var + (k(a) — k(ar))Var + k(a)Va.

Then Lemma 6.3, Lemma 6.9 and (4.78) ensure that

|7 k(ar)Vaz]| oy SSRGS 142,
Leo(1,:BL, ) Le(Br)) '
|72+ (k(a) — k(ar))Var| o Slarl o 107G s S X0Dp(0)
< (L,t:BP, L (BE, L (B2 1)
and
Ir*k@vall o Slall g D) ¢ S X 0Dp(t)
LOO(l,t;B;1 ) L? (B;’l) L?C(B}iI)

Therefore, we obtain

> Y6 sup (¢ Z3m) S 1+ X2+ Xpo (D™ ull_ an +D,(0)). (4.81)
iSiec1 1<7<t Le=(1,:BP) )

Putting all above estimates (4.77)-(4.81) together, it thus follows from (4.76) that

) (Va,u)l”  aly ST+ Xpo+ X0+ [m2E0 0|y
Le(BE, ) L=(1,t;B) )

+Apo(lrel L re +D60)

(4.82)

Finally, we are going to establish gain of regularity and decay altogether for the high frequencies of u,
which strongly depends on the parabolic maximal regularity for the Lamé semi-group (see Lemma 6.11).

It follows from the velocity equation in (1.9) that
O¢(tu) — A(tu) = u — tVa + tg,

tu‘t:() = O
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with 0 < ¢t < 1. Consequently, the regularity property in Lemma 6.11, standard product laws and

composite estimates enable us to get

h h h h
[[£ull” ca S I, va)ll i ||t9|| S X0+ X g+ A, o||tU|| 4
L°°(O,1,B:1 ) s 43 p 1 (O,I;Bﬁl ) (O,],B‘"l )

which, together with X}, o <« 1, leads to

sup IIU(t)IIZ,?%+1 S Xpo- (4.83)

te[0,1] i

To obtain decay estimates of u for ¢ > 1, we reformulate the velocity equation in (1.9) as follows
Ot (1% u) — A(Tu) = e tu — 7% (Va — g)

with 1 <7 <t. Thus, employing Lemma 6.11 again implies that

I ul|” s Slu@ll ap +Ir*"ul® oy 4 [ all” 4
Loo(1,t; ) BY, Le=(1,tBY, Loo(1,BP,) (4.84)
+ |\Ta*g|h 4y -
< (LtBL, )
Due to that fact 7 > 1, we see that
o1,k - h .|k
It RS SISl a7 \ 4 SIMal? 4
L= (1, p,1 & B;’,l (1, tB;f) ) L?O(B;f,ﬁ
Bounding the norm ||7%g|/" 4_, is exactly the same as (4.81), and one thus arrive at (4.75)
Lo (1,t; B" )
readily. O

Secondly, we establish several calculus inequalities to deduce the desired high-frequency decay of

(a,m) in Proposition 4.2.

Lemma 4.5. If p satisfy (1.8), then it holds that

~Y
LBy ) Lge(B

Il o SIS U o+ X+ Do)
p,1

lrml g Sl U Ao KR+ XDy,
Lo (1,t:B7)) Le@6B),) (4.85)
T I e T e Xp,o (1 + 0Dy (1),

L= (LB, )

||7—22 o1)= u” d §1+Xp70+X 0+(1+XpO)D()
Lw(l,t;Bﬁl)

Proof. Bounding the first and second inequalities in (4.85) are almost the same, which both depends on

the decomposition

m=(14+a)u—mp=u—mg+I(a)m+I(ar)mr + (I(a) — I(ar))mr with I(a)= (4.86)
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Let us take a look at (4.85), for example. It follows from Proposition 4.1 that

< Xyo. (4.87)

LA~
P

[y me]®  a, < e mp]”

L (Byy (B

The definition of 25,), product laws and composite estimates in Lemmas 6.3 and 6.9 allow to get

[{m)* I(a )mIIh 2o <D I@m]” o +[1(r)* I(a)m hllh 4

Lo (BE, LB, ©Br)

S llall i (||< yoemtl g+ me w4 ) (4.88)

t L?O(B;,l) L?O(BpJ )

5 XP,ODP (t)

Similarly, by (4.78), we have

() Iag)mell” — ao, < Im)*I(az)mi||"

d 4
L°°(Bp1 ) L?"(B;l) Ly(BY, )
ShnEd gy (nREemb) g el ) (489)
LE(Br)) LE(B3, ) Le(BE, )

5(1+Xp,0)2'

Also, it follows from (4.1), (4.78) and Lemma 6.9 that
Kr)*(I(@) = Iap)mell” oy SID* @l o Imzll_ a0 < XoDp(). (4.90)

Temr ) TeBry) LB )

Therefore, combining with (4.86), (4.87), (4.88), (4.89) and (4.90) lead to (4.85), directly.
To show (4.85),-(4.85),, it suffices to use the decomposition that v = m—1I(a)m = m+my—1I(a)(m+

mp). Keeping in mind that o2 < 1, by Proposition 4.1, we arrive at

ax, b . >0 1(g+1-01)—
L TN [ RPN iy AP
+ [[(m) - I(a)m|| o+ () I(a)me ]| 4 (4.91)
Loo(1,t:B) 1) Lo (1,t; Bp 1)

ST+ X+ X204 (14 X,0)Dy(2).
Bounding (4.85), is totally similar, and thus those details can be omitted. O

Plugging (4.85) into (4.75), and remembering the smallness of X}, o and the fact that the high-frequency

~ .
part of ay, decays exponentially in the norm of L;’O(Bzﬁ”l), we eventually conclude that

K (va,m)ll"  a, + e m]® s S1+2X,0D(). (4.92)
L&(Bgy ) Le=(1,t:B,,)

Finally, adding up (4.92) to (4.74), we conclude that there exists a constant o, € (0, 1] such that

Dy(t) 1+ ||(a,m)z||L?o(B;1m) + (||(aL,mL,a7m)l||Lt®C(B~gga*) + X, 0)D,(t), t>0. (4.93)
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As shown by the priori work [51] (see Lemma 5.1), there is the nonlinear evolution to the solution (a,u)
at low frequencies:

||(a,u)éHL?o(B;1m) < Co. (4.94)

for t > 0, where the constant Cy depends on X, and the norm ||(a0,uo)ZHBgl with o9 < 01 <
4 — 1. Arguing similarly as those lines (4.12), (4.13), (4.16) and (4.18), one can deduce from (4.94)
that ||(a7m)e||L?o(Bgl ) < Co, provided that Theorem 1.1 holds. Combining this with the interpolation

(6.1), the fact o1 < 01 + 0. < ¢ and ||(a, m)’|| o < |[(a,m)] a_ S Xy, we deduce
2 (e m) lL?(an (e m) |Lf°<Bz%1 HhYor
L 2110+ 21116, 0. 110,
0 m) g sy S am) N o Nam) % S ORRE <<l (495)
>0 t (Bay

with 6, € (0, 1) satistying 16, + (1 — 0)% = oy + 0. Since ||(ar, mL)eHBgl is uniformly bounded for all
o > o1 due to (4.2), a similar interpolation argument implies that

l(@r, ML) e sy << 1. (4.96)

2,

According to (4.93), (4.95) and (4.96), the time-weighted difference estimate (4.21) follows. This com-
pletes the proof of Proposition 4.2.

4.2 Lower and upper bounds for decay rates

The subsection is devoted to the proof of “if" part of Theorem 1.2. We first prove (1.13) under the

assumption (ag, ug)! € BJL_ with oy < 07 < 4 — 1. Indeed, (1.12) is exactly the same as (4.94), which

2,00

has been shown by [51]. From Lemmas 4.4-4.5, we have

—outoa)— (4.97)

for ¢ > 1 and o5 € (0,1] given by (4.22). Note that ||(a,u)(t)||" , is bounded for ¢ > to with to € (0,1)
BTJ

due to Theorem 1.1 and (4.83). Thus, (4.97) holds true for ¢ >pi0 with any ¢op > 0. So we only need to

show the decay of the low-frequency part of (a,u). In fact, it follows from Propositions 4.1 and 4.2 that

@ m)" ()55, < Iaz.ms) Ol g, + @ = az.m = me) (Ol (198)
S (7RO Ot < (o)

forop <o < % and t > 0. The endpoint case 0 = g can be handled due to the low-frequency localization

and the faster decay rates of the difference (a — ar,m — myz). To derive the decay of u’, we resort to

the decomposition that v = m — I(a)m’ — I(a)m" again. By employing product laws and composite in
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Lemmas (6.4) and (6.9), we deduce that

e < e
H(@)m 5y < HI(G)HBpngm IBg,
d
< (e h 0. < (p-tlo—atd-on) d
S (la ||1‘3§1 + e ||B§1)||m lpg, S )2 T <o <o (4.99)
1 (a)m ||, < I (@m®| & < lall, 4 lm®| 4
’ 2p,1 Bzf,l 2p,1
< —1(d—g,4+4—0) —L(o—01) d d
SRR TR S ()T, ;<055 (4.100)

where (4.97) and (4.98) were used. Concerning I(a)m”, we take advantage of the low-frequency cut-off

and argue similarly as in (4.14)-(4.18) to get

Mm®|

d d_
P P
p,1 Bp,l

h€ h| £ L h
[H(@)m?|[ g S [H(a)m* | zer S (el g0 +la™]]
) so0 B B

2,1

Together with (4.98)-(4.101), it is shown that

L S (TR, (4.101)

@l g, S Im@)llgg, + 1 @m |y + I @m" %,
’ ‘ ' ' (4.102)

d
S, m<o<y

Hence, by (4.97), (4.98) and (4.102), we immediately get the upper bound (1.13).

Furthermore, we establish the two-sided decay (1.14) under the stronger assumption that (ag,uo)* €

BJL_ with og < 0y < 4 — 1. It suffices to show the lower bound in (1.14), since Bgl is a subset of Bgloo

;00 [e’e)
For that end, by virtue of Propositions 4.1 and 4.2, we arrive at

||(a,m)é(1f)||Bg)1 > ||(ClLamL)é(t)||B;;)1 - (e —ar,m— mL)(t)”%g’l

1

2 & ()72 — Cy(tymhemrtoe) (4.103)
1 1

> - t —*(0'—0'1)

- 200< > ’

foro; <o < % and suitably large time ¢ > ¢;, where C)y > 1 is chosen into a greater constant if necessary.
The endpoint case 0 = % is due to faster rates of (a — ar,m — my) under some low-frequency cut-off.

Since the product I(a)m decays at faster rates (see (4.99)-(4.101)), one can get

1 -1 o—01
(@, ) Ol gg, = (am) Ol g, — 1 (@)mlz, > e 2=

for oy < 0 < % and suitably large time ¢ > ¢;. This completes the proof of the two-sided time-decay

estimate (1.14).

5 Necessary condition

The section is devoted to the proof of “only if” part of Theorem 1.2. That is, if the solution (a, u) admits
the upper bounds (1.13) (resp., two-sided bounds (1.14)), then (ag, uo)’ € Bgloo (resp., (ag, uo)’ € B;’}m)
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with op < 01 < g — 1. The crucial ingredient of this claim is to develop the inverse Wiegner’s argument
from incompressible Navier-Stokes equations (as shown by Skalak [46] and the first author et al. [5]) to

compressible Navier-Stokes equations.

5.1 Inverse Wiegner’s argument for compressible Navier-Stokes equations

Our aim is to derive the following result, which can be regarded as the analogue of inverse Wiegner’s

Theorem in [5,46].

Proposition 5.1. Let oy < 01 < % —1. If the solution (a,u) to the Cauchy problem (1.9) satisfies (1.12)

and (1.13), then (a,m) = (a — ar,m —my) has faster decay rates at low frequencies:
1@ ) (@)l < ()2t (5.1)
2,1
for o1 <o <% andt >0, where o5 € (0,1] is defined in (4.22).

Proof. The proof follows from the similar procedure leading to Lemmas 4.1-4.3 in fact. We recall (4.27)
that

t
@ m) )%, < [ (t— T>‘%("“’1+"/)||F ||Z.<,1+H,, dr, o>o0 (5.2)
2,1 B
’ 0 2,00

for o' € (0,1] and ¢ > 0. We focus on the integral on the right-hand side of (5.2) and consider cases
0 <t <2andt > 2 separately. The case 0 < t < 2 implies that (t) ® land (¢t —7)~1for 0 <7 <t <2.

The nonlinear term F' in (1.21) can be rewritten as

F=(l+au®u+ (P"(1)+ G(a))a*ly + pV(au) + (1 + N)div (au)ly

with (P”(1) + G(a))a? = P(1 + a) — P(1) — P'(1)a satisfying G(0) = 0. It follows from the proof of
Lemma 4.1 that

FIt, o <I|F% <+ lall «)all a« +||ul| «_ a,u)|| 5o
| IIBQ}; SIFlpg S A+l ”BEI)(” ”Bgl H IIBgll)H( )V lsg,
+ (L llall « (I w)]l gy + (a2 )@ )] 4y (5.3)
BY, B3, BY, By
S X + 220100 gri—or) + X
Hence, for 0 < ¢t < 2, we arrive at
t 1 ’ 1/d
/0 {t - T>_§(J_Ul+g )“FHfg;lH—a'dT S Apo(l+ Xp70)2<t>_§(§_01)7 (5.4)

where we have used (1.12).

To handle the integral in (5.2) for ¢ > tg, we divide it into two cases 01 < 0 < g— 1 and %— l1<o<

ol

Case 1: O'1<O'§%71
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We write (choosing ¢’ =1 in (4.27))
t
| =m0, ar

to t
— /0 <t_T>_%(U_Ul+1)HF||%glwdT+/<t_T>_%(U_Ul+1)HF”%glxdT' (5.5)

to

Arguing as (5.4) yields
t() 1 1
/)(t—7§_§w—m+nuﬁﬂggldT:SA%OU—%k%@2@)‘ﬂ%_mX (5.6)
0 2,00
On the other hand, employing the similar estimates as (4.45)-(4.52) gives that

¢ y4 14
HFﬂB;;;§(1-+HaHB§1NKa,U)HBE;JKG,U)HB;gH

)@, w)ll g o + (@) (| a )ll(a,w)"] 4, (5.7)

d
P P
By prl Bp,l

+ (1 + ol ,
B

4
P
.1

d

S L+ A, 0) ()2 (570

=

for ¢ > to, where (1.13) and the fact that o1 < % — 1 were used. Consequently, it follows from (5.5) and

(5.7) that .
t—7)TEOTOHD B, dr S (14 Xy ) (t) 2O
B P,
2,00

to
where we have performed the time-weighted inequality due to (4.25):

t
/ t— T>_%(U_Ul+1)<T>_%(%_Ul)d’r

to
()~ (o—ort1) if 2(4-0y)>1,

S Q (t)—le—ot)— if 2(4-0y)=1,
(ty=3lo—erts—l-on) if 1(d _g) <

Case 2: %71<0§g
For brevity, we only deal with the integral on [to,t] with ¢ > ty. We rewrite the nonlinear term F by

F =F}+F}
with
Ff2 (1 +a)u' @u’ + (P"(1) + Ga))(a)?1y + uV (@ u®) + (u + N)div (a*u®)Ty,
Fl2 (14 a) " @u’ +ueu™) + (P'(1) + G(a))(a"a® + aa")ly
+ uV (ula® 4+ ual) + (u + N)div (ua* 4 ua")I,.
For those terms with low-frequencies, following from the line from (4.62), we choose ¢’ = o3 € (0,1)

in (5.2) and get

1414 Y4 J4
1y -e S (Ll g )l @s )| g1 0] g

a
P
p,1 2,1

< <t>_%(%—01+1—02)(1 + X,0), t>to.
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The choice of g5 £ min{%, (g —-1- 01> — } indicates that ¢ — o7 + 09 < g —o01+1— 09 and

1/d

5(§ —o1+1—02)>1for % —l<o< %. Consequently, we are led to

t
/ (8 =) A L o dr

to

d
2

t
<1+ X,0) / (t —ryT3lemnto) (=3 (E=ntl=oa)gr < (1 4 &, ) () "2 to2),
0

On the other hand, we take ¢/ = 1in (5.2) in order to bound those terms with high frequencies. Performing

similar computations leading to (4.71)-(4.72) gives

1E g S (ot lall g ) ()l @)l g+ w2 )

d
p,1 B;f),l B2.1
<y (L ), > o,

which enables us to obtain
t
I
/ {t—7) 3(o <n+1)|“172h||f}’_3gl dr
to »°

t
S (L Ayo) [ (=) HOo ) @) B2y S (14 ) 1) RO,

to

Indeed, owing to (4.25), we performed the following integral inequalities

t
/ <t _ 7_>7%(0'70'1+1) <T>7%(d717201)d7_
0

<t>—%(<7—<71+1)7 if %(d_ 1-— 201) > 17
S <t>7%(0701+1)77 if %(d*1*201):17

(ty=slo-ortd=2=20) if 1(d—1—20y) <1,

if $(c —01+1) < 3(d—1—201) and

t
/ <t _ T>—%(a‘—01+1) <T>—%(d—1—201)d7_
0
(t)=z(d=1-201) if Lo—o014+1)>1,
S () 2(d-1=200)— if Jo—01+1)=1,
<t>*%(0701+d727201), if %(0 -0+ ]_) <1,

if 2(c —o0141) > 4(d — 1 — 20y), which are both controlled by (t)=2(@=e1+72) que to the choice of oy

for o € (% -1, g] Hence, the proof of Proposition 5.1 is complete. O

5.2 The implication of low-frequency assumptions

As the second step of Inverse Wiegner’s argument is to show that the solution (ar,my) to the linear
problem (1.23), actually, has the same decay rates as the global-in-time solution (a,u) to the Cauchy
problem (1.9) given by Theorem 1.1.
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By employing similar estimates as (4.99)-(4.101), we see that ||au(t)||Bg1 decays in time at the faster

rate (t)~2(?=91%) with some & > 0. This then gives, together with (1.13), that

I (6) g, < I (8) g, + lau(t) s
| ' : (5.8)

[SH

ST tsty, oy <o <o

=N

According to Proposition 5.1, we find that (a, m) satisfies the faster decay (5.

from (1.13), (5.1) and (5.8) that

). Furthermore, it follows

Nanme) @)l g, < lam) (@)l pg, + 1@ —ag,m—me)(0)] 5

< <t>7%(0701) + <t>7%(0701+02)

d
SWO7ET, >t ai<o<y.

Hence, the upper bound of decay estimates of (ar,mz) implies that (ag, up)* € Bgloo with og < 01 < %—1
with the aid of Proposition 4.1.
Next, we justify that (ag,uo)’ € Bg}w with o9 < 0y < ¢ — 1 provided that (a,u) satisfies (1.12) and

(1.14). Notice that, for o1 < o < g,

1 -1 o—01
l(@m)" Ollag, = @0 Oy, =~ lau®lly, = GO, 1> (5.9)

for suitably large to > t1, where Cy > 1 is chosen into a greater constant if necessary.

By using (5.1) and (5.9), we obtain

Nanme) (@)l g, > am) (0l pg, ~ (@ —ag.m—me) ()]s,

1 1 1
> (t —5(c—0o1) _ Ca(t —3(0—0o1+02)
> &0 3(t)
1 1
> t 7*(0’70’1)
TR

for t > t3 = max{ty, (QCQC:S)%}, where C3 > 0 is some constant. Therefore, applying Proposition 4.1

again, we have (ag,ug)’ € Bgloo This concludes the proof of Theorem 1.2.

6 Appendix

In the last section, we collect useful analysis tools which make the paper as self-contained as possible.

The first lemma is devoted to the classical Bernstein’s inequality.

Lemma 6.1. Let 0 <r < R,1 <p < q<oo and k € N. Then for any function u € LP and \y > 0, it
holds

d(+

~ k+d($—1)
Supp @ C {€ € R? | [¢] < MR} = || D ullpe S A | e

Supp @ C {¢€ € RY | M7 < |€] < MR} = ||D¥ullzo ~ AF|jul| oo
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We state the interpolation inequality that is repeatedly used throughout the paper.

Lemma 6.2 ([1]). The following real interpolation property is satisfied for 1 < p < oo, s1 < $o and

6 e (0,1): X
05+ (1-0)sy < .
||’LL||B;1+< sz S 9(1 — 9)(52 — 51) (6 1)

In addition, there are classical product estimates which play a fundamental role in bounding bilinear

0 —0
B el

[l

terms.

Lemma 6.3. Let 1 < p,r <oco. Then
1EGl s, S IFli~ [Glls, + G~ Flls, . if s> 0
. d 2
IFGI ovseag SIFIg Gl s152< 7 and 51+ 85 > dmax (0. ~1);
p,
. d d 2
S ||F||B;}1||G||B;?mv if s1< 5752 < » and $1 + s > dmax (Oa b 1)-

.51+52—%

IFG|
Bpoo
In order to match different Lebesgue indices at low frequencies and high frequencies, non classical

product estimates are further developed in the L? framework (see [17,52]). Precisely,

Lemma 6.4. Let the real numbers sy, s2, p1 and ps be such that
1
— <1.

d
52 < N S1 Z 52, — +
b1 P2

d
s1+s82>0, s < —, <
b1 b2

Then it holds that
1 1 n 1 s1

with — = —
q

. g < s oS e
IFGlgs, S IE g 1G5z nope d

Additionally, for exponents s >0 and 1 < p1,ps2,q < 0o satisfying

(d d) 1 1 1 s
—, — and —=—+ — — —,
g p1 p2 d

d d .
—+ — —d<s<min
P1 P2

p1 P2

one has
FGIl -« < | F] Gl 5—s .
[ ||Bq‘OON|| HB;L1 | ||Bp2m

In particular, we have the following non product inequalities with respect to the regularity requirement

in main results, which are employed in time-weighted energy methods.

d _ 24 gnd p satisfy (1.8). It holds that

Lemma 6.5. Let og < 01 < % =1 with o9 = §

IFGl s SIFI 4 IGlsgy (6.2)
p,1
1RGO rrgg 1P gy 1G] (63
In addition, we have
L <
IFGllg0 < IIFI\BI?;l IIGIIB;g (6.4)

for2 <p<d.
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On the other hand, the third estimate in Lemma 6.3 can be also extended to the non classical form

(see [51]).
Lemma 6.6. Let the real numbers s1, So, p1 and py be such that

d ./d d 1 1
S1+822>0, s < —, 32<m1n(—7—) and — 4+ — < 1.
P1

Then it holds that

IFGH  oyvea-g SNE g G5z - (6.5)

P20

Actually, we mainly employed the following product estimates.

Lemma 6.7. Let 0g < 01 < % — 1 and p satisfy (1.8). It holds that

1FGlpg:, S IIFIIBg Gl sg2» (6.6)

IFGH orva-g SIFI aalIGH it g-ge (6.7)

2<>c ,1

However, only resorting to Lemmas 6.4 and 6.6 is not enough to establish the desired decay estimates
in particular in case of the oscillation case p > d, non standard product estimates with high frequencies

are also needed (see [17]).

Lemma 6.8. There exists a universal integer No such that for any 2 < p <4 and s > 0, we have

IFG gy < CUIFl g5, + 18050 Fll I Gl e (6.5)
|F" Gl < C(IF"]

5o, 1850w F 1) 16 e (6.9)

with(fo:g—%d

5 — =, and C depending only on jo, d and s.

1
2 p’
System (1.9) also involves composite of functions (through I(a) and k(a)) and they are bounded

according to the following conclusion (see [1,17]).

Lemma 6.9. Let F : R — R be smooth with F(0) = 0. For all 1 < p,r < 0o and s > 0, it holds that
F(u) € B;r NL>® forue B;r NL>®, and

. < .
IF@)lg,, < Clulls,

with C' depending only on ||ul|;«, F' (and higher derivatives), s, p and d.

In the case s > — mln(d d) thenueBé ﬁB”l implies that F(u )EBé ﬂB and

p,1’

IF@Il, < CO+ Jull,

ot Ml -

The following commutator estimates is useful to control nonlinearities in high frequencies ( [1]):
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Lemma 6.10. Let 1 < p < oo and —g —1<s<1+ g. Then it holds

2js||[u’Aj]awia”L” 5 HUH .1+1||a||BS ’ i=1,2,...d,
Z Bp p,1

JEZ p,1

with the commutator [A, B] = AB — BA.

Finally, we present the endpoint maximal regularity property for the Lamé system below (see for

instance [1]).

Lemma 6.11. Let T >0, u>0,2u+A>0,s€R, 1 <p,r < oo and 1 < g3 < o1 < 0o. Assume that

. ~ Ls_912
ug € B .. and f € LP? ((),T;B;err °2) hold. If u is a solution of

oo
Oy — pAu — (p+ \)Vdivu = f, reRY ¢t
u(z,0) = uo(x), r e R4,
then u satisfies
min{ge 2+ Al g S ol + minges 2+ A}
5 (B
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