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Abstract

We establish the existence and the uniqueness for the Boussinesq system in R3 in the critical
space C ([0, T ], L3(R3)3)× L2(0, T ;L3/2(R3)).

1 Introduction

We consider the Cauchy problem associated with the Boussinesq system in R3:

∂tu−∆u+∇π +∇ · (u⊗ u) = θe3 in (0, T )×R3

div u = 0 in (0, T )×R3

∂tθ −∆θ + u · ∇θ = 0 in (0, T )×R3,
(B)

where u denotes the velocity of the fluid, π the pressure, θ the temperature and e3 the third vector
of the canonical basis in R3. The given initial velocity and temperature are denoted respectively
u0 and θ0. The initial velocity will be always assumed to satisfy the condition div u0 = 0. The
system (B) appears in the study of the motion of incompressible viscous flows when one takes into
account buoyancy effects arising from temperature variations inside the fluid. When the latter are
neglected (θ ≡ 0), the system boils down to the classical Navier–Stokes equations.

The natural scaling leaving the Boussinesq system invariant is λ 7→ (uλ, θλ) with

uλ(t, x) = λu(λ2t, λx) and θλ(t, x) = λ3θ(λ2t, λx).

This motivates the study of (B) in function spaces that are left invariant by the above scaling.
Assuming (u0, θ0) ∈ L3(R3)3 × L1(R3), an adaptation of Kato’s Lp-theory on strong solutions
of Navier–Stokes [13], yields the local-in-time existence and the uniqueness in appropriate scale-
invariant function spaces where the fixed point argument applies. But, as discussed in [3], the
uniqueness problem in the natural space C ([0, T ], L3(R3)3)×C ([0, T ], L1(R3)) seems to be out of
reach, due to the lack of regularity results in this class, and to the difficulty of giving a meaning,
in the distributional sense, to the nonlinearity ∇ · (uθ) (and, of course, to u · ∇θ) in the last
equation in (B). To circumvent this difficulty, the uniqueness for the Cauchy problem, in [3], was
established in a smaller space for the temperature, namely C ([0, T ], L1(R3)∩L∞loc(0, T ;Lq,∞(R3)),
for some q > 3/2. This restriction on the temperature, however, is a bit artificial: the excluded
borderline case, q = 3/2, is precisely the most interesting one, as it corresponds to the minimal
regularity to be imposed on the temperature, when the velocity is in the natural space L3(R3)3,
to give a sense to the nonlinearity.

The scaling relations then lead us to consider solutions such that t 7→ ‖θ(t)‖L3/2 is in L2.
Therefore, it seems natural to address the uniqueness problem (and the existence) in

C ([0, T ], L3(R3)3)× L2(0, T ;L
3
2 (R3)).
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As the Lorentz-space approach of [6, 14, 18], applied in [3], fails when q = 3/2, we have to adopt
a different strategy. Our main tools will be maximal regularity estimates. The idea of using the
maximal regularity in uniqueness problems goes back to [19], where the second author gave a short
proof of celebrated Furioli, Lemarié and Terraneo’s uniqueness theorem [9] of mild solutions of
the Navier–Stokes equations in C ([0, T ], L3(R3)). In the present paper, we will need to use the
maximal regularity in an original way, in order to make it applicable despite the product uθ a
priori just belongs to L1(R3)3.

In fact, our approach allows us to obtain the uniqueness, and then the regularity as a byproduct
of the existence theory, in a larger class, namely(

C ([0, T ], L3(R3)3) + r L∞(0, T ;L3(R3)3)
)
× L2(0, T ;L

3
2 (R3)) (1.1)

for some small enough r > 0.
One could speculate that the smallness condition on the parameter r may be unessential and

that the uniqueness and the regularity could be true in the larger space L∞(0, T ;L3(R3)3) ×
L2(0, T ;L

3
2 (R3)). This would be a nontrivial generalization for the system (B) of the deep result

of Escauriaza, Seregin and Šverák [11], about endpoint Serrin regularity criteria for the Navier–
Stokes equations. Establishing such a result would probably require various ingredients (backward
uniqueness, profile decompositions, [8, 11, 20], etc.). Whether or not such a stronger statement
is true, we feel that our main theorem would remain of interest because of its attractive proof,
entirely based on maximal regularity estimates.

2 Statement of the main results

Let T > 0 and r > 0. Let S ′(R3) denote the dual of Schwartz space. In order to state our
uniqueness result in the class

XT,r :=
(
C ([0, T ], L3(R3)3) + r L∞(0, T ;L3(R3)3)

)
× L2(0, T ;L

3
2 (R3)),

we first clarify what we mean by solution of (B). By definition, a mild solution of (B) with inital
data (u0, θ0) ∈ S ′(R3)3×S ′(R3), and div u0 = 0, is a couple (u, θ) ∈ XT,r solving the Boussinesq
system written in its integral form (2.1) below:

u = a+B(u, u) + L(θ)

θ = b+ C(u, θ)
(2.1)

with
a(t) = et∆u0, b(t) = et∆θ0.

The operators B, C and L are defined, for t ∈ [0, T ], and (u, θ) ∈ XT,r, by

B(u, v)(t) = −
ˆ t

0

e(t−s)∆P
(
∇ ·
(
u(s)⊗ v(s)

))
ds, (2.2)

C(u, θ)(t) = −
ˆ t

0

e(t−s)∆div
(
θ(s)u(s)

)
ds, (2.3)

and

L(θ)(t) =

ˆ t

0

e(t−s)∆P(θ(s)e3) ds. (2.4)

Here P denotes Leray’s projector onto divergence-free vector fields and
(
et∆
)
t≥0

is the heat semi-
group.

Our main result then is stated as follows:
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Theorem 2.1. There is an absolute constant r0 > 0 such that, if (u1, θ1) and (u2, θ2) are two
mild solutions to (B) in XT,r, with the same initial data (u0, θ0) ∈ S ′(R3)3×S ′(R3), div u0 = 0
and 0 ≤ r < r0, then

(u1, θ1) = (u2, θ2).

As we will see, any solution (u, θ) as in Theorem 2.1 must belong to C ([0, T ],S ′(R3)3 ×
S ′(R3)), and the initial data must belong more precisely to L3(R3)3 × B−1

3/2,2(R3). The above

theorem is then completed by the corresponding existence result:

Theorem 2.2.

i) Let (u0, θ0) ∈ L3(R3)3×B−1
3/2,2(R3), with div u0 = 0. Then there exists T > 0 and a solution

of (2.1) (u, θ) ∈ C ([0, T ], L3(R3)3)× L2(0, T ;L
3
2 (R3)).

ii) If θ0 belongs to the smaller homogeneous Besov space Ḃ−1
3/2,2(R3) and if ‖u0‖L3 +‖θ0‖Ḃ−1

3/2,2
is

small enough, than such solution is global and (u, θ) ∈ Cb(0,∞;L3(R3)3)×L2(0,∞;L
3
2 (R3)).

For some other existence results for the Boussinesq system in different functional setting we
refer, e.g., to [5, 6, 12].

3 Applications of the maximal regularity

The purpose of this section is to study the properties of the operators B, C and L, respectively
defined by (2.2), (2.3) and (2.4), by means of the following maximal regularity result. The theorem
below is classical. See [22] for the case p ∈ (1,∞) and q = 2 for the negative generator of an
analytic semigroup. The general case 1 < p, q <∞ for the Laplacian in the whole space was first
proved in [15], Chapter IV, §3. See also [16, Theorem 7.3] for a modern proof of the case of the
Laplacian in the whole space, or [10, Theorem 3.1] and [4, Theorem 1.2] for a slightly more general
situation. The proof of the estimates for the mixed fractional space-time derivatives goes back
to [23, Theorem 6]; see also [21, Proposition 2.4].

To begin with, let us define the fractional time derivative operator. Let 1 < p < ∞ and X
be a UMD Banach space (i.e., for which the Hilbert transform is bounded in Lp(R;X); this is
in particular the case if X = Lq(Rd) for 1 < q < ∞). Denote by d

dt the operator defined on
Lp(0,∞;X) with domain

W 1,p
0 (0,∞;X) := {f ∈ Lp(0,∞;X); ∂tf ∈ Lp(0,∞;X) and f(0, ·) = 0}.

This operator is invertible, sectorial in Lp(0,∞;X) and admits bounded imaginary powers satis-
fying ∥∥( d

dt

)is∥∥
L (Lp(0,∞;X))

≤ Cp(X)(1 + s2)e
π
2 |s|, s ∈ R,

where Cp(X) is a constant which depends only on p and X (see, e.g., [7, Theorem 3.1] or [1, ex.
4.7.3.c p. 160]). This implies in particular that for α ∈ [0, 1], the fractional derivative operator(

d
dt

)α
is invertible and its domain is Wα,p

0 (0,∞;X).

Theorem 3.1 (Maximal regularity). Let 1 < p, q < ∞. Let R be the operator defined for f ∈
L1

loc(0,∞; S ′(Rd)), d ≥ 1, by

Rf(t) =

ˆ t

0

e(t−s)∆f(s) ds, t > 0. (3.1)
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Such operator R is bounded from Lp
(
0,∞;Lq(Rd)

)
to Ẇ 1,p

(
0,∞;Lq(Rd)

)
∩Lp

(
0,∞; Ẇ 2,q(Rd)

)
.

In other words, d
dtR, ∆R, and (−∆)α

(
d
dt

)1−α
R, for any 0 < α < 1, are bounded operators in

Lp
(
0,∞;Lq(Rd)

)
. Moreover, there exists a constant Cp,q such that∥∥ d

dtRf
∥∥
Lp(Lq)

+
∥∥∆Rf

∥∥
Lp(Lq)

+
∥∥(−∆)α

(
d
dt

)1−α
Rf
∥∥
Lp(Lq)

≤ Cp,q‖f‖Lp(Lq),

for all α ∈ (0, 1).

To establish Theorem 2.1, we assume that we have two mild solutions (u1, θ1) ∈ XT,r and
(u2, θ2) ∈ XT,r of (B), arising from the same initial datum (u0, θ0) ∈ S ′(R3)3 ×S ′(R3). Letting
u = u1 − u2 and θ = θ1 − θ2, we then obtain (u, θ) ∈ XT,r and

u = B(u, u1) +B(u2, u) + L(θ),

θ = C(u1, θ) + C(u, θ2).
(3.2)

The maximal regularity theorem allows us to obtain all the relevant estimates for the operators
B and C and L.

Proposition 3.2. For all ε > 0, there exists r > 0 such that for all v, w ∈ C ([0, T ], L3(R3)3) +
r L∞([0, T ], L3(R3)3), and for all 1 < p <∞, there exists τ = τ(ε, p, v, w) > 0 such that the linear
operator

B(·, v) +B(w, ·) : L4(0, τ ;L6(R3)3) −→ L4(0, τ ;L6(R3)3), (3.3)

B(·, v) +B(w, ·) : Lp(0, τ ;L3(R3)3) −→ Lp(0, τ ;L3(R3)3) (3.4)

is bounded, with operator norm less than ε.

Proof. Let r > 0, to be chosen later. For v, w ∈ C ([0, T ], L3(R3)3) + r L∞(0, T ;L3(R3)3), we can
find vr, wr ∈ Cc([0, T ]×R3) such that

ess sup[0,T ] ‖v − vr‖L3 + ess sup[0,T ] ‖w − wr‖L3 ≤ 3r. (3.5)

Let us introduce the functions f and g defined by

f(s) = (−∆)−1P
(
∇ ·
(
u(s)⊗ (v − vr)(s) + (w − wr)(s)⊗ u(s)

))
, s ∈ [0, T ] (3.6)

and
g(s) = −(−∆)−3/4P

(
∇ ·
(
u(s)⊗ vr(s) + wr(s)⊗ u(s)

))
, s ∈ [0, T ].

We have
B(u, v) +B(w, u) = ∆Rf + (−∆)3/4Rg, (3.7)

where R is the vector-valued analogue of the scalar operator defined in Theorem 3.1.

(i) Let us first consider (3.3). We easily see that the norm of f in L4(0, τ ;L6(R3)3) is bounded
by the norm of u ⊗ (v − vr) + (w − wr) ⊗ u in L4(0, τ ;L2(R3)3×3). Indeed, the operator
(−∆)−1P∇· is bounded from L2(R3)3×3 to L6(R3)3. Hence,

‖∆Rf‖L4(0,τ ;L6(R3)3) ≤ C4,6‖u⊗ (v − vr) + (w − wr)⊗ u‖L4(0,τ ;L2(R3)3×3)

≤ 3rC4,6‖u‖L4(0,τ ;L6(R3)3).

The norm of g in L4(0, τ ;L6(R3)3) is bounded by the norm of u⊗vr+wr⊗u in L4(0, τ ;L3(R3)3×3).
To see this, first observe that the operator (−∆)−3/4P∇· is bounded from L3(R3)3×3 to
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L6(R3)3. Moreover, ‖(−∆)3/4et∆‖L (L6(R3)3) . t−3/4. As (−∆)3/4R is a convolution opera-
tor, we have

‖(−∆)3/4Rg‖L4(0,τ ;L6(R3)3) ≤ c ‖t 7→ (−∆)3/4et∆‖L1(0,τ ;L (L6(R3)3))‖g‖L4(0,τ ;L6(R3)3)

≤ c′ τ 1
4 ‖u⊗ vr + wr ⊗ u‖L4(0,τ ;L3(R3)3×3)

≤ c′ τ 1
4

(
‖vr‖L∞((0,τ)×R3)3) + ‖wr‖L∞((0,τ)×R3)3)

)
‖u‖L4(0,τ ;L6(R3)3).

We first choose r > 0, such that 3rC4,6 ≤ ε
2 , next vr and wr in Cc([0, T ]×R3), satisfying (3.5)

and last τ > 0 such that

c′ τ
1
4

(
‖vr‖L∞((0,τ)×R3)3) + ‖wr‖L∞((0,τ)×R3)3)

)
≤ ε

2
.

This finally establishes (3.3).

(ii) Let us now consider assertion (3.4). Let 1 < p < ∞. We slightly modify the expression of
B(·, v) +B(w, ·) given by (3.7):

B(u, v) +B(w, u) = ∆Rf + (−∆)1/2Rg̃, (3.8)

where we set

g̃(s) = −(−∆)−1/2P
(
∇ ·
(
u(s)⊗ vr(s) + wr(s)⊗ u(s)

))
, s ∈ [0, T ] (3.9)

The function f defined by (3.6) is bounded in Lp(0, τ ;L3(R3)3) by 3r‖u‖Lp(0,τ ;L3(R3)3), up
to a multiplicative constant involving Cp,3 and the norm of bounded operator (−∆)−1P∇·
from L

3
2 (R3)3×3 to L3(R3)3. The norm of g̃ in Lp(0, τ ;L3(R3)3) is bounded by the norm of

u ⊗ vr + wr ⊗ u in Lp(0, τ ;L3(R3)3×3). Indeed, the operator (−∆)−
1
2P∇· is bounded from

L3(R3)3×3 in L3(R3)3 and so

‖(−∆)1/2Rg̃‖Lp(0,τ ;L3) ≤ c‖t 7→ (−∆)1/2et∆‖L1(0,τ ;L (L3))‖g‖Lp(0,τ ;L3)

.
√
τ
(
‖vr‖L∞((0,τ)×R3)3 + ‖wr‖L∞((0,τ)×R3)3

)
‖u‖Lp(0,τ ;L3).

Proceeding as in item (i) settles (3.4).

This establishes Proposition 3.2.

Remark 3.3. Notice that if one assumes that v and w belong to the larger space L∞(0, T ;L3(R3)3),
and if r > 0 is fixed, then in general one cannot ensure the existence of vr and wr in L∞((0, T )×R3)
such that ess supt∈(0,T ) ‖v(t) − vr(t)‖L3 + ess supt∈(0,T ) ‖w(t) − wr(t)‖L3 < 3r. This is the case

if, for example, v or w are of the form t−1φ(·/t) with φ ∈ L3(R3) and r is small with respect
to ‖φ‖L3 .

Proposition 3.4.

1. For all ε > 0, there exists r > 0 such that all v ∈ C ([0, T ], L3(R3)3) + r L∞(0, T ;L3(R3)3),
there exists τ = τ(ε, v) > 0 such that

C(v, ·) : L
4
3 (0, τ ;L2(R3)) −→ L

4
3 (0, τ ;L2(R3)) is bounded with norm less than ε.

2. For all ε > 0 there exists r > 0 such that, for all v ∈ C ([0, T ], L3(R3)3)+r L∞(0, T ;L3(R3)3),
there exists τ = τ(ε, v) > 0 such that

C(v, ·) : L2(0, τ ;L
3
2 (R3)) ∩ L 4

3 (0, τ ;L2(R3)) −→ L2(0, τ ;L
3
2 (R3)) is bounded

with norm less than ε.
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3. For all ε > 0 all v ∈ L4(0, T ;L6(R3))3, there exists τ = τ(ε, v) > 0 such that

C(v, ·) : L2(0, τ ;L
3
2 (R3)) −→ L2(0, τ ;L

3
2 (R3)) is bounded with norm less than ε.

4. For all ε > 0, all ϑ ∈ L2(0, T ;L
3
2 (R3)), there exists τ = τ(ε, ϑ) > 0 such that

C(·, ϑ) : L4(0, τ ;L6(R3)3) −→ L
4
3 (0, τ ;L2(R3)) is bounded with norm less than ε.

Proof. We proceed as in the previous proposition. For r > 0, let us choose vr ∈ Cc([0, T ] ×R3)3

such that
ess sup[0,T ] ‖v − vr‖L3 ≤ 2r. (3.10)

Then we have, for all θ ∈ L 4
3 (0, τ ;L2(R3)),

C(v, θ) = C(v − vr, θ) + C(vr, θ) = ∆Rf + (−∆)1/2Rg

where, now, we set f(s) = (−∆)−1div
(
θ(s)(v(s)− vr(s))

)
and g(s) = −(−∆)−1/2div

(
θ(s)vr(s)

)
.

As in the proof of previous proposition we see that the norm of f in L
4
3 (0, τ ;L2(R3)) is bounded

by the norm of
(
θ(v − vr)

)
in L

4
3 (0, τ ;L

6
5 (R3)3) (because of the Sobolev embedding Ẇ 1, 65 ↪→ L2

in dimension 3). As ∆R is a bounded operator in L
4
3 (0, τ ;L2(R3)), we have

‖(−∆)Rf‖
L

4
3 (0,τ ;L2(R3))

≤ C ′4
3 ,2

C ‖θ(v − vr)‖
L

4
3 (0,τ ;L

6
5 (R3)3)

≤ 2rC ′4
3 ,2

C ‖θ‖
L

4
3 (0,τ ;L2(R3))

where C is the constant arising from the Sobolev embedding Ẇ 1, 65 ↪→ L2 in dimension 3 and r
comes from the choice of vr.

The norm of g in L
4
3 (0, τ ;L2(R3)) is bounded by the norm of θ vr dans L

4
3 (0, τ ;L2(R3)3),

because (−∆)−
1
2 div is a bounded operator in L2(R3)3. Moreover, ‖(−∆)1/2et∆‖L (L2(R3)) . t−1/2.

Then, viewing as before (−∆)1/2R as a convolution operator, we get

‖(−∆)1/2Rg‖
L

4
3 (0,τ ;L2(R3))

≤ c ‖t 7→ (−∆)1/2et∆‖L1(0,τ ;L (L2(R3)))‖g‖L 4
3 (0,τ ;L2(R3))

≤ c′ τ 1
2 ‖θ vr‖

L
4
3 (0,τ ;L2(R3)3)

≤ c′ τ 1
2 ‖vr‖L∞((0,τ)×R3)3)‖θ‖L 4

3 (0,τ ;L2(R3))
.

We then choose r > 0 such that 2rC ′4
3 ,2

C ≤ ε
2 , next vr ∈ Cc([0, T ]×R3)3 satisfying (3.10) and last

θ > 0 such that c′ τ
1
2 ‖vr‖L∞(((0,τ)×R3)3) ≤ ε

2 . This establishes the first assertion of the proposition.

To prove the second assertion we proceed as before: for r > 0, we choose vr ∈ C ([0, T ]×R3)3

such that (3.10) holds. Then for all θ ∈ L2(0, τ ;L
3
2 (R3)),

C(v, θ) = C(v − vr, θ) + C(vr, θ) = (−∆)
3
4Rf + (−∆)1/2Rg (3.11)

where f(s) = −(−∆)−
3
4 div

(
θ(s)(v(s) − vr(s))

)
and g(s) = −(−∆)−1/2div

(
θ(s)vr(s)

)
. We

easily see that the norm of f in L
4
3 (0, τ ;L

3
2 (R3)) is controlled by the norm of

(
θ(v − vr)

)
in

L
4
3 (0, τ ;L

6
5 (R3)3) (owing to the Sobolev embedding Ẇ

1
2 ,

6
5 ↪→ L

3
2 in dimension 3). As

(
d
dt

) 1
4 (−∆)

3
4R

is a bounded operator in L
4
3 (0, τ ;L

3
2 (R3)), we have

‖(−∆)
3
4Rf‖

L2(0,τ ;L
3
2 (R3))

≤ C̃
∥∥( d

dt

) 1
4 (−∆)

3
4Rf

∥∥
L

4
3 (0,τ ;L

3
2 )

≤ C̃C 4
3 ,

3
2
C ‖θ(v − vr)‖

L
4
3 (0,τ ;L

6
5 (R3)3)

≤ C̃C 4
3 ,

3
2
C 2r‖θ‖

L
4
3 (0,τ ;L2(R3))

.

(3.12)
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Here C̃ is the constant coming from the Sobolev embedding Ẇ
1
4 ,

4
3 ↪→ L2 in dimension 1, C is

the constant of the Sobolev embedding Ẇ
1
2 ,

6
5 ↪→ L

3
2 in dimension 3 and r comes from the choice

of vr. The norm of g in L2(0, τ ;L
3
2 (R3)) is controlled by the norm of θ vr in L2(0, τ ;L

3
2 (R3)3),

because (−∆)−
1
2 div is a bounded operator from L

3
2 (R3)3 to L

3
2 (R3). As (−∆)

1
2R is a convolution

operator, we can write

‖(−∆)
1
2Rg‖

L2(0,τ ;L
3
2 (R3))

≤ c ‖t 7→ (−∆)
1
2 et∆‖

L1(0,τ ;L (L
3
2 (R3)))

‖g‖
L2(0,τ ;L

3
2 (R3))

≤ c′ τ 1
2 ‖θ vr‖

L2(0,τ ;L
3
2 (R3)3)

≤ c′ τ 1
2 ‖vr‖L∞((0,τ)×R3)3)‖θ‖L2(0,τ ;L

3
2 (R3))

.

(3.13)

It just remains to choose r > 0 such that 2rC̃C 4
3 ,

3
2
C ≤ ε

2 , next vr ∈ L∞((0, T ) × R3)3 such

that (3.10) holds and finally θ > 0 such that c′ τ
1
2 ‖vr‖L∞((0,τ)×R3)3) ≤ ε

2 . This establishes the
second assertion of the proposition.

Let us prove the third assertion. As v ∈ L4(0, T ;L6(R3)3), for an arbitrary r > 0 we can
choose now vr ∈ L∞((0, T )×R3)3 such that

‖v − vr‖L4(0,T ;L6(R3)3) < r. (3.14)

If τ > 0 and θ ∈ L2(0, τ ;L
3
2 (R3)), then (v − vr)θ ∈ L

4
3 (0, τ ;L

6
5 (R3)3) by Hölder inequality.

Therefore, splitting C(v, θ) as in (3.11), the above computations (3.12)-(3.13) can be reproduced:
the only change that needs to be done is the application of (3.14) instead of (3.10). We get in this
way

‖(−∆)
3
4Rf‖

L2(0,τ ;L
3
2 (R3))

≤ C̃C 4
3 ,

3
2
C r‖θ‖

L2(0,τ ;L
3
2 (R3))

.

This, combined with (3.13) proves our third assertion.

The proof of the fourth assertion follows the same scheme. For r > 0, choose ϑr ∈ Cc([0, T ]×R3)
such that

‖ϑ− ϑr‖
L2(0,T ;L

3
2 (R3))

≤ r. (3.15)

Then, for all v ∈ L4(0, τ ;L6(R3)3), we have

C(v, ϑ) = C(v, ϑ− ϑr) + C(v, ϑr) = ∆Rf + (−∆)1/2Rg

with f(s) = (−∆)−1div
(
(ϑ(s) − ϑr(s))v(s)

)
and g(s) = −(−∆)−

1
2 div

(
ϑr(s)v(s)

)
. One easily

shows that the norm of f in L
4
3 (0, τ ;L2(R3)) is bounded by Cr‖v‖L4(0,τ ;L6(R3)3), where C is

the norm of (−∆)−1div : L6/5(R3)3 → L2(R3). Thus, as the operateur ∆R is bounded on

L
4
3 (0, τ ;L2(R3)) by C ′4

3 ,2
= C C 4

3 ,2
, we have

‖∆Rf‖
L

4
3 (0,τ ;L2(R3))

≤ C ′4
3 ,2
r‖v‖L4(0,τ ;L6(R3)3).

The norm of g in L
4
3 (0, τ ;L2(R3)) is bounded by the norm of ϑr in L2(0, τ ;L3(R3)) and the norm

of v in L4(0, τ ;L6(R3)3). As (−∆)1/2R is a convolution operator, we deduce that

‖(−∆)
1
2Rg‖

L
4
3 (0,τ ;L2(R3))

≤ ‖t 7→ (−∆)1/2et∆‖L1(0,τ ;L (L2(R3)))‖g‖L 4
3 (0,τ ;L2(R3))

≤ c τ 1
2 ‖ϑr‖L2(0,τ ;L3(R3))‖v‖L4(0,τ ;L6(R3)3).

We then choose r > 0 such that C ′4
3 ,2
r ≤ ε

2 , next ϑr ∈ Cc([0, T ] × R3) satisfying (3.15) and last

τ > 0 such that c τ
1
2 ‖ϑr‖L2(0,τ ;L3(R3)) ≤ ε

2 . We thus get the last assertion of the proposition.
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Proposition 3.5. For all τ > 0, the operator L defined by (2.4) is linear and bounded from

L2(0, τ ;L
3
2 (R3)) to L4(0, τ ;L6(R3)3 and from L

4
3 (0, τ ;L2(R3)) to L4(0, τ ;L6(R3)3), with operator

norms independent on τ . Moreover, for all p ∈ [1,∞), L is bounded from L2(0, τ ;L
3
2 (R3)) to

Lp(0, τ ;L3(R3)), with norm of order τ1/p.

Proof. For θ ∈ L2(0, τ ;L
3
2 (R3)), we write

L(θ) =
(

d
dt

)− 1
4

((
d
dt

) 1
4 (−∆)

3
4Rϕ

)
,

where ϕ(s) = (−∆)−
3
4P
(
θ(s)e3

)
. Observe that ϕ ∈ L2(0, τ ;L6(R3)3), because of the Sobolev

embedding (−∆)−
3
4 (L

3
2 ) ↪→ L6 (in dimension 3), with norm bounded by the norm of θ in

L2(0, τ ;L
3
2 (R3)). By Theorem 3.1, we deduce that L(θ) ∈

(
d
dt

)− 1
4

(
L2(0, τ ;L6(R3)3)

)
↪→ L4(0, τ ;L6(R3)3),

the last inclusion arising from the Sobolev embedding
(

d
dt

)− 1
4 (L2) ↪→ L4 (in dimension 1). This

establishes the first assertion of the proposition.
When θ ∈ L 4

3 (0, τ ;L2(R3)), we write

L(θ) =
(

d
dt

)− 1
2

((
d
dt

) 1
2 (−∆)

1
2Rψ

)
, (3.16)

with ψ(s) = (−∆)−
1
2P
(
θ(s)e3

)
. Notice that ψ ∈ L 4

3 (0, τ ;L6(R3)3), because of the Sobolev embed-

ding (−∆)−
1
2L2 ↪→ L6 (in dimension 3), with norm bounded by the norm of θ in L

4
3 (0, τ ;L2(R3)).

Applying Theorem 3.1 with α = 1
2 , we get L(θ) ∈

(
d
dt

)− 1
2

(
L

4
3 (0, τ ;L6(R3)3)

)
↪→ L4(0, τ ;L6(R3)3).

The last inclusion comes from the Sobolev embedding
(

d
dt

)− 1
2 (L

4
3 ) ↪→ L4 (in dimension 1). The

second assertion of the proposition follows.
Next, for θ ∈ L2(0, τ ;L

3
2 (R3)), let us write L(θ) as before in (3.16). By Sobolev embedding

(−∆)−
1
2 (L

3
2 ) ↪→ L3 in dimension 3, we have ψ ∈ L2(0, τ ;L3) with norm bounded by ‖θ‖

L2(0,τ ;L
3
2 )

.

By Theorem 3.1 with α = 1
2 , we deduce that L(θ) ∈

(
d
dt

)− 1
2
(
L2(0, τ ;L3)

)
↪→ Lp(0, τ ;L3) for all 1 ≤

p <∞. The last inclusion follows, for 2 < p <∞, from the Hölder injection L2((0, τ)) ↪→ Lq(0, τ)

for q ∈ [1, 2] (with norm τ1/q−1/2) and Hardy-Littlewood-Sobolev inequality
(

d
dt

)− 1
2 (Lq) ↪→ Lp

(in dimension 1), for all p ∈ (2,∞) and 1
p = 1

q −
1
2 . For 1 ≤ p ≤ 2 it is sufficient to apply once

more Hölder inequality.

4 The proof of the uniqueness

We need a few lemmas before proving Theorem 2.1.

Lemma 4.1. Let (u0, θ0) ∈ S ′(R3)3×S ′(R3) with div u0 = 0, and let (u, θ) ∈ L∞(0, T ;L3(R3)3)×
L2(0, T ;L

3
2 (R3)) be a mild solution of (2.1) with initial data (u0, θ0). Then

(u, θ) ∈ C ([0, T ],S ′(R3)3 ×S ′(R3)).

Moreover, we have u0 ∈ L3(R3)3 and for every t ∈ [0, T ], u(t) does also belong to L3(R3)3.

Proof. Let us denote by F (t, x) the kernel of the operator et∆P∇·. It is well known, and easy
to check, that F satisfies the scaling relations F (t, x) = t−2F (1, x/

√
t), with F (1, ·) ∈ (L1(R3) ∩

C0(R3))3×3, where C0(R3) is the notation for continuous functions on R3 which go to 0 at infinity.
From these properties and the dominated convergence theorem one deduces that, for all 1 ≤ p ≤ ∞,
that F ∈ C (0,∞;Lp(R3)). Moreover, ‖F (t, ·)‖1 = t−

1
2 ‖F (1, ·)‖1.
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Now, if (u, θ) ∈ XT,r, then u⊗u ∈ L∞(0, T ;L3/2(R3)3×3). Then, recalling the definition of the
bilinear operator B and applying the above properties of F with p = 1, next applying the L1-L3/2

convolution inequality, shows that the map t 7→ B(u, u)(t) is continuous from (0, T ] to L3/2(R3)3.
Moreover, ‖B(u, u)(t)‖L3/2 → 0 as t→ 0. Hence, the map t 7→ B(u, u)(t) is continuous from [0, T ]
to L3/2(R3)3 with value 0 at t = 0.

Let us now consider L(θ). Using the fact that the heat kernel e−|x|
2/(4t)/(4π t)3/2 is in

Cb(0,∞;L1(R3)), we readily see that L(θ) ∈ C ((0, T ];L3/2(R3)). To study the behavior of L(θ)
near t = 0 we consider ϕ ∈ S (R3) and observe, computing the Fourier transform of Pθe3 with

respect to the space variable, that t 7→ ĥ(t, ·) = P̂θe3(t, ·) belongs to L2(0, T ;L3(R3)) by the
Hausdorff-Young theorem. Then we have

|〈L(θ)(t), ϕ〉| ≤
ˆ t

0

|〈ĥ(s), e−(t−s)|·|2 ϕ̂〉|ds ≤
ˆ t

0

‖ĥ(s)‖L3‖ϕ̂‖L3/2 ds

≤ ‖ϕ̂‖L3/2

ˆ t

0

‖θ(s)‖L3/2 ds ≤ Cϕ‖θ‖L2(0,T ;L3/2(R3))

√
t.

Therefore, L(θ)(t) → 0 as t → 0 in S ′(R3) and we deduce that L(θ) ∈ C ([0, T ],S ′(R3)3), with
value 0 at t = 0.

Let us now consider C(u, θ). We have uθ ∈ L2(0, T ;L1(R3)3). Moreover, the kernel of the
operator et∆∇· has the same scaling properties as F . Therefore, proceeding as for B(u, u) we see
on the one hand that C(u, θ) ∈ C ((0, T ];L1(R3)3). On the other hand, we can also write

C(u, θ)(t) = div

ˆ t

0

e(t−s)∆(uθ) ds.

But the L1(R3)-norm of
´ t

0
e(t−s)∆(uθ) ds is bounded by

√
t‖uθ‖L2(0,T ;L1(R3)) that goes to zero as

t→ 0. Hence, C(u, θ)(t) −−−→
t→0

0 in S ′(R3)3, by the continuity of the divergence operator from L1

to S ′.
For the linear terms a and b it is obvious that they are both in C ([0, T ],S ′(R3)), with values

at t = 0 given by u0 and θ0, respectively.
Summarising, from the equation (2.1) we see that (u, θ) ∈ C ([0, T ],S ′(R3)3 ×S ′(R3)), with

values at t = 0 given by (u0, θ0). But u ∈ L∞(0, T ;L3(R3)3), hence, for all 0 ≤ t ≤ T , we can
find a sequence tn −−−−→

n→∞
t, contained in [0, T ], such that u(tn) ∈ L3(R3)3 for all n ∈ N, with

L3-norm uniformly bounded by ‖u‖L∞(0,T ;L3(R3)3), and u(tn) −−−−→
n→∞

u(t) in S ′(R3)3. By duality

we deduce that u(t) ∈ L3(R3) for every t ∈ [0, T ]. In particular, the initial velocity u0 must belong
to L3(R3).

Lemma 4.2. There exists an absolute constant r0 > 0 such that if 0 ≤ r < r0 and (u, θ) ∈ XT,r

is a solution of (2.1), with (u0, θ0) ∈ S ′(R3)3 ×S ′(R3) and div u0 = 0, then there exists τ > 0
such that u ∈ L4(0, τ ;L6(R3)3).

Proof. Let us take p = 2 throughout this proof (any other choice 1 < p <∞ would do: a different
choice of p would just affect the value of r0 and τ). We know, by Proposition 3.2, that there exists
r0 and τ > 0 such that if (u, θ) ∈ XT,r with 0 ≤ r < r0, then the norm of the linear operator
B(·, u) from L4(0, τ ;L6(R3)3) ∩ Lp(0, τ ;L3(R3)3) to itself is bounded, with norm smaller than 1

2 .
This shows that Id−B(·, u) is invertible in L4(0, τ ;L6(R3)3) ∩ Lp(0, τ ;L3(R3)3).

Moreover, as θ ∈ L2(0, τ ;L
3
2 (R3)) by our assumption, we get from Proposition 3.5 that L(θ) ∈

L4(0, τ ;L6(R3)3) ∩ Lp(0, τ ;L3(R3)3).
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As observed in the previous Lemma, we have u0 ∈ L3(R3). Moreover, L3(R3) ⊂ Ḃ0
3,3(R3) ⊂

Ḃ
−1/2
6,3 (R3) ⊂ Ḃ

−1/2
6,4 (R3). See [2, Chap. 2] for generalities on Besov spaces. The characterisation

of Besov spaces through the heat kernel (see [2, Theorem 2.34]) then implies that t 7→ et∆u0 ∈
L4(0, τ ;L6(R3)3). Since we have also that t 7→ et∆u0 ∈ C ([0, τ ];L3(R3)3), we obtain

a ∈ L4(0, τ ;L6(R3)3) ∩ Lp(0, τ ;L3(R3)3), for all 1 < p <∞.

These considerations allow us to define

ũ =
(
Id−B(·, u)

)−1(
a+ L(θ)

)
.

We would like to show that u = ũ. By the assumption on u and the construction of ũ, these two
functions satisfy

u = B(u, u) + a+ L(θ) and ũ = B(ũ, u) + a+ L(θ).

Moreover, ũ ∈ L4(0, τ ;L6(R3)3) ∩ Lp(0, τ ;L3(R3)3). Their difference v := u− ũ satisfies

v ∈ Lp(0, τ ;L3(R3)3) and v = B(v, u).

Reducing (if necessary) the value of τ , we deduce from the last point of Proposition 3.2 that

‖v‖Lp(0,τ,L3) ≤ 1
2‖v‖Lp(0,τ ;L3(R3)3).

This implies that v = 0 in Lp(0, τ ;L3(R3)3). In particular, u = ũ ∈ L4(0, τ ;L6(R3)3).

Remark 4.3. Under the conditions of Lemma 4.1, the initial temperature θ0 must belong to the
inhomogeneous Besov space B−1

3/2,2(R3). Indeed, θ ∈ L2(0, τ ;L
3
2 (R3)), and C(u, θ) then belongs

to this same space by the third claim of Proposition 3.4 and the previous lemma, for τ > 0
small enough. Then, by the second equation of (2.1), we obtain b ∈ L2(0, τ ;L

3
2 (R3)). The

characterisation of inhomogeneous Besov spaces with negative regularity (see [16, Theorem 5.3])
then immediately gives θ0 ∈ B−1

3/2,2(R3).

Lemma 4.4. Let 0 ≤ r < r0 and (u1, θ1) and (u2, θ2) be two mild solutions of (B) in XT,r arising
from (u0, θ0) ∈ S ′(R3)3 ×S ′(R3), with div u0 = 0. Let also θ = θ1 − θ2. Then there exists τ > 0

such that θ ∈ L 4
3 (0, τ ;L2(R3)).

Proof. Let u = u1−u2. Then (u, θ) ∈ XT,r satisfies (3.2). By Lemma 4.2 we know that there exists
τ0 > 0 such that u1, u2 ∈ L4(0, τ0;L6(R3)3). Applying the last two assertions of Proposition 3.4

we get C(u, θ2) ∈ L
4
3 (0, τ0;L2(R3)) ∩ L2(0, τ0;L

3
2 (R3)). The first and the second assertions of

Proposition 3.4 ensure the existence of τ > 0 (we can assume τ ≤ τ0) such that C(u1, ·) is

bounded from L
4
3 (0, τ ;L2(R3)) ∩ L2(0, τ ;L

3
2 (R3)) to itself, with norm less than 1

2 . Therefore we
can define

θ̃ =
(
Id− C(u1, ·)

)−1
(C(u, θ2)).

We see that θ̃ ∈ L 4
3 (0, τ ;L2(R3)) ∩ L2(0, τ ;L

3
2 (R3)), and moreover θ̃ = C(u1, θ̃) + C(u, θ2). Let

ψ = θ − θ̃. Then, subtracting the second equation in (3.2), we obtain

ψ ∈ L2(0, τ ;L
3
2 (R3)) and ψ = C(u1, ψ).

But u1 ∈ L4(0, τ ;L6(R3)3) by Lemma 4.2. Hence, applying the third assertion of Proposition 3.4

we get ψ = 0 and so θ = θ̃. The latter equality implies that θ ∈ L 4
3 (0, τ ;L2(R3)).
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Proof of Theorem 2.1. Let r0 > 0 be the absolute constant determined in Lemma 4.2. Assume
that (u1, θ1) and (u2, θ2) are two mild solutions in XT,r of (B), with 0 ≤ r < r0, starting from
(u0, θ0) ∈ S ′(R3)3 × S ′(R3). In fact, by Lemma 4.1, there is no restriction in assuming that
u0 ∈ L3(R3)3.

Then, setting u = u1 − u2 and θ = θ1 − θ2, the couple (u, θ) satisfies (3.2). As θ1, θ2 ∈
L2(0, T ;L

3
2 (R3)) by our assumption and the first item of Proposition 3.5, we know that L(θ) ∈

L4(0, T ;L6(R3)3). Applying Proposition 3.2, we know that there exists τ > 0 such that ‖B(u, u1)+
B(u2, u)‖L4(0,τ ;L6(R3)3) ≤ 1

2‖u‖L4(0,τ ;L6(R3)3). This allows us to show, applying Lemma 4.2, next
using the first equation in (3.2), that

‖u‖L4(0,τ ;L6(R3)3) ≤ 2‖L(θ)‖L4(0,τ ;L6(R3)3).

Applying the first assertion of Proposition 3.4, with v = u1 and the last assertion of Proposition 3.4
with ϑ = θ2, we deduce from the second equality in (3.2) that, for all ε > 0, there exists 0 < τ ′ ≤ τ
such that

‖θ‖
L

4
3 (0,τ ′;L2(R3))

≤ ε
(
‖θ‖

L
4
3 (0,τ ′;L2(R3))

+ ‖u‖L4(0,τ ′;L6(R3)3)

)
.

But the L
4
3 (0, τ ′;L2(R3))-norm of θ is finite by Lemma 4.4, so

‖θ‖
L

4
3 (0,τ ′;L2(R3))

≤ ε

1− ε
‖u‖L4(0,τ ′;L6(R3)3).

The second item of Proposition 3.5 allows us to take ε > 0 such that

2
ε

1− ε
‖L‖L (L4/3(0,τ ′;L2(R3)),L4(0,τ ′;L6(R3)3) < 1.

We conclude that u = 0 in L4(0, τ ′;L6(R3)3). This implies that θ = 0 a.e. on (0, τ ′). The
uniqueness is thus established at least during a short time interval [0, τ ′), for a suitable 0 < τ ′ ≤ T .

A standard argument now allows us to deduce that the uniqueness holds, in fact, in the whole
interval [0, T ]: let τ∗ be the supremum of the times t0 ∈ [0, T ] such that (u1, θ1) = (u2, θ2) in
Xt0,r. Let us show that τ∗ = T . Indeed, otherwise, by the continuity of (u1, θ1) and (u2, θ2) from
[0, T ] to C ([0, T ],S ′(R3)3 ×S ′(R3)), established in Lemma 4.1, we deduce that

(u1(τ∗), θ1(τ∗)) = (u2(τ∗), θ2(τ∗)) ∈ S ′(R3)3 ×S ′(R3). (4.1)

But (u1, θ1)(·+τ∗) and (u2, θ2)(·+τ∗) are mild solutions of (B) in XT−τ∗,r, with initial data given
by (4.1). Therefore, applying the uniqueness result in short-time intervals established before, we
see that there exists τ ′′, such that 0 < τ ′′ < T − τ∗, and (u1, θ1)(· + τ∗) = (u2, θ2)(· + τ∗) in
Xτ ′′,r. Then (u1, θ1) = (u2, θ2) in Xτ∗+τ ′′,r and this would contradict the definition of τ∗. The
uniqueness is thus granted in the whole interval [0, T ].

5 Existence

Let us prove Theorem 2.2, that ensures the existence of solution in the space where we ob-
tained the uniqueness. In fact, an existence theorem for solutions to the Boussinesq system was
established in [3], under assumptions more general than that of Theorem 2.2. However, the so-
lution constructed in [3] a priori does not satisfy the required condition on the temperature,

θ ∈ L2(0, T ;L
3
2 (R3)). Therefore, what remains to do in order to establish Theorem 2.2, is to show

that the solution constructed in [3] does satisfy such condition, as soon as the initial temperature
does belong to B−1

3/2,2(R3).
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For this, let us introduce some useful function spaces: For 1 ≤ p ≤ ∞ and 0 < T ≤ ∞, we
define Zp,T to be the subspace of all vector fields u ∈ L1

loc(0, T ;Lp(R3)3) such that

‖u‖Zp,T = ess supt∈(0,T ) t
1
2 (1− 3

p )‖u(t)‖p <∞.

In the same way, let Yq,T be the subspace of all the functions θ ∈ L1
loc(0, T ;Lq(R3)) such that

‖θ‖Yq,T = ess supt∈(0,T ) t
3
2 (1− 1

q )‖θ(t)‖q <∞.

We will need the following bilinear estimate:

Proposition 5.1. For all u ∈ Z6,T and θ ∈ L2(0, T ;L
3
2 (R3)),

‖C(u, θ)‖
L2(0,T ;L

3
2 (R3))

≤ κ‖u‖Z6,T
‖θ‖

L2(0,T ;L
3
2 (R3))

,

where κ > 0 is some constant independent on T , u and θ.

Proof. Using that ‖u(s)‖L6 ≤ s−1/4‖u‖Z6,T
and letting f(s) = s−1/4‖θ(s)‖L3/21R+(s) we can

estimate

‖C(u, θ)(t)‖L3/2 ≤ c‖u‖Z6,T

ˆ t

0

(t− s)−3/4f(s) ds.

Here c is the L
6
5 (R3)-norm of the kernel of e∆div . But f ∈ L

4
3 ,2(R) by Hölder inequality in

Lorentz spaces, with norm controlled by the norm of θ in L2(0, T ;L
3
2 (R3)), independently of T .

Moreover, |·|−3/4 ∈ L 4
3 ,∞(R), hence t 7→ ‖C(u, θ)(t)‖L3/21R+(t) belongs to L2,2(R) = L2(R) by

Young-O’Neil inequality (see [16, Theorem 2.3]).

Let us now recall the local existence theorem in [3, Theorem 2.4].

Theorem 5.2 (See [3]). If 3 < p < ∞, 3
2 < q < 3 and 2

3 <
1
p + 1

q , and if (u0, θ0) belongs to the

closure of the Schwartz class S (R3)3 × S (R3) in the space B
−(1−3/p)
p,∞ (R3)3 × B−3(1−1/q)

q,∞ (R3),
with div u0 = 0, then there exists T > 0 and a solution (u, θ) to (B) such that

(u, θ) ∈
(
Zp,T ∩ Z∞,T

)
×
(
Yq,T ∩ Y∞,T

)
.

Moreover,
‖u‖Zp,T∩Z∞,T + ‖θ‖Yq,T∩Y∞,T −−−→

T→0
0.

Furthermore, if u0 ∈ L3(R3)3 ⊂ B
−(1−3/p)
p,∞ , then u ∈ C ([0, T ], L3(R3)3) and if θ0 ∈ L1(R3) ⊂

B
−3(1−1/q)
q,∞ then θ0 ∈ C ([0, T ], L1(R3)).

Let us observe that the perturbation method used in [3] to establish Theorem 5.2 provides the
well-posedness only in the space where the solution is constructed.

Proof of Theorem 2.2. Under the assumptions of the first item of Theorem 2.2, we have u0 ∈
L3(R3)3 and θ0 ∈ B−1

3
2 ,2

(R3), which is continuously embedded in B
−3(1−1/q)
q,∞ , for all q > 3/2.

Moreover, the Schwartz class is dense both in L3 and in Besov spaces with finite third index.
Therefore we may apply Theorem 5.2. Choosing, for example, p = 6 and q = 2 we obtain the
existence, for some T > 0, of a solution (u, θ) ∈ Z6,T × Y2,T , such that u ∈ C ([0, T ], L3(R3)3) and

‖u‖Z6,T
+ ‖θ‖Y2,T

−−−→
T→0

0. (5.1)
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By the Boussinesq equation (2.1), we have θ = b + C(u, θ). Moreover, by the heat kernel char-
acterisation of Besov spaces, we deduce from the condition θ0 ∈ B−1

3
2 ,2

(R3), that b = et∆θ0 ∈
L2(0, T ;L

3
2 (R3)3). Now, reducing if necessary the length of time interval where the solution is

considered, we can assume that T is such that κ‖u‖Z6,T
< 1. Hence, by Proposition 5.1, we see

that the linear operator C(·, u) : L2(0, T ;L
3
2 (R3)3) → L2(0, T ;L

3
2 (R3)3) is bounded with norm

less than 1. Therefore, the operator T := I − C(·, u) is invertible in such space. But T (θ) = b,

hence θ = T−1(b) ∈ L2(0, T ;L
3
2 (R3)3).

Let us prove the second assertion of Theorem 2.2. If θ0 belongs to the homogeneous Besov space
Ḃ−1

3/2,2(R3), then b ∈ L2(0,∞;L
3
2 (R3)). Moreover, the norm of b is controlled by ‖θ0‖Ḃ−1

3/2,2
(R3)

(and conversely). If ‖u0‖L3 + ‖θ0‖Ḃ−1
3/2,2

(R3) is smaller than a suitable absolute constant (or, more

in general, if ‖u0‖Ḃ−(1−3/p)
p,∞ (R3)

+ ‖θ0‖Ḃ−3(1−1/q)
q,∞ (R3)

is smaller than a constant depending only on p

and q, where p and q are as in Theorem 5.2), then the estimates in [3] provide the global existence
of the solution, with u ∈ Cb(0,∞;L3(R3)). Moreover, ‖u‖Z6,∞ is controlled by the size of the initial

data (u0, θ0) in L3(R3)3 × Ḃ−1
3/2,2(R3). Therefore, κ‖u‖Z6,∞ can be assumed to be smaller than 1.

Then the above argument applies with T = +∞. This completely establishes Theorem 2.2.
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