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Abstract. We show that the solutions to the non-stationary Navier–Stokes equations in R
d

(d = 2, 3) which are left invariant under the action of discrete subgroups of the orthogonal
group O(d) decay much faster as |x| → ∞ or t → ∞ than in generic case and we compute,
for each subgroup, the precise decay rates in space-time of the velocity field.

1. Introduction and main results

This paper is devoted to the study of the asymptotic behavior of viscous flows
of incompressible fluids filling the whole space R

d (d ≥ 2) and not submitted
to the action of external forces. These flows are governed by the Navier–Stokes
equations, which we may write in the following form






∂tu − �u + P∇ · (u ⊗ u) = 0
u(x, 0) = a(x)

∇ · u = 0.

(NS)

Here u(·, t) : R
d → R

d (d ≥ 2) denotes the velocity field and P is the Leray–
Hopf projector onto the soleinodal vectors field, defined by Pf = f − ∇ �−1

(∇ · f ), with f = (f1, . . . , fd).
It is now well known (see e.g. [10], [4], [30], [18]) that generic solutions u

to (NS) decay at infinity at considerably slow rates in space-time. Indeed, even
if the data have the form a(x) = εφ(x), where ε > 0 is a small constant, the
components of φ belong to the Schwartz class and have vanishing moments, then
the corresponding strong solution u to (NS) satisfies |u(x, t)| ≤ C(1 + |x|)−(d+1)

and |u(x, t)| ≤ C(1 + t)−(d+1)/2 for all x ∈ R
d and t > 0; but such decay rates,

in general, are optimal (we refer to [25], [27] [1], [20] for a proof of these bounds
under different assumptions). Furthermore, only few examples of solutions which
decay faster are known so far: we should mention here the classical example of
a two dimensional flow with radial vorticity ([30], [12], see also [31]) and the
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examples of flows in R
d (d ≥ 2) constructed in [4], [5] by imposing some special

symmetries on the initial data.
The purpose of this paper is to provide a systematic study of the connection

between symmetry and space-time decay of viscous flows in dimension two and
three. Our starting point is the observation that the Navier–Stokes equations are
invariant under the transformations of the orthogonal group O(d): if u(x, t) is a
solution to the Navier–Stokes equations in R

d , and P ∈ O(d) is an orthogonal
matrix, then ũ(x, t) = P T u(P x, t) is a Navier–Stokes flow as well (here, P T is
the transposed matrix).

Roughly, it follows that if the initial datum commutes with P ∈ O(d), then
the velocity field will satisfy

P u(x, t) = u(P x, t), (1)

whenever the unique strong solution u to (NS) is defined. In the case in which
only a weak solution is known to exist (then it is not known if such weak solution
is unique or not), then at least one of them satisfies (1), as it can be easily checked
following step-by-step any of the constructions of weak solutions known so far.

If G is any subgroup of O(d), then a natural problem is that of computing the
space-time decay rates of solutions that are invariant under all the transformations
of G. In this paper we will consider only discrete subgroups of the orthogonal
group, the reason being the following: in the two dimensional case, solutions that
are invariant under the continuous subgroup SO(2) do exist, but boil down to
flows with radial vorticity. These flows are “trivial” in the sense that the non-lin-
ear term P∇ · (u⊗u) in (NS) identically vanishes. On the other hand, in the three
dimensional case, one easily sees via the Fourier transform that flows u(x, t) �≡ 0
which are invariant under the whole group SO(3) do not exist. Furthermore, solu-
tions which are invariant under other continuous subgroups of SO(3) (such as the
complete direct symmetry group of a cylinder) do not decay faster than general
solutions.

As an immediate consequence of our results in the d = 2 case we will prove
in section 3 the following theorem.

Theorem 1.1. Let a(x) be a soleinoidal vector field with components in S(R2)

(the Schwartz class). If a is invariant under the cyclic group Cn of order n, then the
global strong solution u(x, t) such that u(0) = a satisfies u(x, t) = O(|x|−(n+1))

for all t ≥ 0. If, in addition, a is invariant under the dihedral group Dn of order 2n,
then this decay is uniform in time and, moreover, ||u(t)||p ≤ C(1+ t)−(n+1)/2+1/p

(with 2 < p ≤ ∞).

As we shall see later on, the flows obtained in Theorem 1.1 do not have radial
vorticity and hence they do not boil down to “trivial solutions” (or to solutions of
the homogeneous heat equation ∂tu = �u). At best of our knowledge, no other
examples of highly localized flows in R

2 were known so far.



Space-time decay of Navier–Stokes flows invariant under rotations

In the three dimensional case, the problem of the existence of (trivial or non-
trivial) rapidly decreasing solutions u = (u1, u2, u3) �≡ 0 as |x| → ∞ to Navier–
Stokes equations was raised in [11] and it is still open.

However, non-trivial and localized divergence-free vector fields in R
3 a(x),

which are invariant under discrete subgroups of O(3) can be easily constructed,
and we may expect that such fields should lead to solutions with fast decay at
infinity. If G is one of these subgroups, then we know that G is either

• a subgroup of the complete symmetry group of a regular polyhedron, or
• a subgroup of the complete symmetry group of a prism (and hence isomorphic

to a cyclic or a dihedral group).

As we will see in section 5, solutions which are invariant under the complete sym-
metry group of a prism (which is not a cube) in general do not decay faster than
|x|−4. On the other hand, flows with polyhedral symmetry decay much faster. As a
byproduct of our constructions, we shall be able to provide examples of solutions
u(x, t) decaying at infinity as |x|−8 and t−4, thus improving the results of [4],
[26] and [5]. The most interesting cases are described in the theorem below (see
section 4 for the exaustive study of the asymptotic behavior for all the other finite
groups of isometries in R

3).
Let us denote by L∞

γ (Rd) (γ ≥ 0) the space of all measurable functions (or
vector fields) f , defined on R

d , and such that (1 + |x|)γ |f (x)| ∈ L∞(Rd). For
any positive T , 0 < T ≤ ∞, we denote by C([0, T ], L∞

γ (Rd)) the space of
continuous and bounded L∞

γ (Rd)-valued functions, the continuity at t = 0 being
understood in the distributional sense. Then we have the following:

Theorem 1.2. Let a = (a1, a2, a3) a divergence-free and rapidly decreasing vec-
tor field in R

3: a ∈ L∞
k (R3), for all k = 0, 1, . . . . Then we know ([25], [7]) that

there exists T (0 < T ≤ ∞) and a unique strong solution u to the Navier-Stokes
equations in R

3, such that u(0) = a and u ∈ C([0, T ], L∞
4 (R3)).

1. If a(x) is invariant under the complete symmetry group of the tetrahedron,
then u ∈ C([0, T ], L∞

5 (R3)).
2. If a(x) is invariant under the complete symmetry group of the cube (or of the

octahedron), then u ∈ C([0, T ], L∞
6 (R3)).

3. If a(x) is invariant under the complete symmetry group of the dodecahedron
(or of the icosahedron), then u ∈ C([0, T ], L∞

8 (R3)).

Furthermore, if we know that u(x, t) is global (T = ∞), then ||u(t)||p decays,
respectively, at least as fast as t−5/2+3/(2p), t−3+3/(2p) and t−4+3/(2p) as t → ∞
( 3

2 < p ≤ ∞).

Remark 1.3. The conclusion of Theorem 1.2 is sharp. Optimality of the above
space decay rates should be understood in the following sense: if G is one of the
previous three groups and γ = 5, 6 or 8 (respectively), then there exists a solution
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u(x, t) to (NS) which is invariant under G and localized at t = 0, but which does
not decay faster than |x|−γ , uniformely in any time interval [0, ε] (ε > 0). For
each group G we shall provide examples of such flows.

We shall see in section 4 that, because of the symmetries imposed on the ini-
tial data, the velocity field has vanishing moments

∫
xαu(x, t) dx up the order 1,

2 and 4, for all t ∈ [0, T ], respectively in the case 1, 2 and 3 of Theorem 1.1.
In particular, the fact that a(x) has these cancelations allows us to see that the
estimates in space-time obtained for u(x, t) hold true also for the linear evolution
et�a(x) (here et� denotes the heat semigroup).

Let us point out that the existence of a global strong solution is usually ensured
by some smallness assumption on the initial data: common suitable assumptions
are e.g. that ||a||3 is small enough (see [21]), or that a is small in some Besov
norm (see [8]). However, for the flows treated in Theorem 1.2, the three equations
contained in the first of (NS) reduce to a simpler single scalar equation on the first
component u1(x, t). Thus, it would be an interesting problem to study the global
solvability of those “symmetric” solutions in the case of “large” initial data.

There is an extensive literature on the asymptotic behavior of the Navier–
Stokes equations (see e.g. [20], [17], [18], [25], [30], [32] and the references
therein contained), but not so much has been written on symmetry of viscous
flows. See, however, [22], [23] for applications of symmetries to the numerical
simulation of turbulence and [14], [29] for the construction of ansatzes to (NS).
The connection between symmetry and space-time decay has been first noticed in
[4] and subsequentely studied in [5], [26]. The symmetries which are considered
in these papers are only those corresponding to a subgroup of the group of the
symmetries of the cube. Hence, a few results of [4], [26], [5] are contained in the
present paper as a particular case.

It is worth observing that recently Th. Gallay and C. E. Wayne were able to
prove the existence of flows with a fixed, but arbitrarily large, time decay rate (see
[17] and [18], respectively for d = 2, 3). Indeed, using the vorticity formulation
of the Navier–Stokes equations, they showed in [17] and [18] that the class of
solutions which decay faster than a given rate as t → ∞ lies on an invariant man-
ifold of finite codimension, in a suitable functional space. Their method, which
is a combination of the spectral decomposition of the Fokker–Planck operator
and the theory of dynamical systems, would be effective in any space dimension.
However, this approach yields no explicit examples of initial data leading to such
solutions with fast decay.

The rest of this paper is organized as follows. In section 2 we briefly recall the
vorticity formulation of (NS) and a general result of the author on the space decay
of solutions to the Navier–Stokes equations that we will use throughout this paper.
As an application of this result to the two-dimensional case, in section 3 we will
prove Theorem 1.1 in a slightly more general form. In section 4 we start recalling
the complete list of the discrete subgroups of O(3) and we subsequentely com-
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pute the space decay rates of flows invariant under the action of all these groups.
There we will also discuss the closely related problem of the cancellations of the
vorticity of such flows and the applications to the time decay. In section 5 we will
show by means of some examples the optimality of the decay rates that we obtain.

2. Decay of the velocity field and the vorticity

Throughout this paper we shall assume that the initial datum a is a rapidly decreas-
ing function in R

d (d ≥ 2). This requirement is not essential (the optimal assump-
tions should be expressed in terms of Besov and weak-Hardy spaces, as in [25],
[27] and [5]) but it considerably simplifies the presentations of our main results.
Then we know that a necessary condition on the data, in order to avoid that
the velocity field instantaneously “spreads out”, is that the components of a are
orthogonal with respect to the L2 inner product (see [10]):

∫

(ahak)(x) dx = cδh,k, (h, k = 1, . . . , d) (2)

(δh,k = 1 if h = k and δh,k = 0 if h �= k).
Let us briefly recall how this condition can be obtained and generalized, since

its generalization plays a central role in this paper. Let us first note that (2) can be
conveniently restated by saying that the homogeneous polynomial

P0(a)(ξ) ≡
d∑

h,k=1

(∫

(ahak)(x) dx

)

ξhξk, ξ = (ξ1, . . . , ξd) ∈ R
d, (3)

is divisible by ξ 2
1 + · · · + ξ 2

d .
Such necessary condition can be very easily deduced under the (somewhat

artificial) assumption that, at the beginning of the evolution, the Fourier trans-
form p̂(ξ, t) of the pressure is continuous at ξ = 0. Indeed, applying the Fourier
transform in the classical relation −�p(x, t) = ∑d

h,k=1 ∂h∂k(uhuk)(x, t), we get

−|ξ |2p̂(ξ, t) =
d∑

h,k=1

ξhξkûhuk(ξ, t) (4)

and our claim follows taking t = 0 and letting ξ → 0 in (4). But it follows from
the result of [7] that P0(a)(ξ) is divisible by ξ 2

1 + · · · + ξ 2
d even if we drop the

assumption on the pressure, and if we assume, instead, that the velocity field is
well-localized. We may ask, for example, that u(x, t) decays at infinity faster than
|x|−(d+1) uniformely in some time interval [0, T ], with T > 0 (roughly speaking,
this is due to the fact that in this case the pressure is “localized in a weak sense”
and p̂(ξ, t) still has some kind of regularity).
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This argument can be generalized in the following way (see [7]): if we put
much more stringent a priori assumptions on the decay of the velocity field, then
we get a better regularity for p̂(ξ, t). In the particular case in which u(x, t) is
rapidly decreasing as |x| → ∞ for all t ∈ [0, T ], we obtain p̂(ξ, t) ∈ C∞(R3)

in such time interval. In particular, we can apply the Taylor formula of any order
in (4). We deduce that, for all t ∈ [0, T ], and m = 0, 1, . . . the homogeneous
polynomial Pm(u(t)), defined by

Pm(u(t))(ξ) ≡
d∑

h,k=1

∑

|α|=m

(
1

α!

∫

xα(uhuk)(x, t) dx

)

ξαξhξk, (5)

(we adopted the usual notations for the multi-index α = (α1, . . . , αd) ∈ N
d) must

be divisible by ξ 2
1 + · · · + ξ 2

d .
Conversely, if we assume that the initial datum a is rapidly decreasing as

|x| → ∞ and such that all the polynomials Pm(u(t)) (where u is the strong solu-
tion defined in some time interval [0, T ] such that u(0) = a) are divisible by
ξ 2

1 + · · · + ξ 2
d for all t ∈ [0, T ], then u will be rapidly decreasing as |x| → ∞ for

all t in such interval. More precisely, let us recall the following result from [7],
which will be our main tool for our study of the spatial localization.

Proposition 2.1. Let M be a fixed non-negative integer and a(x) a divergence-
free and rapidly decreasing vector field in R

d . Let also u(x, t) be the unique strong
solution to (NS), defined in some time interval [0, T ] (0 < T ≤ ∞) such that
u(0) = a and u ∈ C([0, T ], L∞

d+1(R
d)).

If the polynomials Pm(u(t))(ξ), defined by (5), are divisible by ξ 2
1 + · · · + ξ 2

d

for all t ∈ [0, T ] and m = 0, 1, . . . , M , then the spatial decay of u is improved
by u ∈ C([0, T ′], L∞

d+2+M(Rd)), for any T ′ ∈ R
+ (0 ≤ T ′ ≤ T ). Furthermore,

if T = +∞ and the moments of a vanish up to the order 1 + M , then

u ∈ C([0, +∞[, L∞
d+2+M(Rd)), (6)

The assumpion on the moments of a ensures that, if the solution is globally
defined, then the norm ||u(t)||L∞

d+2+M
≡ supx(1 + |x|)d+2+M |u(x, t)| does not

blow up as t → ∞. Condition (6) does not ensures that the solution decays fast
as t → ∞. It can be shown, however, that if the moments of a vanish up to the
order 1 + M and if the following identities hold true:

d∑

h,k=1

∑

|α|=m

(
1

α!

∫

xα(uhuk)(x, t) dx

)

ξαξj ξhξk

≡
d∑

h=1

∑

|α|=m

(
1

α!

∫

xα(uhuj )(x, t) dx

)

ξαξh

× (ξ 2
1 + · · · + ξ 2

d ), (j = 1, . . . , d) (7)
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for all ξ ∈ R
d , t ≥ 0 and m = 0, 1, . . . , M , then

sup
x∈Rd ,t≥0

(1 + |x|)γ (1 + t)(d+2+M−γ )/2|u(x, t)| < ∞ (0 ≤ γ ≤ d + 2 + M).

(8)

We refer to [5] for a proof of this claim and examples of flows satisfying (7) for
m = 0, 1. See also [12], [28], [18] for related results. Condition (7), however, is
difficult to check for large m. To construct examples of flows with fast decay in
space-time we shall rather make use of the vorticity formulation of the Navier–
Stokes equations. This allows us to give a much more natural sufficient condition
which ensures (8).

From now on we shall work only in two or three space dimension. We recall
that the vorticity is defined by

ω = ∂1u2 − ∂2u1 (if d = 2)

or,


 = ∇ × u = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1) (if d = 3).

Note that the vorticity is a scalar function when d = 2 and a soleinoidal vector
field if d = 3. Then the vorticity verifies the integro-differential equations

∂tω + (u · ∇)ω = �ω (d = 2) (10)

or,

∂t
 + (u · ∇)
 − (
 · ∇)u = �
, ∇ · 
 = 0 (d = 3). (11)

Here, the velocity field u has to be expressed in terms of its vorticity via the
Biot–Savart laws:

u(x, t) = 1

2π

∫
(x − y)⊥

|x − y|2 ω(y, t) dy, (d = 2), (12)

u(x, t) = − 1

4π

∫
x − y

|x − y|3 × 
(y, t) dy (d = 3), (13)

where we denoted (x1, x2)
⊥ = (−x2, x1) in (12).

We collect in the following proposition several known facts on the vorticity
equation:

Proposition 2.2. 1. Let n be a positive integer, ω0 a rapidly decreasing function
in R

2 with vanishing moments up to the order n − 1 and ω(x, t) the unique
global strong solution of (10), (12), such that ω(0) = ω0. If we know that the
moments of ω(t) vanish up to the order n − 1, for all t ≥ 0, then we have

sup
x,t

(1 + |x|)γ (1 + t)(2+n−γ )/2|ω(x, t)| < ∞ (14)
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for all γ ≥ 0 and

||ω(t)||p ≤ C(1 + t)−(2+n)/2+1/p (1 ≤ p ≤ ∞). (15)

2. Let 
0 be a rapidly decreasing and divergence-free vector field in R
3, with

vanishing moments up to the order n−1. If supx |x|2|
0(x)| is small, then there
exists a unique strong solution 
(x, t) of (11), (13), such that 
(0) = 
0

and 
 ∈ C([0, ∞[, L∞
2 (R3)). If we know that the moments of 
(t) vanish up

to the order n − 1, for all t ≥ 0, then we have

sup
x,t

(1 + |x|)γ (1 + t)(3+n−γ )/2|
(x, t)| < ∞ (16)

for all γ ≥ 0 and

||
(t)||p ≤ C(1 + t)−(3+n)/2+3/(2p) (1 ≤ p ≤ ∞). (17)

Remark 2.3. We refer to [2] and [15] for the study of the well-posedness of the
Cauchy problem for equations (10) and (11). In particular, it is well known that
(10), (12) can be uniquely solved e.g. in C([0, ∞), L1(R2))∩C(]0, ∞), L∞(R2)).
In the three dimensional case (and in the case of small initial data), the fact that
(10), (12) can be uniquely solved in C([0, ∞[, L∞

2 (R3)) is easily seen, see [6].
Note that the decay profiles of ω and 
 are the same which can be obtained

for the solutions of the homogeneous heat equations et�ω0(x) and et�
0(x),
respectively. We refer to [6] for a proof of (16) (the proof of (14) is identical).
The decay of the vorticity in the Lp-norm are formally a consequence of (14)
and (16), respectively if d = 2 or 3. Estimates (15) and (17), however, can be
proved with straightforward adaptations of the arguments of [12], [6], or [17], [18]
(see also [9]).

We would like to stress the fact that, since the moments of the vorticity are
not invariant during the time evolution (excepted for the integral and the first
order moments), profiles (14) and (16) will hold true only for n = 0, 1, 2 even
if the vorticity has many cancelations at time t = 0. This reflects the fact that,
in general, the velocity field does not decay faster than |x|−(d+1). We will show,
however, that for the special flows described in Theorem 1.1 and Theorem 1.2 the
vorticity has a large number of vanishing moments for all time (in particular, we
shall be able to prove that the assumptions of the second part of Proposition 2.2
are non-vacuous for n = 0, . . . , 6).

We will finish this section stating another simple result which allows us to
deduce time decay estimates for the velocity field from (14), (16).

Lemma 2.4. Let ω(x, t) (d = 2), or 
(x, t) (d = 3), as in Proposition 2.2, and
let u(x, t) be the corresponding velocity field obtained via the Biot–Savart law
(12) (resp. (13)). Then we have,

||u(t)||p ≤ C(1 + t)−(n+1)/2+1/p, 2 < p ≤ ∞ (d = 2), (18)
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or

||u(t)||p ≤ C(1 + t)−(n+2)/2+3/(2p), 3/2 < p ≤ ∞ (d = 3) (19)

and the spatial moments of u(x, t) exist and vanish up to the order n − 2.

Proof. Note that the Biot–Savart kernels x⊥/|x|2 (d = 2) and x/|x|3 (d =
3) belong respectively to the weak-Lebesgue spaces L2,∞(R2) and L3/2,∞(R3).
Bounds (18) and (19) then immediately follow from the Biot–Savart laws (12)
and (13), the corresponding bounds for the vorticity and elementary results on
convolution and interpolation of Lorentz spaces (see [3]). The condition on the
moments of u is easily seen by taking the Fourier transform in (12) and (13) and
applying the Taylor formula (see e.g. [6] and [18] for this type of calculations). 
�

3. Space-time decay of two-dimensional flows

Let us recall that all finite subgroups of the orthogonal group O(2), are of two
types: cyclic groups (which are indeed subgroups of the special orthogonal group
SO(2) of proper rotations), and dihedral groups. We shall denote by Cn the cyclic
group of order n and by Dn the dihedral group of order 2n. This group contains Cn

and its presentation is given by two generators R and τ , together with the relations
Rn = 1, τ 2 = 1 and τR = R−1τ (R corresponds to a rotation of 2π/n around
the origin and τ to a reflection with respect to a straght line passing through the
origin).

Divergence-free vector fields, which are rapidly decreasing as |x| → ∞ and
which are left invariant under the actions of Cn or Dn are easily constructed by
means of the vorticity. Indeed, in general, if P ∈ O(2), u(Px) = Pu(x) for
all x ∈ R

2 and ω = ∂1u2 − ∂2u1, then ω(x) = det(P )ω(Px) (in the distribu-
tional sense). Conversely, if ω(x) = det(P )ω(Px) for all x and u is given by
the Biot–Savart law, then u(Px) = Pu(x), whenever the singular integral (12)
makes sense.

Assume now that the initial datum a = u(0) is rapidly decreasing as |x| → ∞
and that it is invariant under the cyclic group of order n (n ≥ 3). Since we know
that strong solutions of the two dimensional Navier–Stokes equations are globally
defined, we have u(Rx, t) = Ru(x, t), for all x ∈ R

2 and t ≥ 0. We now apply
to u Proposition 2.1: let us show that the polynomial

Pm(u)(ξ) ≡
2∑

h,k=1

∑

|α|=m

(
1

α!

∫

xα(uhuk)(x, t) dx

)

ξαξhξk, (20)

is divisible by ξ 2
1 + ξ 2

2 , for all t ≥ 0 and the first values of m.
But this is easily checked, since Pm(u)(ξ) = Pm(u)(Rξ) for all ξ ∈ R

2. Pass-
ing to polar cordinates, we write Pm(u)(ξ1, ξ2) ≡ P̃m(ρ, θ), with ξ1 = ρ cos θ
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and ξ2 = ρ sin θ and observe that for each fixed ρ > 0, the trigonometric poly-
nomial P̃m(ρ, θ) has degree smaller or equal than m + 2 and period 2π/n. If
m ≤ n − 3, then it follows that P̃m(ρ, θ) ≡ P̃m(ρ, 0) for all θ , i.e. Pm(u)(ξ) is
radial. This implies that Pm(u)(ξ) identically vanishes for odd m and, for even m,
that Pm(u)(ξ) has the form cm(t)(ξ 2

1 + ξ 2
2 )(m+2)/2 for some constant cm(t): in any

case, Pm(u)(ξ) is divisible by ξ 2
1 + ξ 2

2 for m = 0, . . . , n − 3.
If n ≥ 3, then Proposition 2.1 applies with M = n − 3 and we deduce that,

for all T ≥ 0, u ∈ C([0, T ], L∞
n+1(R

2)).
Solutions that are invariant just under the group Cn, in general, decay slowly as

t → ∞. To obtain solutions with large decay rates in space-time we will put more
symmetries on the data and make use of the vorticity formulation. Assume now
that the flow is invariant under the dihedral group Dn (n ≥ 3) at the beginning
of the evolution: a(Rx) = Ra(x), a(τx) = τa(x), and that ω0 = ∂1a2 − ∂2a1 is
rapidly decreasing as |x| → ∞. If ω(x, t) is the unique solution to the two-dimen-
sional vorticity equation starting from ω0, then ω(x, t) = ω(Rx, t) = −ω(τx, t),
for all x ∈ R

2 and t ≥ 0 and, by Proposition 2.2, ω(x, t) is rapidly decreasing as
|x| → ∞ for all fixed t ≥ 0. It now remains to compute the number of vanishing
moments of ω(x, t):

Lemma 3.1. If ω(x, t) is as above, then the moments
∫

xαω(x, t) dx vanish for
all t ≥ 0, and all double-index α = (α1, α2) such that |α| = α1 + α2 ≤ n − 1.
Moreover,

∫
xαu(x, t) dx = 0 for all α such that |α| ≤ n − 2 and all t ≥ 0.

Proof. We just have to establish the property for ω (see the last conclusion of
Lemma 2.4). Taking the Fourier transform in the space variables, we see that
ω̂(ξ, t) ∈ C∞(R2) for all t ≥ 0 and ω̂(ξ, t) = ω̂(Rξ, t), ω̂(ξ, t) = −ω̂(τξ, t). In
particular, ω̂(ξ, t) identically vanishes on n different straight lines passing through
ξ = 0. The Taylor formula then implies that ∂α

ξ ω̂(0, t) = 0 for all α such that
|α| ≤ n − 1 and Lemma 3.1 follows. 
�

We can summarize the results of this section in the following theorem, which
sharpen the conclusion of Theorem 1.1.

Theorem 3.2. Let a = (a1, a2) be a rapidly decreasing and divergence-free vec-
tor field in R

2. If a is invariant under the cyclic group Cn (n=3,4 . . . ) then the
strong solution u(x, t) to (NS) such that u(0) = a satisfies u(x, t) = O(|x|−(n+1))

as |x| → ∞ for all t ≥ 0.
If, in addition, a is invariant under the dihedral group Dn and ω0 = ∂1a2−∂2a1

is also rapidly decreasing in R
2, then the moments of the vorticity ω(x, t) of the

flow vanish up to the order n−1 for all t ≥ 0, supt≥0 |u(x, t)| ≤ C(1+|x|)−(n+1)

and (14), (15) and (18) hold true.

In the second part of Theorem 3.2, the fact that the decay as |x| → ∞ of u(x, t)

is uniform in [0, ∞[ follows from (6) and the cancelations
∫

xαa(x) dx = 0, (with
0 ≤ |α| ≤ n − 2).
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Remark 3.3. In the case n = 4, the symmetries described in the second part of
Theorem 3.2, are the same as those studied in [4]: indeed the fact that the flow is
invariant under the dihedral group D4, can be written as follows: u1(x1, x2, t) =
−u1(−x1, x2, t), u1(x1, x2, t) = u1(x1, −x2, t) and u1(x1, x2, t) = u2(x2, x1, t),
which are exactly the conditions of [4] in the two dimensional case.

4. The three dimensional case

We now study the class of flows which are invariant under finite subgroups of the
group of all the isometries of the space. We shall identify two of such groups G

and G′ if they are conjugate in O(3) (i.e. G ∼ G′ if there exists an orthogonal
matrix T such that G′ = T GT −1). Note that two flows that are invariant under
groups which are isomorphic, but not conjugate, may behave quite differently and
this is why will not identify groups which are simply isomorphic in what follows.

4.1. Finite subgroups of O(3)

Finite groups of proper rotations. The material of this section is very classical,
but we present it to fix some notations. We start recalling the well known classi-
fication of all finite subgroups of the special orthogonal group SO(3). We closely
follow the presentation given in [24]. If S is any subset of R

3, the group G(S)

of all P ∈ SO(3) such that P leaves S globally invariant is called the complete
direct symmetry group of S . For different choices of S we obtain in this way
only five different types of groups that are listed below: For each group we shall
indicate a set of matrices generating G(S) since we will need these generators in
our subsequent calculations.
1. If S is a n-pyramid, n = 1, 2, . . . (i.e. a right piramid with base a n-sided

regular polygon such that the distance from the vertex of the pyramid to a
vertex of the base is not equal to one side of the polygon, with an obvious
modification if n = 1, 2), then G(S) is the cyclic group Cn of order n. A
generator of this group is e.g.

Rn =



cos(2π/n) − sin(2π/n) 0
sin(2π/n) cos(2π/n) 0

0 0 1



 . (21)

2. If S is a n-prism, n = 2, 3, . . . (i.e. a right cylinder with base a n-sided reg-
ular polygon and height not equal to one side of the polygon, modification
if n = 2), then G(S) is the dihedral group Dn of order 2n. This group is
generated by Rn and by

U =



1 0 0
0 −1 0
0 0 −1



 . (22)
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3. If S is a tetrahedron, then G(S) = T (the tetrahedral group). This group
has order 12, is isomophic to the alterning group A4 and it is generated by a
rotation by 2π/3 around an axis passing through a vertex and the center of S
and by a rotation by π around an axis passing through the midpoints of two
opposite edges. If (−1, −1, −1), (1, 1, −1), (−1, 1, 1) and (1, −1, −1) are
the vertices of S , then we see that two generators of T are U and

S =



0 0 1
1 0 0
0 1 0



 . (23)

4. If S is a cube (or an octahedron) then G(S) = O (the octahedral group). This
group has order 24 and is isomorphic to the symmetric group S4. If (ε1, ε2, ε3),
(εj = 1 or −1, j = 1, 2, 3) are the vertices of the cube, then we see that O is
generated by U , S and a rotation V by π around an axis passing through the
midpoints of two opposite edges of the cube. We may choose

V =



0 1 0
1 0 0
0 0 −1



 . (24)

We finally observe that T is a subgroup of index 2 in O.
5. If S is an icosahedron (or a dodecahedron) then G(S) = Y (the icosahedral

group). This group has order 60, is isomorphic to the alterning group A5, it is
generated by a rotation by 2π/5 around an axis passing through two opposite
vertices of the icosahedron and a rotation by 2π/3 around an axis passing
through the center of two opposite faces.
If (±φ, 0, ±1), (0, ±1, ±φ) and (±1, ±φ, 0) are the 12 vertices of S (here
φ = (

√
5 − 1)/2 is the gold number) then we see that Y is generated by S and

J =






1
2 −

√
5+1
4

√
5−1
4√

5+1
4

√
5−1
4 − 1

2√
5−1
4

1
2

√
5+1
4




 . (25)

It also easily seen that Y contains T. Indeed, the transfomation U corresponds
now to a rotation by π around an axis passing through the midpoints of to
opposite edges of the icosahedron.

Remark 4.1. A classical result states that if G is a finite subgroup of SO(3) then
G is conjugate to one the preceding five groups. For more details on those groups
we refer e.g. to [24].
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Other finite groups of isometries. It S is a subset of R
3, then the complete

symmetry group of S si defined as the group of all orthogonal transformations
which leave S globally invariant. Let us recall that if G is a finite subgroup of
O(3)\SO(3), such that the inversion I (the symmetry with respect to the origin)
belongs to G, then G = G1 ∪ IG1, where G1 = G ∩ SO(3) is one of the five
groups of proper rotation considered in the preceding paragraph. In this case G is
obtained as direct product of G1 and a cyclic group of order 2, and the generators
of G are the same of G1, together with

I =



−1 0 0
0 −1 0
0 0 −1



 . (26)

On the other hand, if G is a finite subgroup of O(3)\SO(3), but I does not
belong to G, then G+ ≡ G1 ∪ {Ig : g ∈ G\G1} is a finite subgroup of SO(3),
containing G1 as a subgroup of index 2. Further, G+ is isomorphic (but not con-
jugate) to G. The group G is usually denoted by G+G1 in the literature of point
groups. We thus can form four more types of group in this way, namely C2nCn,
DnCn, D2nDn and OT.

We now follow the classical classification of Schöenflies (see also [24], [33]),
starting with the complete symmetry groups of suitably modified prisms.

1. We lump togheter the groups Cn ∪ ICn for odd n with the groups C2nCn for
even n, to form the cyclic group S2n of order 2n (the complete symmetry group
of an alternating 2q-prism, see [33] for a plot). This group is generated by
a rotation-inversion by π/n (a rotation of π/n around an axis followed by a
reflection with respect to a plane perpendicular to the axis):

R̃n/2 =



cos(π/n) − sin(π/n) 0
sin(π/n) cos(π/n) 0

0 0 −1



 . (27)

2. Lumping together the groups Cn ∪ ICn for even n with the groups C2nCn for
odd n, we form an abelian group of order 2n, denoted by Cnh (the complete
symmetry group of a shaved q-prism). This group is generated by a rotation-
inversion R̃n by 2π/n and a rotation Rn by 2π/n around the same axis. Note
that Cnh turns out to be a cyclic group if n is odd, but this group is not conjugate
to S2n.

3. The group DnCn has order 2n and is usually denoted by Cnv. This is the com-
plete symmetry group of a n-pyramid and is formed by n rotations by multiples
of 2π/n around the axis of the pyramid and n reflections in n vertical planes
passing through this axis. A system of generators of Cnv is Rn and

W2 =



1 0 0
0 −1 0
0 0 1



 . (28)
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4. Combining D2nDn for odd n with Dn ∪ IDn for even n forms the complete
group of symmetry of a n-prism, which is denoted by Dnh. This group has
order 4n, and it is generated by Rn, W2 and by

W3 =



1 0 0
0 1 0
0 0 −1



 . (29)

5. Combining D2nDn for even n with Dn ∪ IDn for odd n forms the group Dnd ,
which is the complete symmetry group of a twisted n-prism (the solid obtained
pasting two n-prisms at their basis, in a such way that the prisms are rotated
by π/n). This group has order 4n and is generated by R̃n/2 and W2.

6. The group T ∪ IT is denoted by Th. This group has order 24, is isomorphic
to A4 × Z/2Z and is generated by S, U and I (or simply by S and W2).1 The
group Th corresponds to the complete symmetry group of a solid obtained
from a cube shaving off the eight vertices (this solid is often called modified
cube, see [33]).

7. The group OT is denoted by Td . This is the complete symmetry group of a
tetrahedron, it has order 24, is isomorphic to O (hence to S4), but Td and O
are not conjugate. This group is generated by the two generators S and U of
T, together with a reflection Z with respect to a plane passing through the
midpoint of an edge and containing the opposite edge of the tetrahedron:

Z =



0 1 0
1 0 0
0 0 1



 . (30)

8. The group O ∪ IO, denoted by Oh, is the complete groupe of symmetry of a
cube (and of an octahedron).2 This group is isomorphic to S4 ×Z/2Z and con-
tains the 48 orthogonal matrices formed by 0, 1 and −1.A system of generators
for Oh is e.g. S, V and I .

9. The group Y ∪ IY is denoted by Yh, and it is the complete groupe of symme-
try of an icosahedron (and of a dodecahedron). This group has order 120, is
isomorphic to A5 ×Z/2Z and is generated by S, J and I (or by S, J and W2).

4.2. Application to the Navier–Stokes equations

Space decay. This paragraph is devoted to the computation of the space decay
rates of flows u(x, t) which are invariant under a discrete subgroup of O(3) and

1 The “symmetric solutions” u(x, t) introduced in [4] are precisely the flows which are invari-
ant under the group Th. These solutions have been later considered in [13], [18], [26], [27] and
[5], but the connection with the group Th does not seem to have been noticed.

2 It was pointed out by Kida [22] that it is possible to construct solutions that are both invariant
under Oh and 2π -periodic in any direction.
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such that u(x, 0) is localized. We will not consider here all the possible groups
G listed in the preceding section, but we will just treat the case in which G is
either T, Th, O or Y. Combining the results of this paragraph with the examples
of section 5, however, will immediately give the optimal space decay rates for all
groups.

We need the following lemma.

Lemma 4.2. Let Pm(ξ), where ξ = (ξ1, ξ2, ξ3) ∈ R
3, be a homogenous polyno-

mial of degree m + 2 (m = 0, 1, . . . ).

1. If P0 is invariant under the transformations of the tetrahedral group T, then
P0(ξ) ≡ c0(ξ

2
1 + ξ 2

2 + ξ 2
3 ).

2. If P1 is invariant under the transformations of either O, Th or Y, then P1(ξ) ≡
0.

3. If P2 and P3 are invariant under Y, then P2(ξ) ≡ c2(ξ
2
1 + ξ 2

2 + ξ 2
3 )2 and

P3(ξ) ≡ 0.

Proof. The proof follows by imposing Pm(ξ) ≡ Pm(Qξ) where, in the first case
Q = S, U ; in the second case we take, respectively, Q = S, U, V , Q = S, W2, or
Q = S, J ; in the third case we choose Q = S, J . We thus obtain linear systems
where the unknowns are the coefficients of Pm(ξ). Conclusion of Lemma 4.2 then
immediately follows from lengthy but elementary calculations. 
�

Applying Proposition 2.1 we immediately get the following

Corollary 4.3. Let a = (a1, a2, a3) be a soleinoidal and rapidly decreasing vec-
tor field in R

3 and u(x, t) the strong solution to (NS), which is defined in some
time interval [0, T ] (T > 0) , such that u(0) = a. If a is invariant under the trans-
formations of T, then u(x, t) = O(|x|−5) as x → ∞ uniformely in t ∈ [0, T ].
Such decay rate is improved up to u(x, t) = O(|x|−6), if a is invariant under
either O or Th, and up to u(x, t) = O(|x|−8) if a is invariant under Y.

Remark 4.4. Note that the homogeneous polynomial P1(ξ) ≡ ξ1ξ2ξ3 satisfies
P1(ξ) = P1(Sξ) = P1(Uξ) for all ξ . This polynomial is then invariant under
T, but it is not divisible by ξ 2

1 + ξ 2
2 + ξ 2

3 . On the other hand, the polynomial
P2(ξ) ≡ ξ 4

1 + ξ 4
2 + ξ 4

3 is invariant under both O and Th, but it is not divisible by
ξ 2

1 + ξ 2
2 + ξ 2

3 . At the same way, it is not difficult to construct a homogeneous poly-
nomial of degree 6, which is invariant under Y and is not divisible by ξ 2

1 +ξ 2
2 +ξ 2

3
(see the polynomial Q(ξ) in the last section).

These considerations show that the decay rates computed in Corollary 4.3
seem to be optimal for generic flows invariant under one of the four preceding
groups. We will see by means of the examples of section 5 that (a) the decay
|x|−5 is indeed optimal, in general, for flows which are invariant under the group
Td , which contains T, (b) the decay |x|−6 is optimal inside the group Oh which
contains both O and Th, (c) the decay |x|−8 is optimal inside the group Yh which
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contains Y. Finally, we will see that flows which are invariant under the complete
group of symmetries D2nh of a 2n-prism (which contains all the other groups Cn,
S2n, Dn, Cnh, Cnv, Dnd and Dnh), in general, do not decay faster than |x|−4. This
provides a complete answer to the space decay problem of flows with this kind of
symmetries.

Time decay. We now compute the time decay rate of flows invariant under the
complete symmetry group of the solids listed in the preceding section. We will
give detailed arguments only for the group of the icosahedron Yh, since this group
provides the largest decay rates. Of course similar (but simpler!) considerations
can be repeated for the other groups.

As in the two-dimensional case, we shall make use of the vorticity formulation.
We start observing that requiring the condition P u(x, t) ≡ u(P x, t), for a given
P ∈ O(3), is equivalent, at least when the singular integral (13) makes sense, to
requiring that

P 
(x, t) = det(P ) 
(P x, t) (31)

for all x ∈ R
n and t ≥ 0. A simple way to prove the equivalence between

(1) and (31) is to use the Fourier transform and the identity (P v) × (Pw) =
det(P )P (v × w), which holds for all v, w ∈ R

3 and P ∈ O(3).
From now on we shall assume that a(x) is invariant under the group Yh and that

the initial vorticity 
0 = ∇ × a is a rapidly decreasing vector field as |x| → ∞.
Then we have the following.

Lemma 4.5. Let 
 be a rapidly decreasing vector field in R
3, such that P
(x) ≡

det(P )
(Px) for all transformations P belonging to the complete symmetry
group of the icosahedron. Then the moments of 
 vanish up to the order 5.

Proof. Let us denote by Pj ∈ Yh ⊂ O(3) the reflection with respect to a plane
πj of symmetry of the icosahedron (j = 1, . . . , 15). Note that each of the six
axes passing through two opposite vertices of the icosahedron belongs exactly to
five distinct planes. Let e1, . . . , e6 be six unit vectors corresponding to these axes
and such that 1√

2
(e1 + e2) = (1, 0, 0), 1√

2
(e3 + e4) = (0, 1, 0) and 1√

2
(e5 + e6) =

(0, 0, 1) (this is possible if we choose the vertices of the icosahedron as in the
preceding section). If we show that

∫
xα〈
(x), ek〉 = 0 for k = 1, . . . , 6, and

some α ∈ N
3 (where 〈·, ·〉 denotes the scalar product in R

3), then it will follow
that

∫
xα
(x) dx = 0.

Condition Pj
(x) ≡ −
(Pjx) implies that 
(x) is orthogonal to πj , for all
x ∈ πj . In the same way, passing to the Fourier transform we see that 
̂(ξ) is
orthogonal to πj for all ξ ∈ πj . In particular, for each k = 1, . . . , 6 there exist
five planes containing the axis generated by ek, on which the function fk(ξ) ≡
〈
̂(ξ), ek〉 identically vanish.
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Now we use the general fact that if g(ξ) ∈ C∞(R3) identically vanishes on n

distinct planes passing through a given axis, then g has vanishing derivatives on
this axis up to the order n−1 (this simple fact can be seen using the same argument
as in Lemma 3.1).

Since fk is a smooth function, it follows that the derivatives of fk identically
vanish up to the order 4 on the k-th axis. This shows that the moments of 
 vanish
up to the order 4.

But the group Yh contains the three reflections with respect to the planes
x1 = 0, x2 = 0 and x3 = 0 (assuming that the icosahedron is orientated as
above). Therefore 
i(x1, x2, x3) is an even function with respect to xi and an odd
function with respect to xh (i, h = 1, 2, 3 and i �= h). It then follows that for any
α ∈ N

3, such that α1 +α2 +α3 is an odd integer,
∫

xα
i(x) dx = 0 (i = 1, 2, 3).
Lemma 4.5 is thus proved. 
�

Combining this result with Proposition 2.1 and Lemma 2.4 implies the fol-
lowing:

Corollary 4.6. Let 
0 be a divergence-free and rapidly decreasing vector field,
such that P
0(x) = det(P )
0(Px) for all P ∈ Yh. If supx |x|2|
0(x)| is small,
then the solution 
(x, t) of Proposition 2.2 satisfies (16), (17) with n = 6. Fur-
thermore, the corresponding velocity field belongs to C([0, +∞[, L∞

8 (R3)) and
satisfies (19) (with n = 6).

These arguments apply also to the simpler case of flows invariant to complete
symmetry group of the tetrahedron and the complete symmetry group of the cube
(and, with slight modification, to their subgroups). This yields e.g. that (19) holds
true with n = 3 in the case of flows invariant under Td , and with n = 4 in the
case of flows invariant under Oh. We leave the corresponding computations to the
reader. Theorem 1.2 then follows.

5. Examples of localized flows

Here we provide explicit examples of initial data leading to flows invariant under
the groups considered in the preceding section. These examples also show that the
space decay rates previously computed are sharp. The proof of the optimality is
based on the following fact (see [7]). Let a(x) be a rapidly decreasing divergence-
free vector field in R

d (d ≥ 2) and u(x, t) the strong solution to (NS) starting
from a defined in a time interval [0, T ] (T > 0). If the homogeneous polynomial

Pm(a)(ξ) ≡
d∑

h,k=1

∑

|α|=m

(
1

α!

∫

xα(ahak)(x) dx

)

ξαξhξk, (ξ1, . . . , ξd) ∈ R
d,

(32)
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is not divisible by ξ 2
1 + . . . + ξ 2

d , then there exists a decreasing sequence tk → 0
such that

lim sup
R→∞

(

R1+m

∫

R≤|x|≤2R

|u(x, tk)| dx

)

> 0 for all k = 1, 2, . . . (33)

Condition (33) implies that u cannot decay faster than |x|−(d+1+m) uniformely in
[0, T ].

From now on we shall assume d = 3. To give examples of soleinodal vec-
tor fields a which are invariant under a given orthogonal transformation P , it
will be often convenient first to construct a potential vector field b, such that
b(Px) = det(P )Pb(x) and then to set a = ∇ × b.

Let G be a finite subgroup of O(3) which is not of polyhedral type (i.e. G

does not contain T). If G has order n then it is contained in either Dnd or in Dnh.
These two groups are in turn both contained in the complete symmetry group of
a 2n-prism D2nh, which has order 8n. Let us show that generic flows which are
invariant under D2nh do not decay faster than |x|−4. This is immediate: we can
take e.g. a vector field of the form

a(x) = (−∂2µ(x), ∂1µ(x), 0), (34)

where µ ∈ S(R3) is a non-trivial function such that µ(x1, x2, x3) = −µ(x1, −x2,

x3) = −µ(x1, x2, −x3) and µ is invariant under a rotation of π/n around the ver-
tical axis. Then a is invariant under D2nh, but

∫
a2

1(x) dx �= ∫
a2

3(x) dx, hence
(33) holds true with m = 0. A slight modification of the choice of µ would show,
in the same way, that flows invariant under the complete group of direct symmetry
of the cylinder do not decay faster than |x|−4, in general.

A very simple example of a vector field which is invariant under the com-
plete symmetry group Td of a tetrahedron is obtained choosing e.g. the potential
vector b̄1(x1, x2, x3) = x1(x

2
2 − x2

3)e−|x|2 , b̄2(x1, x2, x3) = b̄1(x2, x3, x1) and
b̄3(x1, x2, x3) = b̄1(x3, x1, x2). Another possible simple choice for the first com-
ponent of the potential vector would be b̃1(x1, x2, x3) = x2x3(x

2
2 −x2

3)e−|x|2 These
two choices give, respectively,

ā(x) =






−2x2x3(2 + 2x2
1 − x2

2 − x2
3)e−|x|2

−2x3x1(2 + 2x2
2 − x2

3 − x2
1)e−|x|2

−2x1x2(2 + 2x2
3 − x2

1 − x2
2)e−|x|2




 (35)

and

ã(x) =






x1(2x2
1 − 3x2

2 − 2x2
1x2

2 + 2x4
2 − 3x2

3 + 2x4
3 − 2x2

1x2
3)e−|x|2

x2(2x2
2 − 3x2

3 − 2x2
2x2

3 + 2x4
3 − 3x2

1 + 2x4
1 − 2x2

2x2
1)e−|x|2

x3(2x2
3 − 3x2

1 − 2x2
3x2

1 + 2x4
1 − 3x2

2 + 2x4
2 − 2x2

3x2
2)e−|x|2




 (36)
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Accordingly with Lemma 3.1, the two polynomials P0(ā)(ξ) and P0(ã)(ξ) are
divisible by ξ 2

1 +ξ 2
2 +ξ 3

3 . Hence the solutions ū and ũ starting from ā and ã decay
at least as fast as |x|−5, at the beginnning of their evolution. However, a direct
calculation shows that both P1(ā)(ξ) and P1(ã)(ξ) identically vanish. This means
that ū and ũ may decay faster than expected for generic flows invariant under
the group Td . However, one easily checks that P1(ā + ã)(ξ) ≡ cξ1ξ2ξ3 for some
constant c �= 0. Hence, the flow starting from (ā + ã)(x), which is also invariant
under Td (and, in particular, under T), cannot decay faster than |x|−5. This decay
rate is thus sharp, in general, for the groups T and Td .

Note that the field ã(x) turns out to be invariant under the transformations
of the larger group Oh. Now, it is not difficult to check that the homogeneous
polynomial P2(ã)(ξ) is not divisible by ξ 2

1 + ξ 2
2 + ξ 2

3 . Indeed, a necessary condi-
tion on the coefficients of P2(ã)(ξ), to obtain a polynomial which is divisible by
ξ 2

1 +ξ 2
2 +ξ 2

3 , would be 4
∫

x1x2ã1ã2(x) dx = ∫
(x2

1 −x2
2)(ã2

1 − ã2
2)(x) dx. But the

left hand side equals 57
512π3/2

√
2 and the right-hand side equals 15

64π3/2
√

2. Then,
the decay rate |x|−6 is optimal for generic flows invariant under the complete
symmetry group of a cube (hence, also for the groups O and Th which are both
contained in Oh).

The icosahedron groups. Examples of localized and soleinoidal vector fields
which are invariant under the groups Y and Yh are slightly more difficult to
obtain. We propose here two different methods for their construction.

The first method is based on some simple geometric considerations: the five-
teen planes of symmetry of the icosahedron divide R

3 into 120 congruent pyra-
midal regions (each of them is the convex hull of three half straight lines arising
from the origin). If � is one of these regions, it is then sufficient to construct a
vector field a which is localized and divergence-free in �, such that a(x) = 0 for
all x belonging to the three half-straight lines and 〈a(x), n〉 = 0 on the bound-
ary of � (n denotes here the exterior normal). The extension of such field by
subsequent reflections with respect to the fiveteen planes is then invariant under
the transformations of Yh (we use here the well-known fact that every orthogo-
nal transformation in R

3 can be obtained by subsequent plane reflections). Note
that, because of (1), the condition on the boundary of � is conserved by the Na-
vier–Stokes evolution: this means that the fluid particles will remain in the same
region � for all time.

The second method is based on elementary linear algebra: we start with the con-
struction of a potential vector field b = (b1, b2, b3) �≡ 0 such that Sb(x) = b(Sx),
b(W2x) = −W2b(x) and Jb(x) = b(Jx) (with the notations of section 4.1). This
is possible, as it can be checked e.g. by imposing that each components of b is a
homogeneous polynomial of degree larger or equal than six and then solving the
corresponding linear system on the coefficients. Next we modify the definition
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of b multiplying its components by a fixed radial function in the Schwartz class.
Such operation, of course, does not affect the three previous identities.

We would like to give an explicit example, since highly symmetric flows are
useful in numerical simulations of turbulence (see Kida’s papers [22], [23] for
some results in this direction, at least in the periodic case). Let us take

b1(x1, x2, x3) = x2x3e
−|x|2(−x4

1(5 +
√

5) + x4
2(3 +

√
5) + 2x4

3

−4
√

5x2
1x2

2 − (10 + 2
√

5)x2
2x2

3 + (10 + 6
√

5)x2
1x2

3

)
.

The two other components of b are then uniquely defined. The corresponding
velocity field is the vector field a = (a1, a2, a3) such that

a1(x) = x1e
−|x|2

(

6 x3
4
√

5 − 15 x2
4 + 20 x3

4 − 6 x3
6 − x1

4 + 4 x2
6

+30 x2
4x3

2 − 10 x2
2x3

4 − 2 x3
6
√

5 − 20 x1
2x2

4 + 6 x1
4x2

2

+20 x3
4x1

2 − 4 x3
2x1

4 − 20 x1
2x3

2x2
2
√

5 + 4 x1
2x3

4
√

5

−4 x1
2x2

4
√

5 + 2 x1
4
√

5x2
2 + 6 x2

2x3
4
√

5 + 14 x2
4x3

2
√

5

−20 x3
2x1

2x2
2 + 40 x2

2x1
2 − 30 x3

2x2
2 − 30 x3

2x1
2 − x1

4
√

5

−x2
4
√

5 + 12
√

5x1
2x2

2 − 30 x3
2x2

2
√

5 − 2 x3
2x1

2
√

5

)

,

and the other two components of a are given by the identity a(Sx) = Sa(x). By
construction, a is divergence-free and invariant under the transformations of Yh.
Note that if ε > 0 is small enough, then the initial vorticity 
0 = ε(∇×a) satisfies
all the assumptions of Corollary 4.6. Then the solution such that u(x, 0) = εa(x)

is globally defined and |u(x, t)| is bounded at infinity by |x|−8 and t−4. No exam-
ple of solution to the Navier–Stokes equation in R

3 with a better localization in
space-time seems to be known so far.

It now remains to prove that the decay |x|−8 is optimal, for general solutions
Yh-invariant (hence also for solutions Y-invariant). Let us show that condition (33)
holds true with m = 4, if u is the solution starting from the vector field a that
we have just defined. Indeed, a long but elementary computation allows us to
write explicitly the homogeneous polynomial P4(a)(ξ). This polynomial equals

45
8192π3/2Q(ξ), where

Q(ξ) = 124(3 +
√

5)(ξ 6
1 + ξ 6

2 + ξ 6
3 ) + 6(216 + 77

√
5)(ξ 4

1 ξ 2
2 + ξ 4

2 ξ 2
3 + ξ 4

3 ξ 2
1 )

+3(357 + 109
√

5)(ξ 4
1 ξ 2

3 + ξ 4
2 ξ 2

1 + ξ 4
3 ξ 2

2 ) + 564(3 +
√

5)ξ 2
1 ξ 2

2 ξ 2
3 .

Since Q(ξ) is not divisible by ξ 2
1 +ξ 2

2 +ξ 2
3 , the remark at the beginning of this sec-

tion applies and u(x, t) cannot decay faster than |x|−8 uniformely in any positive
time interval.
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