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Why varifolds ?

Varifolds : a space containing both
I regular objects (surfaces, sub-manifolds, rectifiables sets),
I discrete objects (triangulations, volumetric approximations, point

clouds).

Define the generalized curvature of a varifold :
I Classical mean curvature for regular objects,
I Example of computation in the discrete case.

Link between the control of the generalized curvature and
rectifiability.

Compactness properties.
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Definition

A d–varifold in Rn is a Radon measure V in Rn × Gd ,n with

Gd ,n = {d-vector planes of Rn}

A varifold is a measure giving

information of position : measure in Rn.

information of tangent plane : measure in the Grassmannian Gd ,n

Example

Take a line D ⊂ Rn directed by
−→
D ∈ G1,n and define the associated

1–varifold
V = H1

|D ⊗ δ−→D
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Varifold associated with a piecewise linear curve

Definition (mass of a varifold)

The masse of a d–varifold V is the positive Radon measure ‖V ‖ defined by

‖V ‖(A) = V (A× Gd ,n) for every Borel set A ⊂ Rn.

S1
S2

S3

S4
S5

S6
S7

S8
P1

P2

P3

P4
P5

P6

P7

P8

M

Example

A 1–varifold canonically associated
to this piecewise linear curve :

V =
8∑

i=1

H1∣∣Si︸︷︷︸
R2

⊗ δPi︸︷︷︸
G1,2

.

Measure in R2 × G1,2 with
G1,2 = {1–vector spaces of R2}.
‖V ‖ = H1

|D .
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Varifold associated with a surface

M ⊂ R3 surface.

A varifold canonically associated to M is the measure
v(M) = H2

|M ⊗ δTxM i.e. for every Borel set A ⊂ R2 × G2,3,

v(M)(A) = H2(A ∩ TM) où TM = {(x ,TxM) | x ∈ M}.

or by duality for every ϕ ∈ Cc(R2 ×G2,3),∫
ϕ(x , S) dv(M)(x ,S) =

∫
M

∫
G2,3

ϕ(x ,S) dδTxM(S) dH2(x)

=

∫
M
ϕ(x ,TxM) dH2(x) .

‖V ‖ = Hd
|M
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Rectifiable d–varifold : varifold associated with a
d–rectifiable set

M⊂ Rn countably d–rectifiable set

M =M0 ∪
⋃
i∈N

fi (Rd)

with fi : Rd → Rn of class C1 and Hd(M0) = 0.
M → Gd ,n = {d-vector plane Rn}
x 7→ TxM approximate tangent plane to M at x

.
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Definition (Rectifiable d–varifold)

M⊂ Rn d-rectifiable set,

θ :M→ R+ ∈ L1
loc(M) multiplicity.

The varifold v(M, θ) is the Radon measure associated to the continuous
linear form

C0
c (Rn × Gd ,n) −→ R

ϕ 7−→
∫
M

∫
Gd,n

ϕ(x ,S) dδTxM(S) θ(x) dHd(x)

=

∫
M
ϕ(x ,TxM) θ(x) dHd(x) .

v(M, θ) = θHd
|M ⊗ δTxM and ‖V ‖ = θHd

|M .
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Examples of discrete varifolds : Point cloud varifolds

Definition (Point cloud varifolds)

Let {xi}i=1...N ⊂ Rn be a point cloud, weighted by the masses {mi}i=1...N

and provided with directions {Pi}i=1...N ⊂ Gd ,n. We can thus associate a
d–varifolds on Rn × Gd ,n with this point cloud :

V =
N∑
i=1

mi δxi ⊗ δPi
,

so that for ϕ ∈ Cc(Ω×Gd,n),

∫
ϕ dV =

N∑
i=1

ϕ(xi ,Pi ) .
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Discrete volumetric varifolds

Definition (Discrete volumetric varifolds)

Consider a mesh K in Rn and a family {mK ,PK}K∈K ⊂ R+ × Gd ,n. We
can associate the d–varifold :

VK =
∑
K∈K

mK

|K |
Ln|K ⊗ δPK

with |K | = Ln(K ) .

This d–varifold is not rectifiable since its support is n–rectifiable but not
d–rectifiable.
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Approximation of rectifiable varifolds by discrete varifolds

Question

Are rectifiable varifolds well-approximated by discrete varifolds ? in which
sense ? is it possible to quantify it ?

which sense ? : natural convergence in varifolds space : weak
∗–convergence, a sequence of varifolds Vi

∗−−−⇀
i→∞

V if for all

ϕ ∈ Cc(Rn ×Gd,n),∫
Rn×Gd,n

ϕ dVi −→
∫
Rn×Gd,n

ϕ dV .

quantify ? : measure the error of approximation, we need a distance
between varifolds.
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Approximation with discrete volumetric varifolds

Question

Considering a sequence of meshes (Ki )i whose size

sup
K∈Ki

diamK = δi −−−→
i→∞

0

is it possible to approximate rectifiable varifolds by discrete volumetric
varifolds (Vi )i associated with these prescribed successive meshes ?
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Definition of a discrete volumetric varifold by projection
onto a mesh K
Let V = v(M, θ) = θHd

|M ⊗ δTxM be a rectifiable d–varifold in Rn and K
be a mesh of Rn. Define

VK =
∑
K∈K

mK

|K |
Ln ⊗ δPK

,

with

mK =

∫
K
θ dHd and PK ∈ arg min

P∈Gd,n

∫
K×Gd,n

‖P − S‖ dV (x ,S) .

Theorem (Approximation by discrete volumetric varifolds)

If V is a d–rectifiable varifold and (Ki )i is a sequence of meshes whose
size tends to 0 then

VKi

∗−−−−⇀
i→+∞

V in Ω .
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Quantitative version

Assume moreover that the rectifiable varifold V = θHd
|M ⊗ δTxM satisfies

in addition : there exist 0 < β < 1 and C > 0 such that for Hd–almost x ,
y ∈ M,

‖TxM − TyM‖ ≤ C |x − y |β ,

then :

Theorem (Convergence with respect to the flat distance)

for (Ki )i sequence of meshes with size δi and VKi
successive projections of

V onto Ki ,

∆1,1(V ,VKi
) ≤

(
δi + 2Cδβi

)
‖V ‖(Rn) .

Where ∆1,1 is the flat distance or bounded Lipschitz distance :

∆1,1(V ,W ) = sup

{∣∣∣∣∫ ϕ dV −
∫
ϕ dW

∣∣∣∣ : ϕ ∈ Lip1, ‖ϕ‖∞ ≤ 1

}
.
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Divergence Theorem

Theorem

Let M⊂ Rn be a C2 sub-manifold of dimension d and Ω ⊂ Rn be some
open set. Then for every X ∈ C 1

c (Ω,Rn),∫
M∩Ω

divMX dHd = −
∫
M∩Ω

< X , ~H > dHd

This is actually a way of defining the mean curvature vector ~H in a more
general class : in the space of varifolds.
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Curvature of a varifold

Definition (First variation)

The first variation of a d–varifold V is the linear form

C1
c(Rn,Rn) −→ R

X 7−→
∫
Rn×Gd,n

divSX (x) dV (x , S) .

If V = V (sub-manifold M), δV = −HHd
|M is the classical mean

curvature. But in general, we only know that it is a distribution of order 1.
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Bounded first variation

Definition

If there exists C > 0 such that for every X ∈ C1
c(Rn,Rn),

|δV (X )| ≤ C‖X‖∞ ,

then δV extends into a continuous linear form in C0
c(Rn,Rn) and we say

that V has bounded first variation.

Examples of varifolds whose first variation is not bounded :

Point clouds
∑
i

miδxi ⊗ δPi
,

A varifold associated to the line D, V = H1
|D ⊗ δD′ where the

direction D ′ is constant and is not parallel to D.
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What can be said when the first variation is bounded ?

Thanks to Riesz Theorem, δV is a Radon measure in Rn.

And Radon-Nikodym decomposition with respect to the mass ‖V ‖
gives an absolutely continuous curvature H with respect to the mass
and a singular curvature :

δV = −H ‖V ‖+ (δV )s .
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And what about the First variation of a discrete varifold

Curvature is concentrated on faces

δV = −
∑

T edge of the mesh

[
µK+

|K+|
ΠPK+

−
µK−
|K−|

ΠPK−

]
(next) dHn−1

|T .
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So that if we now consider successive volumetric approximations VKi
of

V = H1
|D ⊗ δD associated with successive meshes Ki whose size δi tends

to 0,

|δVKi
|(Ω) ≥ C

δi
‖V ‖(Rn)−−−→

i→∞
+∞ .
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Idea :

Theorem (G.P. Leonardi-S. Masnou)

If V = v(M, θ) is a rectifiable d–varifold rectifiable with bounded first
variation then for x ∈ M,

δV (Br (x)) =

∫
∂Br (x)∩M

η(y)θ(y) dHd−1(y) for almost every r .

In an integrated form :

1

ε

∫ ε

r=0
δV (Br (x)) dr =

1

ε

∫
Bε(x)×Gd,n

ΠS(y − x)

|y − x |
dV (y , S)︸ ︷︷ ︸

makes sense for any varifold

.
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Regularization of the first variation : initial idea

Let T (z) =


1

λn
(1− |z |) if |z | ≤ 1

0 otherwise
, (1)

where λn such that

∫
Rn

T = 1, we can define the associated

approximate identity Tε(z) =
1

εn
T
(z

ε

)
.

Proposition

Let V be a d–varifold in Ω ⊂ Rn. Then δV ∗ Tε(x) is well defined for
Ln–almost every x and

δV ∗ Tε(x) =
−1

λnεn
1

ε

∫
Bε(x)×Gd,n

ΠS(y − x)

|y − x |
dV (y ,S)
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Approximate first variation and curvature

We fix a symmetric positive function ρ ∈W1,∞ such that∫
ρ = 1 and suppρ ⊂ B1(0) , (2)

and we also fix the associated family ρε(x) =
1

εn
ρ
(x

ε

)
.

If V has bounded first variation, then

δV ∗ ρε
∗−−−⇀

ε→0
δV

If moreover V is rectifiable and ρ is radial, then, for ‖V ‖–almost any
x ,

Hε(x) =
δV ∗ ρε(x)

‖V ‖ ∗ ρε(x)
−−−→
ε→0

−H(x) where δV = −H‖V ‖+ δVs .
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Approximate Willmore energies

Definition (Approximate Willmore energies)

Let p ≥ 1 and ε > 0. For any d–varifold V in Rn, we define

Wp
ε (V ) =

∫
x∈Rn

∣∣∣∣ δV ∗ ρε(x)

‖V ‖ ∗ ρε(x)

∣∣∣∣p ‖V ‖ ∗ ρε(x) dLn(x) .

Wp
ε

Γ−−−⇀
ε→0

Wp for 1 < p < +∞

W1
ε

Γ−−−⇀
ε→0

the total variation of the first variation 6=W1 .

Wp(V ) =

∫
Ω
|H|p d‖V ‖ if δV = −H ‖V ‖ and +∞ otherwise ,

Recall that for an explicit kernel ρ, the expression of δV ∗ ρε is explicit .
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The case of discrete varifolds

Theorem

V = v(M, θ) rectifiable d–varifold in Rn with finite mass
‖V ‖(Rn) < +∞.

(Ki )i a sequence of meshes satisfying sup
K∈Ki

diam(K ) ≤ δi −−−−→
i→+∞

0.

(VKi
)i the sequence of discrete volumetric varifolds obtained by

projection on the mesh Ki .

ρ ∈W2,∞ .

Assume that there exist 0 < β < 1 and C such that for ‖V ‖–almost
every x, y ,

‖TxM − TyM‖ ≤ C |x − y |β .

Then, for any sequence of infinitesimals εi ↓ 0

W1
εi

(VKi
) −−−−→

i→+∞
|δV |(Rn) as soon as

δβi
ε2
i

−−−−→
i→+∞

0 .
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What is δV ∗ ρε

for p > 1,

Wp
εi

(VKi
)

?−−−−→
i→+∞

Wp(V )

Question

Given a d–varifold V , is the regularization δV ∗ ρε of the first

variation δV , the first variation δ
(

V̂ε
)

of some varifold V̂ε ?

And if so, is V̂ε the regularization (in a sense to be defined) of V ?
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(a) (b)

V̂ε = (‖V ‖ ∗ ρε(x))⊗ ν̂εx and ν̂εx

is not the tangent to the level-line at x ,

but it is a convex combination of δT1 and δT2 where T1 and T2 are
the directions of the lines.
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Example of a cross

Figure:
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Let〈
V̂ε, ψ

〉
= 〈V , (y , S) 7→ ψ(·,S) ∗ ρε(y)〉 for every ψ ∈ C0

c(Ω×Gd,n) ;

Then,

1 ‖V̂ε‖ = ‖V ‖ ∗ ρε,
2 δ

(
V̂ε
)

= δV ∗ ρε.
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Approximation of the mean curvature vector of point
clouds

For a d–varifold VN associated with a point cloud and for a radial kernel
ρ(y) = ζ(|y |),

VN =
N∑
j=1

mjδxj ⊗ δPj
,

HN
ε (x) =

δVN ∗ ρε(x)

‖VN‖ ∗ ρε(x)
=

N∑
j=1

mjζ
′
(
|xj − x |

ε

)
ΠPj

(xj − x)

|xj − x |
N∑
j=1

mjεζ

(
|xj − x |

ε

) .

Convergence under same kind of assumptions as for the first variation,
involving δ

ε2 .
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Recovering the 0–singular curvature
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Recovering the classical curvature with projecting onto the
normal vector
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