Discrete varifolds and regularization of the generalized curvature

Blanche BUET supervised by Gian Paolo LEONARDI and Simon MASNOU

Institut Camille Jordan, LYON

14 October 2014

Blanche Buet (Institut Camille Jordan, LYON Willmore energy and varifol

★ロト ★課 と ★注 と ★注 と 一注

Why varifolds?

- Varifolds : a space containing both
 - regular objects (surfaces, sub-manifolds, rectifiables sets),
 - discrete objects (triangulations, volumetric approximations, point clouds).
- Define the generalized curvature of a varifold :
 - Classical mean curvature for regular objects,
 - Example of computation in the discrete case.
- Link between the control of the generalized curvature and rectifiability.
- Compactness properties.

Outline

1

Varifolds : Regular and Discrete varifolds

- Regular varifolds
- Discrete objects endowed with a varifold structure
- Approximation of regular varifolds by discrete varifolds

2 First variation of a varifold : a notion of generalized curvature

3 Regularization of the first variation

4 Some numerical tests

Definition

A *d*-varifold in \mathbb{R}^n is a Radon measure V in $\mathbb{R}^n \times G_{d,n}$ with

$$G_{d,n} = \{d$$
-vector planes of $\mathbb{R}^n\}$

A varifold is a measure giving

- information of position : measure in \mathbb{R}^n .
- information of tangent plane : measure in the Grassmannian $G_{d,n}$

Example

Take a line $D \subset \mathbb{R}^n$ directed by $\overrightarrow{D} \in G_{1,n}$ and define the associated 1-varifold

 $V = \mathcal{H}^1_{|D} \otimes \delta_{\overrightarrow{D}}$

Varifold associated with a piecewise linear curve

Definition (mass of a varifold)

The masse of a d-varifold V is the positive Radon measure $\|V\|$ defined by

 $\|V\|(A) = V(A \times G_{d,n})$ for every Borel set $A \subset \mathbb{R}^n$.

Example

A 1-varifold canonically associated to this piecewise linear curve :

$$V = \sum_{i=1}^{8} \frac{\mathcal{H}_{|S_i|}^1}{\sum_{\mathbb{R}^2}} \otimes \underbrace{\delta_{P_i}}_{G_{1,2}}.$$

Measure in $\mathbb{R}^2 \times G_{1,2}$ with $G_{1,2} = \{1 \text{-vector spaces of } \mathbb{R}^2\}.$ $\|V\| = \mathcal{H}^1_{|D}.$

Varifold associated with a surface

- $M \subset \mathbb{R}^3$ surface.
- A varifold canonically associated to M is the measure $v(M) = \mathcal{H}^2_{|M} \otimes \delta_{T_xM}$ i.e. for every Borel set $A \subset \mathbb{R}^2 \times G_{2,3}$,

$$v(M)(A) = \mathcal{H}^2(A \cap TM)$$
 où $TM = \{(x, T_xM) \mid x \in M\}.$

or by duality for every $arphi \in \mathrm{C}_{\mathrm{c}}(\mathbb{R}^2 imes \mathrm{G}_{2,3})$,

$$\int \varphi(x, S) \, dv(M)(x, S) = \int_M \int_{G_{2,3}} \varphi(x, S) \, d\delta_{T_xM}(S) \, d\mathcal{H}^2(x)$$
$$= \int_M \varphi(x, T_xM) \, d\mathcal{H}^2(x) \, .$$
$$\|V\| = \mathcal{H}^d_{IM}$$

Rectifiable d-varifold : varifold associated with a d-rectifiable set

• $\mathcal{M} \subset \mathbb{R}^n$ countably *d*-rectifiable set

$$\mathcal{M} = \mathcal{M}_0 \cup \bigcup_{i \in \mathbb{N}} f_i(\mathbb{R}^d)$$

with $f_i : \mathbb{R}^d \to \mathbb{R}^n$ of class \mathcal{C}^1 and $\mathcal{H}^d(\mathcal{M}_0) = 0$. $M \to G_{d,n} = \{d\text{-vector plane } \mathbb{R}^n\}$ $x \mapsto T_x M$ approximate tangent plane to \mathcal{M} at x.

Definition (Rectifiable *d*-varifold)

- $\mathcal{M} \subset \mathbb{R}^n$ *d*-rectifiable set,
- $\theta: \mathcal{M} \to \mathbb{R}_+ \in \mathrm{L}^1_{loc}(M)$ multiplicity.

The varifold $v(M, \theta)$ is the Radon measure associated to the continuous linear form

$$\begin{aligned} \mathcal{C}^0_c \left(\mathbb{R}^n \times G_{d,n} \right) & \longrightarrow & \mathbb{R} \\ \varphi & \longmapsto & \int_M \int_{G_{d,n}} \varphi(x,S) \, d\delta_{T_xM}(S) \, \theta(x) \, d\mathcal{H}^d(x) \\ & = & \int_M \varphi(x,T_xM) \, \theta(x) \, d\mathcal{H}^d(x) \, . \end{aligned}$$

$$v(M, \theta) = \theta \mathcal{H}^d_{|M} \otimes \delta_{\mathcal{T}_{\times}M}$$
 and $\|V\| = \theta \mathcal{H}^d_{|M}$.

Blanche Buet (Institut Camille Jordan, LYON

- 3

A (10) A (10)

Examples of discrete varifolds : Point cloud varifolds

Definition (Point cloud varifolds)

Let $\{x_i\}_{i=1...N} \subset \mathbb{R}^n$ be a point cloud, weighted by the masses $\{m_i\}_{i=1...N}$ and provided with directions $\{P_i\}_{i=1...N} \subset G_{d,n}$. We can thus associate a d-varifolds on $\mathbb{R}^n \times G_{d,n}$ with this point cloud :

$$V = \sum_{i=1}^N m_i \, \delta_{x_i} \otimes \delta_{P_i} \, ,$$

so that for $arphi \in \mathrm{C}_{\mathrm{c}}(\Omega imes \mathrm{G}_{\mathrm{d},\mathrm{n}})$,

$$\int \varphi \, dV = \sum_{i=1}^N \varphi(x_i, P_i) \, .$$

< 同 ト く ヨ ト く ヨ ト

Discrete volumetric varifolds

Definition (Discrete volumetric varifolds)

Consider a mesh \mathcal{K} in \mathbb{R}^n and a family $\{m_{\mathcal{K}}, P_{\mathcal{K}}\}_{\mathcal{K} \in \mathcal{K}} \subset \mathbb{R}_+ \times G_{d,n}$. We can associate the d-varifold :

$$V_{\mathcal{K}} = \sum_{K \in \mathcal{K}} \frac{m_K}{|K|} \mathcal{L}^n_{|K|} \otimes \delta_{P_K} \text{ with } |K| = \mathcal{L}^n(K) \,.$$

This d-varifold is not rectifiable since its support is n-rectifiable but not d-rectifiable.

Approximation of rectifiable varifolds by discrete varifolds

Question

Are rectifiable varifolds well-approximated by discrete varifolds? in which sense? is it possible to quantify it?

which sense ? : natural convergence in varifolds space : weak
 -convergence, a sequence of varifolds V_i ^{}/_{i→∞} V if for all φ ∈ C_c(ℝⁿ × G_{d,n}),

$$\int_{\mathbb{R}^n \times G_{d,n}} \varphi \, dV_i \to \int_{\mathbb{R}^n \times G_{d,n}} \varphi \, dV \, .$$

• quantify? : measure the error of approximation, we need a distance between varifolds.

Approximation with discrete volumetric varifolds

Question Considering a sequence of meshes $(\mathcal{K}_i)_i$ whose size $\sup_{K \in \mathcal{K}_i} \operatorname{diam} K = \delta_i \xrightarrow[i \to \infty]{} 0$ is it possible to approximate rectifiable varifolds by discrete volumetric varifolds $(V_i)_i$ associated with these prescribed successive meshes?

- 21

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Definition of a discrete volumetric varifold by projection onto a mesh $\ensuremath{\mathcal{K}}$

Let $V = v(M, \theta) = \theta \mathcal{H}^d_{|M} \otimes \delta_{\mathcal{T}_x M}$ be a rectifiable *d*-varifold in \mathbb{R}^n and \mathcal{K} be a mesh of \mathbb{R}^n . Define

$$V_{\mathcal{K}} = \sum_{K \in \mathcal{K}} \frac{m_K}{|K|} \mathcal{L}^n \otimes \delta_{P_K} ,$$

with

$$m_{\mathcal{K}} = \int_{\mathcal{K}} \theta \, d\mathcal{H}^d$$
 and $P_{\mathcal{K}} \in \operatorname*{arg\,min}_{P \in \mathcal{G}_{d,n}} \int_{\mathcal{K} \times \mathcal{G}_{d,n}} \|P - S\| \, dV(x,S)$.

Theorem (Approximation by discrete volumetric varifolds) If V is a *d*-rectifiable varifold and $(\mathcal{K}_i)_i$ is a sequence of meshes whose size tends to 0 then

$$V_{\mathcal{K}_i} \xrightarrow{*}_{i \to +\infty} V \text{ in } \Omega$$

Quantitative version

Assume moreover that the rectifiable varifold $V = \theta \mathcal{H}^d_{|M} \otimes \delta_{T_xM}$ satisfies in addition : there exist $0 < \beta < 1$ and C > 0 such that for \mathcal{H}^d -almost x, $y \in M$,

$$\|T_xM-T_yM\|\leq C|x-y|^{eta}$$
,

then :

Theorem (Convergence with respect to the flat distance)

for $(\mathcal{K}_i)_i$ sequence of meshes with size δ_i and $V_{\mathcal{K}_i}$ successive projections of V onto \mathcal{K}_i ,

$$\Delta^{1,1}(V,V_{\mathcal{K}_i}) \leq \left(\delta_i + 2C\delta_i^eta
ight) \|V\|(\mathbb{R}^n)\,.$$

Where $\Delta^{1,1}$ is the flat distance or bounded Lipschitz distance :

$$\Delta^{1,1}(V,W) = \sup\left\{ \left| \int arphi \, dV - \int arphi \, dW
ight| \, : \, arphi \in \mathrm{Lip}_1, \; \|arphi\|_\infty \leq 1
ight\}$$

Outline

- Varifolds : Regular and Discrete varifolds
- Pirst variation of a varifold : a notion of generalized curvature
 - 3 Regularization of the first variation
- 4 Some numerical tests

___ ▶

Divergence Theorem

Theorem

Let $\mathcal{M} \subset \mathbb{R}^n$ be a \mathcal{C}^2 sub-manifold of dimension d and $\Omega \subset \mathbb{R}^n$ be some open set. Then for every $X \in C_c^1(\Omega, \mathbb{R}^n)$,

$$\int_{\mathcal{M}\cap\Omega} {div_\mathcal{M} X \, d\mathcal{H}^d} = -\int_{\mathcal{M}\cap\Omega} < X, ec{\mathcal{H}} > \, d\mathcal{H}^d$$

This is actually a way of defining the mean curvature vector \vec{H} in a more general class : in the space of varifolds.

Curvature of a varifold

Definition (First variation)

The first variation of a d-varifold V is the linear form

$$\begin{array}{rcl} \mathrm{C}^{1}_{\mathrm{c}}(\mathbb{R}^{\mathrm{n}},\mathbb{R}^{\mathrm{n}}) & \longrightarrow & \mathbb{R} \\ X & \longmapsto & \int_{\mathbb{R}^{n}\times G_{d,n}} \operatorname{div}_{S} X(x) \, dV(x,S) \, . \end{array}$$

If V = V(sub-manifold M), $\delta V = -H \mathcal{H}^d_{|M}$ is the classical mean curvature. But in general, we only know that it is a distribution of order 1.

Bounded first variation

Definition

If there exists C > 0 such that for every $X \in C_c^1(\mathbb{R}^n, \mathbb{R}^n)$,

 $|\delta V(X)| \leq C \|X\|_{\infty} \,,$

then δV extends into a continuous linear form in $C_c^0(\mathbb{R}^n, \mathbb{R}^n)$ and we say that V has bounded first variation.

EXAMPLES of varifolds whose first variation is not bounded :

• Point clouds
$$\sum_{i} m_i \delta_{x_i} \otimes \delta_{P_i}$$
,

• A varifold associated to the line D, $V = \mathcal{H}^1_{|D} \otimes \delta_{D'}$ where the direction D' is constant and is not parallel to D.

What can be said when the first variation is bounded?

- Thanks to Riesz Theorem, δV is a Radon measure in \mathbb{R}^n .
- And Radon-Nikodym decomposition with respect to the mass ||V|| gives an absolutely continuous curvature H with respect to the mass and a singular curvature :

$$\delta V = -H \|V\| + (\delta V)_s.$$

And what about the First variation of a discrete varifold

Curvature is concentrated on faces

$$\delta V = -\sum_{T \text{ edge of the mesh}} \left[\frac{\mu_{K_+}}{|K_+|} \Pi_{P_{K_+}} - \frac{\mu_{K_-}}{|K_-|} \Pi_{P_{K_-}} \right] (n_{ext}) \, d\mathcal{H}_{|T}^{n-1} \, .$$

So that if we now consider successive volumetric approximations $V_{\mathcal{K}_i}$ of $V = \mathcal{H}^1_{|D} \otimes \delta_D$ associated with successive meshes \mathcal{K}_i whose size δ_i tends to 0,

$$|\delta V_{\mathcal{K}_i}|(\Omega) \geq \frac{C}{\delta_i} ||V||(\mathbb{R}^n) \xrightarrow[i \to \infty]{} +\infty.$$

Outline

Varifolds : Regular and Discrete varifolds

2) First variation of a varifold : a notion of generalized curvature

3 Regularization of the first variation

- Regularization of the first variation
- Approximate Willmore energies

4) Some numerical tests

IDEA :

Theorem (G.P. Leonardi-S. Masnou)

If $V = v(M, \theta)$ is a rectifiable *d*-varifold rectifiable with bounded first variation then for $x \in M$,

$$\delta V(B_r(x)) = \int_{\partial B_r(x) \cap M} \eta(y) \theta(y) \, d\mathcal{H}^{d-1}(y) \text{ for almost every } r$$

In an integrated form :

$$\frac{1}{\varepsilon} \int_{r=0}^{\varepsilon} \delta V(B_r(x)) \, dr = \underbrace{\frac{1}{\varepsilon} \int_{B_{\varepsilon}(x) \times G_{d,n}} \frac{\prod_{S}(y-x)}{|y-x|} \, dV(y,S)}_{\text{makes sense for any varifold}}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Regularization of the first variation : initial idea

Let
$$T(z) = \begin{cases} \frac{1}{\lambda_n} (1 - |z|) & \text{if } |z| \le 1 \\ 0 & \text{otherwise} \end{cases}$$
, (1)

where λ_n such that $\int_{\mathbb{R}^n} T = 1$, we can define the associated approximate identity $T_{\varepsilon}(z) = \frac{1}{\varepsilon^n} T\left(\frac{z}{\varepsilon}\right)$.

Let V be a d-varifold in $\Omega \subset \mathbb{R}^n$. Then $\delta V * T_{\varepsilon}(x)$ is well defined for \mathcal{L}^n -almost every x and

$$\delta V * T_{\varepsilon}(x) = \frac{-1}{\lambda_n \varepsilon^n} \frac{1}{\varepsilon} \int_{B_{\varepsilon}(x) \times G_{d,n}} \frac{\prod_{S}(y-x)}{|y-x|} dV(y,S)$$

Approximate first variation and curvature

We fix a symmetric positive function $\rho \in \mathrm{W}^{1,\infty}$ such that

$$\int \rho = 1 \text{ and } \operatorname{supp} \rho \subset B_1(0) , \qquad (2)$$

and we also fix the associated family $\rho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \rho\left(\frac{x}{\varepsilon}\right)$. If V has bounded first variation, then

$$\delta V * \rho_{\varepsilon} \xrightarrow[\varepsilon \to 0]{*} \delta V$$

• If moreover V is rectifiable and ρ is radial, then, for $\|V\|$ -almost any x,

$$H_{\varepsilon}(x) = \frac{\delta V * \rho_{\varepsilon}(x)}{\|V\| * \rho_{\varepsilon}(x)} \xrightarrow[\varepsilon \to 0]{} -H(x) \text{ where } \delta V = -H\|V\| + \delta V_s.$$

Approximate Willmore energies

Definition (Approximate Willmore energies)

Let $p \ge 1$ and $\varepsilon > 0$. For any d-varifold V in \mathbb{R}^n , we define

$$\mathcal{W}_{\varepsilon}^{p}(V) = \int_{x \in \mathbb{R}^{n}} \left| \frac{\delta V * \rho_{\varepsilon}(x)}{\|V\| * \rho_{\varepsilon}(x)} \right|^{p} \|V\| * \rho_{\varepsilon}(x) \, d\mathcal{L}^{n}(x) \, .$$

$$\begin{split} \mathcal{W}^p_{\varepsilon} \xrightarrow{\mathbf{I}} \mathcal{W}^p & \text{for } 1$$

Recall that for an explicit kernel ρ , the expression of $\delta V * \rho_{\varepsilon}$ is explicit .

イロト イポト イヨト イヨト 二日

The case of discrete varifolds

Theorem

- $V = v(M, \theta)$ rectifiable *d*-varifold in \mathbb{R}^n with finite mass $||V||(\mathbb{R}^n) < +\infty$.
- $(\mathcal{K}_i)_i$ a sequence of meshes satisfying $\sup_{K \in \mathcal{K}_i} \operatorname{diam}(K) \leq \delta_i \xrightarrow[i \to +\infty]{} 0$.
- (V_{K_i})_i the sequence of discrete volumetric varifolds obtained by projection on the mesh K_i.
- $\bullet \ \rho \in \mathbf{W}^{2,\infty} \ .$
- Assume that there exist 0 < β < 1 and C such that for ||V||-almost every x, y,

$$\|T_xM-T_yM\|\leq C|x-y|^{\beta}.$$

Then, for any sequence of infinitesimals $\varepsilon_i \downarrow 0$

$$\mathcal{W}^1_{\varepsilon_i}(V_{\mathcal{K}_i}) \xrightarrow[i \to +\infty]{} |\delta V|(\mathbb{R}^n) \text{ as soon as } rac{\delta_i^eta}{arepsilon_i^2} \xrightarrow[i \to +\infty]{} 0 \,.$$

What is $\delta V * \rho_{\varepsilon}$

for p > 1,

$$\mathcal{W}^{p}_{\varepsilon_{i}}(V_{\mathcal{K}_{i}}) \xrightarrow[i \to +\infty]{?} \mathcal{W}^{p}(V)$$

Question

- Given a *d*-varifold *V*, is the regularization $\delta V * \rho_{\varepsilon}$ of the first variation δV , the first variation $\delta (\widehat{V_{\varepsilon}})$ of some varifold $\widehat{V_{\varepsilon}}$?
- And if so, is $\widehat{V_{\varepsilon}}$ the regularization (in a sense to be defined) of V?

$$\widehat{V_arepsilon} = (\|V\| *
ho_arepsilon(x)) \otimes \widehat{
u_X^arepsilon}$$
 and $\widehat{
u_X^arepsilon}$

- is not the tangent to the level-line at x,
- but it is a convex combination of δ_{T_1} and δ_{T_2} where T_1 and T_2 are the directions of the lines.

Example of a cross

Let

$$\left\langle \widehat{V_{\varepsilon}},\psi\right\rangle = \left\langle V,(y,\mathcal{S})\mapsto\psi(\cdot,\mathcal{S})*
ho_{\varepsilon}(y)
ight
angle ext{ for every }\psi\in\mathrm{C}^{0}_{\mathrm{c}}(\Omega imes\mathrm{G}_{\mathrm{d},\mathrm{n}});$$

Then,

3

イロト イポト イヨト イヨト

Outline

Varifolds : Regular and Discrete varifolds

2) First variation of a varifold : a notion of generalized curvature

3) Regularization of the first variation

___ ▶

Approximation of the mean curvature vector of point clouds

For a *d*-varifold V_N associated with a point cloud and for a radial kernel $\rho(y) = \zeta(|y|)$,

$$V_{N} = \sum_{j=1}^{N} m_{j} \delta_{x_{j}} \otimes \delta_{P_{j}} ,$$

$$H_{\varepsilon}^{N}(x) = \frac{\delta V_{N} * \rho_{\varepsilon}(x)}{\|V_{N}\| * \rho_{\varepsilon}(x)} = \frac{\sum_{j=1}^{N} m_{j}\zeta'\left(\frac{|x_{j}-x|}{\varepsilon}\right) \frac{\prod_{P_{j}}(x_{j}-x)}{|x_{j}-x|}}{\sum_{j=1}^{N} m_{j}\varepsilon\zeta\left(\frac{|x_{j}-x|}{\varepsilon}\right)}$$

Convergence under same kind of assumptions as for the first variation, involving $\frac{\delta}{c^2}$.

Recovering the 0-singular curvature

A 🖓

Recovering the classical curvature with projecting onto the normal vector

Blanche Buet (Institut Camille Jordan, LYON

14 October 2014 37 / 38

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●