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Abstract

Our purpose is to state quantitative conditions ensuring the rectifiability of a d–varifold V
obtained as the limit of a sequence of d–varifolds (Vi)i which need not to be rectifiable. More
specifically, we introduce a sequence {Ei}i of functionals defined on d–varifolds, such that if
sup
i
Ei(Vi) < +∞ and Vi satisfies a uniform density estimate at some scale βi, then V = limi Vi

is d–rectifiable.
The main motivation of this work is to set up a theoretical framework where curves, surfaces, or
even more general d–rectifiable sets minimizing geometrical functionals (like the length for curves
or the area for surfaces), can be approximated by “discrete” objects (volumetric approximations,
pixelizations, point clouds etc.) minimizing some suitable “discrete” functionals.
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Introduction

The set of regular surfaces lacks compactness properties (for Hausdorff convergence for instance),
which is a problem when minimizing geometric energies defined on surfaces. In order to gain
compactness, the set of surfaces can be extended to the set of varifolds and endowed with a notion
of convergence (weak–∗ convergence of Radon measures). Nevertheless, the problem turns to be
the following: how to ensure that a weak–∗ limit of varifolds is regular (at least in the weak sense
of rectifiability)? W. K. Allard (see [1]) answered this question in the case where the weak–∗
converging sequence is made of weakly regular surfaces (rectifiable varifolds to be precise). But
what about the case when the weak–∗ converging sequence is made of more general varifolds?
Assume that we have a sequence of volumetric approximations of some set M , how can we know if
M is regular (d–rectifiable for some d), knowing only its successive approximations ?

As a set and its volumetric approximations can be endowed with a structure of varifold (as we
will see), this problem can be formulated in terms of varifolds: we are interested in quantitative
conditions on a given sequence of d–varifolds ensuring that the limit (when it exists) is rectifiable.
Before going into technical details, let us consider the problem of rectifiability in simplified settings.

• First, let f : R → R. We are look for conditions ensuring that f is differentiable (in some
sense). The most simple answer is to impose that the difference quotient has a finite limit
everywhere. But assume that moreover, we ask for something more quantitative, that is to
say some condition that could be expressed through bounds on some well chosen quantities
(for instance, from a numerical point of view, it is easier to deal with bounded quantities
than with the existence of a limit)). We will refer to this kind of condition as “quantitative
conditions” (see also [6]). There exists an answer by Dorronsoro [7] (we give here a simplified
version, see [5]).

Theorem 1 (see [7] and [5]). Let f : Rd → R be locally integrable and let q ≥ 1 such that

q <
2d

d− 2
if d > 1. Then, the distributional gradient of f is in L2 if and only if

∫
Rd

∫ 1

0
γq(x, r)

2 dr

r
dx < +∞ with γq(x, r)

q = inf
a affine
function

1

rd+1

∫
Br(x)

|f(y)− a(y)|q dy

The function γq penalizes the distance from f to its best affine approximation locally every-
where. This theorem characterizes the weak differentiability (in the sense of a L2 gradient)
quantitatively in terms of xL2–estimate on γq (with the singular weight 1

r ).

• Now, we take a set M in Rn and we ask the same question: how to ensure that this set is
regular (meaning d–rectifiable for some d)? Of course, we are still looking for quantitative
conditions. This problem has been studied by P.W. Jones (for 1–rectifiable sets) in connection
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with the travelling salesman problem ([9]) then by K. Okikiolu ([12]), by S. Semmes and G.
David ([4]) and by H. Pajot ([13]). As one can see in the following result stated by H. Pajot
in [13], the exhibited conditions are not dissimilar to Dorronsoro’s. We first introduce the Lq

generalization of the so called Jones’ β numbers, (see [9] for Jones’ β numbers and [13] for
the Lq generalization):

Definition 1. Let M ⊂ Rn and d ∈ N, d ≤ n.

β∞(x, r,M) = inf
P affine d−plane

sup
y∈M∩Br(x)

d(y, P )

r
if Br(x) ∩M 6= ∅ ,

β∞(x, r,M) = 0 if Br(x) ∩M = ∅ ,

βq(x, r,M) = inf
P affine d−plane

(
1

rd

∫
y∈Br(x)∩M

(
d(y, P )

r

)q
dHd(y)

) 1
q

if 1 ≤ q < +∞ .

The βq(x, r,M) measure the distance from the set M to its best affine approximation at a
given point x and a given scale r.

Theorem 2 ([13]). Let M ⊂ Rn compact with Hd(M) < +∞. Let q be such that 1 ≤ q ≤ ∞ if d = 1

1 ≤ q < 2d

d− 2
if d ≥ 2 .

We assume that for Hd–almost every x ∈M , the following properties hold:

(i) θd∗(x,M) = lim inf
r↓0

Hd(M ∩Br(x))

ωdrd
> 0,

(ii)

∫ 1

r=0
βq(x, r,M)2 dr

r
<∞.

Then M is d–rectifiable.

• Let us get closer to our initial question: now we consider the same question in the context
of varifolds. Recall that from a mathematical point of view, a d–varifold V in Ω ⊂ Rn is a
Radon measure on the product Ω×Gd,n, where

Gd,n = {d–dimensional subspaces of Rn } .

Varifolds can be loosely seen as a set of generalized surfaces: let M be a d–submanifold (or
a d–rectifiable set) in Ω and denote by TxM its tangent plane at x, then the Radon measure
V (x, P ) = Hd|M (x) ⊗ δTxM (P ) is a d–varifold associated to M , involving both spatial and
tangential information on M . The measure obtained by projecting V on the spatial part Ω
is called the mass ‖V ‖. In the previous specific case where V comes from a d–rectifiable set
M then the mass is ‖V ‖ = Hd|M . See the next section for more details about varifolds. We
can now state the first result that we obtain in this paper about quantitative conditions of
rectifiability in the context of varifolds:
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Theorem 3. Let Ω ⊂ Rn be an open set and let V be a d–varifold in Ω with finite mass
‖V ‖(Ω) < +∞. Assume that:

(i) there exist 0 < C1 < C2 such that for ‖V ‖–almost every x ∈ Ω and for every r > 0,

C1r
d ≤ ‖V ‖(Br(x)) ≤ C2r

d , (1)

(ii)

∫
Ω×Gd,n

E0(x, P, V ) dV (x, P ) < +∞, where

E0(x, P, V ) =

∫ 1

r=0

1

rd

∫
y∈Br(x)∩Ω

(
d(y − x, P )

r

)2

d‖V ‖(y)
dr

r

defines the averaged height excess.

Then V is a rectifiable d–varifold.

The first assumption is called Ahlfors-regularity. It implies in particular that V is d–dimensional
but with some uniform control on the d–density. Adding the second assumption both ensures
that the support M of the mas measure ‖V ‖ is a d–rectifiable set and that the tangential part
of V is coherent with M , that is to say V = ‖V ‖⊗δTxM . We will refer to these two conditions
as static quantitative conditions of rectifiability for a given d–varifold, by opposition to the
next conditions, involving the limit of a sequence of d–varifolds, which we will refer to as
the approximation case. These static conditions are not very difficult to derive from Pajot’s
theorem, the difficult part is the next one: the approximation case.

• Now we consider a sequence (Vi)i of d–varifolds (weakly–∗) converging to a d–varifold V .The
problem is to find quantitative conditions on (Vi)i that ensure the rectifiability of V ? The
idea is to consider the static conditions with uniform bounds and using a notion of scale
encoded by the parameters αi and βi in the following result:

Theorem 4. Let Ω ⊂ Rn be an open set and let (Vi)i be a sequence of d–varifolds in Ω
weakly–∗ converging to some d–varifold V of finite mass ‖V ‖(Ω) < +∞. Fix two decreasing
and infinitesimal (tending to 0) sequences of positive numbers (αi)i and (βi)i and assume
that:

(i) there exist 0 < C1 < C2 such that for ‖Vi‖–almost every x ∈ Ω and for every βi < r <
d(x,Ωc),

C1r
d ≤ ‖Vi‖(Br(x)) ≤ C2r

d ,

(ii) sup
i

∫
Ω×Gd,n

Eαi(x, P, Vi) dVi(x, P ) < +∞, where

Eα(x, P,W ) =

∫ 1

r=αi

1

rd

∫
y∈Br(x)∩Ω

(
d(y − x, P )

r

)2

d‖W‖(y)
dr

r

denotes the α–approximate averaged height excess.

Then V is a rectifiable d–varifold.
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We stress that the sequence (Vi)i in Theorem 4 is not necessarily made of rectifiable d–varifolds.
The parameters αi and βi allow to study the varifolds at a large scale (from far away). The main
difficulty in the proof of Theorem 4 is to understand the link between

− the choice of αi ensuring a good convergence of the successive approximate averaged height
excess energies Eαi(x, P, Vi) to the averaged height excess energy E0(x, P, V )

− and a notion of convergence speed of the sequence (Vi)i obtained thanks to a strong characteri-
zation of weak–∗ convergence.

In the following example, we can guess that the parameters αi and βi must be large with respect
to the size of the mesh. Loosely speaking, in figure (a), even in the smallest ball, the grey approxi-
mation “looks” 1–dimensional. On the contrary, if we continue zooming like in figure (b), the grey
approximation “looks” 2–dimensional. The issue is to give a correct sense to this intuitive fact.

(a) (b)

The plan of the paper is the following: in section 1 we collect some basic facts about rectifiability
and varifolds that we need thereafter. Then in section 2, we state and prove quantitative conditions
of rectifiability for varifolds in the static case. In section 3, we first establish a result of uniform
convergence for the pointwise averaged height excess energies Eα thanks to a strong characterization
of weak–∗ convergence. This allows us to state and prove quantitative conditions of rectifiability
for varifolds in the approximation case. In the appendix, we consider some sequence of d–varifolds
weakly–∗ converging to some rectifiable d–varifold V = θHd|M ⊗ δTxM (for some d–rectifiable set

M) and we make a connection between the minimizers of Eαi(x, ·, Vi), with respect to P ∈ Gd,n,
and the tangent plane TxM to M at x.

1 Some facts about rectifiability and varifolds

This section contains basic definitions and facts about rectifiability and varifolds. We start by
fixing some notations.

From now on, we fix d, n ∈ N with 1 ≤ d < n and an open set Ω ⊂ Rn. Then we adopt the
following notations.
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− Ln is the n–dimensional Lebesgue measure.

− Hd is the d–dimensional Hausdorff measure.

− Ck
c (Ω) is the space of continuous compactly supported functions of class Ck in Ω.

− Br(x) = {y | |y − x| < r} is the open ball of center x and radius r.

− Gd,n = {P ⊂ Rn |P is a vector subspace of dimension d}.
− A4B = (A ∪B) \ (A ∩B) is the symmetric difference.

− Lipk(Ω) is the space of Lipschitz functions in Ω with Lipschitz constant less or equal to k.

− ωd = Ld(B1(0)) is the d–volume of the unit ball in Rd.
− For P ∈ Gd,n, ΠP is the orthogonal projection onto P .

− Let ω and Ω be two open sets then ω ⊂⊂ Ω means that ω is relatively compact in Ω.

− Let µ be a measure in some measurable topological space, then suppµ denotes the topological
support of µ.

− Let A ⊂ Ω then Ac = Ω \A denotes the complementary of A in Ω.

− Given a measure µ, we denote by |µ| its total variation.

1.1 Radon measure and weak–∗ convergence

We recall here some useful properties concerning vector-valued Radon measures and weak–∗ con-
vergence. See [8] and [2] for more details.

Definition 2 (weak–∗ convergence of Radon measures, see. [2] def. 1.58 p. 26). Let µ and (µi)i
be Rm–vector valued Radon measures in Ω ⊂ Rn. We say that µi weakly–∗ converges to µ, denoted
µi

∗−−−⇀
i→∞

µ if for every ϕ ∈ Cc(Ω,Rm),∫
Ω
ϕ · dµi −−−→

i→∞

∫
Ω
ϕ · dµ .

Thanks to Banach-Alaoglu weak compactness theorem, we have the following result in the space
of Radon measures.

Proposition 1 (Weak–∗ compactness, see [2] Theorem. 1.59 and 1.60 p. 26). Let (µi)i be a
sequence of Radon measures in some open set Ω ⊂ Rn such that supi |µi|(Ω) <∞ then there exist
a finite Radon measure µ and a subsequence (µϕ(i))i weakly–∗ converging to µ.

Let us now study the consequences of weak–∗ convergence on Borel sets.

Proposition 2 (see 1.9 p.54 in [8]). Let (µi)i be a sequence of positive Radon measures weakly–∗
converging to µ in some open set Ω ⊂ Rn. Then,

1. for every compact set K ⊂ Ω, lim supi µi(K) ≤ µ(K) and for every open set U ⊂ Ω, µ(U) ≤
lim infi µi(U).

2. limi µi(B) = µ(B) for every Borel set B ⊂ Ω such that µ(∂B) = 0.

Each one of the two properties in Proposition 2 is actually a characterization of weak–∗ convergence.
Let us state a similar result in the vector case.
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Proposition 3 (see [2] Prop. 1.62(b) p. 27). Let Ω ⊂ Rn be an open set and let (µi)i be a sequence
of Rm–vector valued Radon measures weakly–∗ converging to µ. Assume in addition that the total
variations |µi| weakly–∗ converge to some positive Radon measure λ. Then |µ| ≤ λ and for every
Borel set B ⊂ Ω such that λ(∂B) = 0, µi(B)→ µ(B). More generally,∫

Ω
u · dµi −→

∫
Ω
u · dµ

for every measurable bounded function u whose discontinuity set has zero λ–measure.

We end this part with a result saying that, for a given Radon measure µ, among all balls centred
at a fixed point, at most a countable number of them have a boundary with non zero µ–measure.

Proposition 4. Let µ be a Radon measure in some open set Ω ⊂ Rn. Then,

(i) For a given x ∈ Ω, the set of r ∈ R+ such that µ(∂Br(x)) > 0 is at most countable. In
particular,

L1{r ∈ R+ | µ(∂Br(x) ∩ Ω) > 0} = 0 .

(ii) For almost every r ∈ R+,

µ {x ∈ Ω | µ(∂Br(x) ∩ Ω) > 0} = 0 .

Proof. The first point is a classical property of Radon measures and comes from the fact that
monotone functions have at most a countable set of discontinuities, applied to r 7→ µ(Br(x)). For
the second point, we use Fubini Theorem to get∫

r∈R+

µ {x ∈ Ω | µ(∂Br(x) ∩ Ω) > 0} dr =

∫
x∈Ω

∫
r∈R+

1{(x,r) | µ(∂Br(x)∩Ω)>0}(x, r) dµ(x) dr

=

∫
x∈Ω
L1{r ∈ R+ | µ(∂Br(x) ∩ Ω) > 0} dµ(x) = 0 ,

thanks to (i).

These basic results will be widely used throughout this paper.

1.2 Rectifiability and approximate tangent space

Definition 3 (d–rectifiable sets, see definition 2.57 p.80 in [2]). Let M ⊂ Rn. M is said to be
countably d–rectifiable if there exist countably many Lipschitz functions fi : Rd → Rn such that

M ⊂M0 ∪
⋃
i∈N

fi(Rd) with Hd(M0) = 0 .

If in addition Hd(M) < +∞ then M is said d–rectifiable.

Actually, it is equivalent to require that M can be covered by countably many Lipschitz d–graphs
up to a Hd–negligible set and thanks to Whitney extension theorem, one can ask for C1 d–graphs.
We can now define rectifiability for measures.
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Definition 4 (d–rectifiable measures, see definition 2.59 p.81 in [2]). Let µ be a positive Radon
measure in Rn. We say that µ is d–rectifiable if there exist a countably d–rectifiable set M and a
Borel positive function θ such that µ = θHd|M .

Thus, a set M is countably d–rectifiable if and only if Hd|M is a d–rectifiable measure. When blowing

up at a point, rectifiable measures have the property of concentrating on affine planes (at almost
any point). This property leads to a characterization of rectifiable measures. Let us define ψx,r as

ψx,r(y) =
y − x
r

.

Definition 5 (Approximate tangent space to a measure, see definition 2.79 p.92 in [2]). Let µ be a
positive Radon measure in Rn. We say that µ has an approximate tangent space P with multiplicity
θ ∈ R+ at x if P ∈ Gd,n is a d–plane such that

1

rd
ψx,r#µ

∗−−⇀ θHd|P as r ↓ 0.

That is,
1

rd

∫
ϕ

(
y − x
r

)
dµ(y) −−→

r↓0
θ

∫
P
ϕ(y) dHd(y) ∀ϕ ∈ Cc(Rn) .

In the sequel the approximate tangent plane to M (resp. µ) at x is denoted by TxM (resp. Txµ).
As we said, this provides a way to characterize rectifiability:

Theorem 5 (see theorem 2.83 p.94 in [2]). Let µ be a positive Radon measure in Rn.

1. If µ = θHd|M with M countably d–rectifiable, then µ admits an approximate tangent plane

with multiplicity θ(x) for Hd–almost any x ∈M .

2. If there exists a Borel set S such that µ(Rn \ S) = 0 and if µ admits an approximate tangent
plane with multiplicity θ(x) > 0 for Hd–almost every x ∈ S then S is countably d–rectifiable
and µ = θHd|S.

There are other characterizations of rectifiability in terms of density (see for instance [10]). Let
us point out an easy consequence of the existence of a tangent plane at a given point:

Proposition 5. Let µ be a positive Radon measure in Rn. Let x ∈ Rn, P ∈ Gd,n and assume that
µ has an approximate tangent space Txµ with multiplicity θ(x) > 0 at x. Then for all β > 0,

1

rd
µ {y ∈ Br(x) | d(y − x, P ) < βr} −−−→

r→0
θ(x)Hd {y ∈ Txµ ∩B1(0) | d(y, P ) < β} .

Proof. Indeed, let ψx,r : y 7→ y−x
r , then 1

rd
ψx,r#µ weakly star converges to θ(x)Hd|xµ so that for any

Borel set A such that Hd|Txµ(∂A) = Hd(∂A ∩ Txµ) = 0, we have

1

rd
ψx,r#µ(A) =

1

rd
µ
(
ψ−1
x,r(A)

)
−−−−→
r→0+

θ(x)Hd (Txµ ∩A) . (2)

The conclusion follows applying (2) with A = {y ∈ B1(0) | d(y, P ) < β} so that for any 0 < β < 1,

ψ−1
x,r(A) = {y ∈ Br(x) | d(y − x, P ) > βr} and Hd(A ∩ P ) = 0 .
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1.3 Some facts about varifolds

We recall here a few facts about varifolds, (for more details, see for instance [15]). As we have
already mentioned, the space of varifolds can be seen as a space of generalized surfaces. However,
in this part we give examples showing that, not only rectifiable sets, but also objects like point
clouds or volumetric approximations can be endowed with a varifold structure. Then we define the
first variation of a varifold which is a generalized notion of mean curvature, and we recall the link
between the boundedness of the first variation and the rectifiability of a varifold. We also introduce
a family of volumetric discretizations endowed with a varifold structure. They will appear all along
this paper in order to illustrate problems and strategies to solve them. We focus on this particular
family of varifolds because they correspond to the volumetric approximations of sets that motivated
us initially.

1.3.1 Definition of varifolds

We recall that Gd,n = {P ⊂ Rn |P is a vector subspace of dimension d}. Let us begin with the
notion of rectifiable d–varifold.

Definition 6 (Rectifiable d–varifold). Given an open set Ω ⊂ Rn, let M be a countably d–rectifiable
set and θ be a non negative function with θ > 0 Hd–almost everywhere in M . A rectifiable d–varifold
V = v(M, θ) in Ω is a positive Radon measure on Ω×Gd,n of the form V = θHd|M ⊗ δTxM i.e.∫

Ω×Gd,n
ϕ(x, T ) dV (x, T ) =

∫
M
ϕ(x, TxM) θ(x) dHd(x) ∀ϕ ∈ Cc(Ω×Gd,n,R)

where TxM is the approximative tangent space at x which exists Hd–almost everywhere in M . The
function θ is called the multiplicity of the rectifiable varifold.

Remark 1. We are dealing with measures on Ω × Gd,n, but we did not mention the σ–algebra we
consider. We can equip Gd,n with the metric

d(T, P ) = ‖ΠT −ΠP ‖

with ΠT ∈Mn(R) being the matrix of the orthogonal projection onto T and ‖ ·‖ a norm on Mn(R).
We consider measures on Ω×Gd,n with respect to the Borel algebra on Ω×Gd,n.

Let us turn to the general notion of varifold:

Definition 7 (Varifold). Let Ω ⊂ Rn be an open set. A d–varifold in Ω is a positive Radon measure
on Ω×Gd,n.

Remark 2. As Ω × Gd,n is locally compact, Riesz Theorem allows to identify Radon measures on
Ω×Gd,n and continuous linear forms on Cc(Ω×Gd,n) (we used this fact in the definition of rectifiable
d–varifolds) and the convergence in the sense of varifolds is then the weak–∗ convergence.

Definition 8 (Convergence of varifolds). A sequence of d–varifolds (Vi)i weakly–∗ converges to a
d–varifolds V in Ω if, for all ϕ ∈ Cc(Ω×Gd,n),∫

Ω×Gd,n
ϕ(x, P ) dVi(x, P ) −−−→

i→∞

∫
Ω×Gd,n

ϕ(x, P ) dV (x, P ) .
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We now give some examples of varifolds:

Example 1. Consider a straight line D ⊂ R3, then the measure v(D) = H1
|D ⊗ δD is the canonical

1–varifold associated to D.

Example 2. Consider a polygonal curveM ⊂ R2 consisting of 8 line segments S1, . . . , S8 of directions
P1, . . . , P8 ∈ G1,2, then the measure v(M) =

∑8
i=1H1

|Si ⊗ δPi is the canonical varifold associated to
M .

(a) Polygonal curve (b) Point cloud

Example 3. Consider a d–submanifold M ⊂ Rn. According to the definition of rectifiable d–
varifolds, the canonical d–varifold associated to M is v(M) = Hd⊗ δTxM or v(M, θ) = θHd⊗ δTxM
adding some multiplicity θ : M → R+.

Example 4 (Point cloud). Consider a finite set of points {xj}Nj=1 ⊂ Rn with additional information

of masses {mj}Nj=1 ⊂ R+ and tangent planes {Pj}j=1...N ⊂ Gd,n then the measure

N∑
j=1

mjδxj ⊗ δPj

defines a d–varifolds associated with the point cloud.

Definition 9 (Mass). If V = v(M, θ) is a d–rectifiable varifold, the measure θHd|M is called the

mass of V and denoted by ‖V ‖. For a general varifold V , the mass of V is the positive Radon
measure defined by ‖V ‖(B) = V (π−1(B)) for every B ⊂ Ω Borel, with{

π : Ω×Gd,n → Ω
(x, S) 7→ x

For a curve, the mass is the length measure, for a surface, it is the area measure, for the previous
point cloud, the mass is

∑
jmjδxj . The mass loses the tangent information and keeps only the

spatial part.
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1.3.2 First variation of a varifold

The set of d–varifolds is endowed with a notion of generalized curvature called first variation. Let
us recall the divergence theorem on a submanifold:

Theorem 6 (Divergence theorem). Let Ω ⊂ Rn be an open set and let M ⊂ Rn be a d–dimensional
C2– submanifold. Then, for all X ∈ C1

c(Ω,Rn),∫
Ω∩M

divTxMX(x) dHd(x) = −
∫

Ω∩M
H(x) ·X(x) dHd(x) ,

where H is the mean curvature vector.

For P ∈ G and X = (X1, . . . , Xn) ∈ C1
c(Ω,Rn), the operator divP is defined as

divP (x) =
n∑
j=1

〈∇PXj(x), ej〉 =
n∑
j=1

〈ΠP (∇Xj(x)), ej〉 whith (e1, . . . , en) canonical basis of Rn.

This variational approach is actually a way to define mean curvature that can be extended to a
larger class than C2–manifolds: the class of varifolds with bounded first variation. We can now
define the first variation of a varifold.

Definition 10 (First variation of a varifold). The first variation of a d–varifold in Ω ⊂ Rn is the
linear functional

δV : C1
c(Ω,Rn) → R
X 7→

∫
Ω×Gd,n divPX(x) dV (x, P )

This linear functional is generally not continuous with respect to the C0
c topology. When it is true,

we say that the varifold has locally bounded first variation:

Definition 11. We say that a d–varifold on Ω has locally bounded first variation when the linear
form δV is continuous that is to say, for every compact set K ⊂ Ω there is a constant cK such that
for every X ∈ C1

c(Ω,Rn) with suppX ⊂ K,

|δV (X)| ≤ cK sup
K
|X| .

Now, if a d–varifold V has locally bounded first variation, the linear form δV can be extended
into a continuous linear form on Cc(Ω,Rn) and then by Riesz Theorem, there exists a Radon
measure on Ω (still denoted δV ) such that

δV (X) =

∫
Ω
X · δV for every X ∈ Cc(Ω,Rn)

Thanks to Radon-Nikodym Theorem, we can derive δV with respect to ‖V ‖ and there exist a
function H ∈

(
L1
loc(Ω, ‖V ‖)

)n
and a measure δVs singular to ‖V ‖ such that

δV = −H‖V ‖+ δVs .

The function H is called the generalized mean curvature vector. Thanks to the divergence theorem,
it properly extends the classical notion of mean curvature for a C2 submanifold.

11



1.3.3 Another example: a family of volumetric approximations endowed with a var-
ifold structure

Let us explain what we mean by volumetric approximation. For us, a mesh of an open set Ω is a
countable and locally finite partition

K =
⊔
K∈K

K

of Ω, no other assumptions on the shape of the cells or on the geometry of the mesh are needed
except that the size of the mesh

δ = sup
K∈K

diamK < +∞

is finite. Given a d–rectifiable set M ⊂ Rn (a curve, a surface...) and a mesh K, we can define for
any cell K ∈ K, a mass mK (the length of the piece of curve in the cell, the area of the piece of
surface in the cell) and a mean tangent plane PK as

mK = Hd(M ∩K) and PK ∈ arg min
S∈Gd,n

∫
M∩K

|TxM − S|2 dHd(x) ,

and similarly, given a rectifiable d–varifold V , defining

mK = ‖V ‖(K) and PK ∈ arg min
S∈Gd,n

∫
K×Gd,n

|P − S|2 dV (x, P ) ,

gives what we call a volumetric approximation of V . We now introduce the family of varifolds of
this form:

Example 5. Consider a mesh K and a family
{mK , PK}K∈K ⊂ R+ × Gd,n. We can associate the
diffuse d–varifold:

V =
∑
Kcell

mK

|K|
Ln|K ⊗ δPK with |K| = Ln(K) .

This d–varifold is not rectifiable since its support is n–
rectifiable but not d–rectifiable. We will refer to the set
of d–varifolds of this special form as discrete varifolds.

Let us now compute the first variation of such a varifold:

Proposition 6. Let K be a mesh of Rn and denote E the set of faces of K. For K+, K− ∈ K, we
denote by σ = K+|K− ∈ E the common face to K+ and K−, and nK+,σ is then the outer-pointing
normal to the face σ (pointing outside K+). Decompose the set of faces into E = Eint ∪ Eb ∪ E0

where

• Eint is the set of faces σ = K+|K− such that mK+, mK− > 0, called internal faces,

• E0 is the set of faces σ = K+|K− such that mK+, mK− = 0,

12



• Eb is the set of remaining faces σ = K+|K− such that mK+ > 0 and mK− = 0 or conversely
mK+ = 0 and mK− > 0, called boundary faces. In this case, σ is denoted by K+|· with
mK+ > 0.

For {mK , PK}K∈K ⊂ R+ ×Gd,n, let us define the d–varifold

VK =
∑
K∈K

mK

|K|
Ln|K ⊗ δPK .

Then,

|δVK| =
∑

σ∈Eint,
σ=K−|K+

∣∣∣∣[mK+

|K+|
ΠPK+

−
mK−

|K−|
ΠPK−

]
(nK+,σ)

∣∣∣∣ Hn−1
|σ +

∑
σ∈Eb,
σ=K|·

mK

|K|
|ΠPKnK,σ| H

n−1
σ ,

where ΠP is the orthogonal projection onto the d-plane P .

We stress that the terms internal faces and boundary faces do not refer to the structure of the
mesh K but to the structure of the support of VK.

Proof. Let VK =
∑
K∈K

mK

|K|
Ln|K ⊗ δPK be a discrete varidold associated with the mesh K and let

X ∈ C1
c(Ω,Rn). Then,

δVK(X) =

∫
Ω×Gd,n

divSX(x) dVK(x, S) =
∑
K∈K

mK

|K|

∫
K

divPKX(x) dLn(x) .

Let us compute this term. Fix (τ1, . . . , τd) a basis of the tangent plane PK so that∫
K

divPKX(x) dLn(x) =

d∑
j=1

∫
K
DX(x)τj · τj dLn(x) ,

and DX(x)τj · τj =
n∑
k=1

(∇Xk(x) · τj)τkj so that

∫
K

divPKX(x) dLn(x) =

d∑
j=1

n∑
k=1

τkj

∫
K

(∇Xk(x) · τj) dLn(x) = −
d∑
j=1

n∑
k=1

τkj

∫
∂K

Xkτj · nout dHd

= −
∫
∂K

d∑
j=1

(τj · nout)
n∑
k=1

Xkτ
k
j dHd = −

∫
∂K

d∑
j=1

(τj · nout)(X · τj) dHd

= −
∫
∂K

X(x) · (ΠPKnout) dH
d(x) ,

where ΠPK is the orthogonal projection onto PK and nout is the outward-pointing normal. Conse-
quently

|δVK(X)| =

∣∣∣∣∣∑
K∈K

mK

|K|

∫
∂K

X(x) · (ΠPKnout) dH
d(x)

∣∣∣∣∣ ≤ ‖X‖∞ ∑
K∈K

mK

|K|
|ΠPKnout|H

d(∂K) .
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For a fixed mesh, the sum is locally finite and then, VK has locally bounded first variation. But
what happens if the size of the mesh tends to 0? In order to compute the total variation of δVK as
a Radon measure, we just have to rewrite the sum as a sum on the faces E of the mesh. This is
more natural since δVK is concentrated on faces. Thus

δVK = −
∑

σ∈Eint,
σ=K−|K+

[
mK+

|K+|
ΠPK+

nK+,σ +
mK−

|K−|
ΠPK−

nK−,σ

]
Hn−1
|σ −

∑
σ∈Eb,
σ=K|·

mK

|K|
ΠPKnK,σH

n−1
|σ

= −
∑

σ∈Eint,
σ=K−|K+

[
mK+

|K+|
ΠPK+

−
mK−

|K−|
ΠPK−

]
· (nK+,σ)Hn−1

|σ −
∑
σ∈Eb,
σ=K|·

mK

|K|
ΠPKnK,σH

n−1
|σ .

Therefore,

|δVK| =
∑

σ∈Eint,
σ=K−|K+

∣∣∣∣[mK+

|K+|
ΠPK+

−
mK−

|K−|
ΠPK−

]
· (nK+,σ)

∣∣∣∣ Hn−1
|σ +

∑
σ∈Eb,
σ=K|·

mK

|K|
|ΠPKnK,σ| H

n−1
|σ .

Example 6. Let us estimate this first variation in a simple case. Let us assume that the mesh is a
regular cartesian grid of Ω =]0, 1[2⊂ R2 of size hK so that for all K ∈ K and σ ∈ E ,

|K| = h2
K and H1(σ) = hK .

Consider the vector line D of direction given by the unit vector 1√
2
(1, 1). Let V = H1

|D ⊗ δD be

the canonical 1–varifold associated to D and VK the volumetric approximation of V in the mesh
K, then

|δVK|(Ω) =
∑

σ∈Eint,
σ=K−|K+

∣∣∣∣[mK+

|K+|
ΠPK+

−
mK−

|K−|
ΠPK−

]
· (nK+,σ)

∣∣∣∣ H1(σ) +
∑
σ∈Eb,
σ=K|·

mK

|K|
|ΠPKnK,σ| H

1(σ)

=
1

hK

∑
σ∈Eint,

σ=K−|K+

∣∣mK+ −mK−

∣∣ ∣∣ΠDnK+,σ

∣∣+
1

hK

∑
σ∈Eb,
σ=K|·

mK |ΠDnK,σ| .

And |ΠDnK,σ| =
√

2
2 (for any K, σ) so that

|δVK|(Ω) =

√
2

2hK

∑
σ∈Eint,

σ=K−|K+

∣∣mK+ −mK−

∣∣+

√
2

2hK

∑
σ∈Eb,
σ=K|·

mK

︸ ︷︷ ︸
=‖V ‖(Ω)

.

So that if we now consider successive volumetric approximations of VKi associated with successive
meshes Ki whose size hKi tends to 0 when i tends to ∞,

|δVKi |(Ω) =

√
2

2hKi

 ∑
σ∈Eint,

σ=K−|K+

∣∣mK+ −mK−

∣∣+ ‖V ‖(Ω)

 ≥
√

2

2hKi
‖V ‖(Ω) −−−→

i→∞
+∞ .

14



More generally, the problem is that the tangential direction PK and the direction of the face σ
have no reason to be correlated so that the term |ΠPKnK,σ| can be large (close to 1) and thus, if
the mesh is not adapted to the tangential directions |δVKi |(Ω) may explode when the size of the
mesh hKi tends to 0. Of course, we are not saying that |δVKi |(Ω) always explodes when refining
the mesh, but that it may happen and it is not something easy to control except by adapting the
mesh to the tangential directions PK in the boundary cells. This is clearly a problem showing that
the classical notion of first variation is not well adapted to this kind of volumetric discretization.

1.3.4 Control of the first variation and rectifiability

We will end these generalities about varifolds by linking the control of the first variation (generalized
mean curvature) to the regularity of the varifolds. Let us begin with some property of the so called
height excess proved by K. Brakke in [3] (5.7 p. 153). There exist sharper estimates established by
U. Menne in [11].

Theorem 7 (Height excess decay). Let V = v(M, θ) = θHd|M ⊗ δTxM be a rectifiable d–varifold in

some open set Ω ⊂ Rn. Assume that V is integral (that is θ(x) ∈ N for ‖V ‖–almost every x) and
assume that V has locally bounded first variation. Then for V –almost every (x, P ) ∈ Ω×Gd,n,

heightex(x, P, V, r) :=
1

rd

∫
Br(x)

(
d(y − x, P )

r

)2

d‖V ‖(y) = ox(r) .

Remark 3. Let us notice that

Eα(x, P, V ) =

∫ 1

r=α
heightex(x, P, V, r)

dr

r
.

That is why we called these quantities averaged height excess.

We now state a compactness result linking the rectifiability to the control of the first variation.
It is exactly the kind of result we are interested in, with the exception that, in our setting, the
approximating varifolds are generally not rectifiable and, moreover, the following control on the
first variation is not satisfied.
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Theorem 8 (Allard Compactness Theorem, see 42.7 in [15]). Let (Vi)i = (v(Mi, θi))i be a sequence
of d–rectifiable varifolds with locally bounded first variation in an open set Ω ⊂ Rn and such that
θi ≥ 1 ‖Vi‖–almost everywhere. If

sup
i
{‖Vi(W )‖+ |δVi|(W )} ≤ c(W ) < +∞

for every open set W ⊂⊂ Ω, then there exists a subsequence (Vin)n weakly–∗ converging to a
rectifiable d–varifold V , with locally bounded first variation in Ω, such that θ ≥ 1, and moreover

|δV |(W ) ≤ lim inf
n→∞

|δVin |(W ) ∀W ⊂⊂ Ω .

If for all i, Vi is an integral varifold then V is integral too.

The problem is that even if the limit d–varifold is rectifiable and has bounded first variation, it
is not necessarily the case of an approximating sequence of varifolds. For instance, a point cloud
varifold does not have bounded first variation. As for discrete d–varifolds of Example 5, we have
computed the first variation and seen that it is bounded for a fixed mesh, however, when the size
of the mesh tends to zero, the total variation of the first variation is no longer bounded (in general)
because of some boundary terms. We need some other way to ensure rectifiability. That is why we
are looking for something more volumetric than the first variation, as defined in the introduction,
in order to enforce rectifiability:

Eα(x, P, V ) =

∫ 1

r=α

1

rd

∫
y∈Br(x)∩Ω

(
d(y − x, P )

r

)2

d‖V ‖(y)
dr

r
.

We now have two questions we want to answer:

1. Assume that (Vi)i is a sequence of d–varifolds weakly–∗ converging to some d–varifold V with
the following control

sup
i

∫
Ω×Gd,n

Eαi(x, P, Vi) dVi(x, P ) < +∞ , (3)

can we conclude that V is rectifiable ?

2. Is this condition better adapted to the case of (non-rectifiable) volumetric approximating
varifolds (i.e. sequences of discrete varifolds as defined in Example 5) ? We will prove that
as soon as Vi weakly–∗ converges to V , there exists a subsequence satisfying the control (3).

We begin with studying the static case.

2 Static quantitative conditions of rectifiability for varifolds

In this section, we begin with studying the averaged height excess E0(x, P, V ) with respect to
P ∈ Gd,n (for a fixed d–varifold and a fixed x ∈ Ω). We show that if V has bounded first variation
then the approximate tangent plane at x is the only plane for which E0 can be finite. Then we
state and prove quantitative conditions of rectifiability for varifolds in the static case. Let us recall
how we defined E0(x, P, V ) in Theorem 3.

16



Definition 12 (Averaged height excess). Let V be a d–varifold in Ω ⊂ Rn open subset. Then we
define

E0(x, P, V ) =

∫ 1

r=0

1

rd

∫
y∈Br(x)∩Ω

(
d(y − x, P )

r

)2

d‖V ‖(y)
dr

r
.

We first study the averaged height excess E0(x, P, V ) with respect to P ∈ Gd,n for a fixed rectifable
d–varifold.

2.1 The averaged height excess energy E0(x, P, V )

Notice that if ‖V ‖ = Hd|M then for every d–vector plane P ∈ Gd,n,

∫ 1

r=0
β2(x, r,M)2 dr

r
=

∫ 1

r=0
inf

S∈{affine d−plane}

(
1

rd

∫
y∈Br(x)∩M

(
d(y, S)

r

)2

dHd(y)

)
dr

r

≤
∫ 1

r=0

1

rd

∫
y∈Br(x)∩M

(
d(y − x, P )

r

)2

dHd(y)
dr

r
= E0(x, P, V ) .

Thus, assume that for Hd–almost every x ∈ M , θd∗(x,M) > 0 holds and that there exists some
Px ∈ Gd,n such that E0(x, Px,Hd|M ) < +∞. Then thanks to Pajot’s Theorem 2, M is d–rectifiable.
As we will see, the point is that for any x ∈M where the tangent plane TxM exists, then Px = TxM
is the best candidate, among all d–planes P , to satisfy E0(x, Px,Hd|M ) < +∞. Consequently, in

order to test the rectifiability of a d–varifold V , it is natural to study E0(x, P, V ) for (x, P ) in
suppV (which is more restrictive than for any (x, P ) ∈ supp ‖V ‖×Gd,n). More concretely, we will

study

∫
Ω×Gd,n

E0(x, P, V ) dV (x, P ) rather than

∫
Ω

inf
P∈G

E0(x, P, V ) d‖V ‖(x).

In this whole part, we fix a rectifiable d–varifold in some open set Ω ⊂ Rn and we study the
behaviour of E0(x, P, V ) with respect to P ∈ Gd,n. We are going to show that for a rectifiable
d–varifold, this energy is critical: under some assumptions, it is finite if and only if P is the
approximate tangent plane. More precisely:

Proposition 7. Let V = v(M, θ) be a rectifiable d–varifold in an open set Ω ⊂ Rn. Then,

1. Let x ∈M such that the approximate tangent plane TxM to M at x exists and θ(x) > 0 (thus
for ‖V ‖–almost every x) then for all P ∈ Gd,n such that P 6= TxM ,

E0(x, P, V ) = +∞ .

2. If in addition V is integral (θ ∈ N ‖V ‖–almost everywhere) and has bounded first variation
then for ‖V ‖–almost every x,

E0(x, TxM,V ) < +∞ .

Proof. We begin with the first assertion. Let x ∈M such that the approximate tangent plane TxM
to M at x exists. Let P ∈ Gd,n such that P 6= TxM . Thanks to Prop. 5, for all β > 0 we have

1

rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) < βr} −−−−→

r→0+

θ(x)Hd (TxM ∩ {y ∈ B1(0) | d(y, P ) < β}) .
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Now for all β > 0,

E0(x, P, V ) =

∫ 1

r=0

dr

rd+1

∫
Br(x)

{
d(y − x, P )

r

}2

d‖V ‖(y)

≥
∫ 1

r=0

dr

r

1

rd

∫
{y∈Br(x) | d(y−x,P )≥βr}

β2 d‖V ‖(y)

= β2

∫ 1

r=0

dr

r

1

rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) ≥ βr} .

Let us estimate

1

rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) ≥ βr} =

1

rd
‖V ‖(Br(x))︸ ︷︷ ︸
−−−→
r→0

θ(x)ωd

− 1

rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) < βr}︸ ︷︷ ︸
−−−→
r→0

θ(x)Hd(TxM∩{y∈B1(0) | d(y,P )<β})

.

As P 6= TxM , there exists some constant cP depending on P and TxM such that

Hd(TxM ∩ {y ∈ B1(0) | d(y, P ) < β}) ≤ cPβ .

Consequently,

lim
r→0

1

rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) ≥ βr} = θ(x)

(
ωd −Hd(TxM ∩ {y ∈ B1(0) | d(y, P ) < β})

)
≥ θ(x)(ωd − cPβ)

≥ θ(x)
ωd
2

for β small enough.

Eventually there exist β > 0 and r0 > 0 such that for all r ≤ r0

1

rd
‖V ‖ {y ∈ Br(x) | d(y − x, P ) ≥ βr} ≥ θ(x)

ωd
4
,

and thus

E0(x, P, V ) ≥ θ(x)
ωd
4
β2

∫ r0

r=0

dr

r
= +∞ .
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The second assertion is a direct consequence of Brakke’s estimate (see Proposition 7) for the height
excess of an integral d–varifold with bounded first variation:

E0(x, TxM,V ) =

∫ 1

r=0

1

r
heightex(x, P, V, r)︸ ︷︷ ︸

=ox(1)

dr < +∞ .

2.2 The static theorem

We begin with some lemmas before proving the static theorem (Theorem. 3). This first proposition
recalls that the first assumption of the static theorem (Ahlfors regularity) implies that ‖V ‖ is
equivalent to Hd| supp ‖V ‖.

Proposition 8. Let Ω ⊂ Rn be an open set and µ be a positive Radon measure in Ω.

(i) Let β1, β2 : Ω → R+ continuous and such that for all x ∈ Ω, β1(x) < β2(x), and let C > 0.
Then the sets A =

{
x ∈ Ω | ∀r ∈ (β1(x), β2(x)) , µ(Br(x)) ≥ Crd

}
and B =

{
x ∈ Ω | ∀r ∈ (β1(x), β2(x)) , µ(Br(x)) ≤ Crd

}
are closed.

(ii) If there exist C1, C2 > 0 such that C1ωdr
d ≤ µ(Br(x)) ≤ C2ωdr

d for µ–almost all x ∈ Ω and
for all 0 < r < d(x,Ωc), then

C1Hd|E ≤ µ ≤ 2dC2Hd|E with E = suppµ .

Proof. (i) Let us prove that A =
{
x ∈ Ω | ∀r ∈ (β1(x), β2(x)) , µ(Br(x)) ≥ Crd

}
is closed. Let

(xk)k ⊂ A such that xk −−→
k∞

x ∈ Ω and let r > 0 such that β1(x) < r < β2(x). For

k large enough, β1(xk) < r < β2(xk) so that Crd ≤ µ(Br(xk)). If µ(∂Br(x)) = 0 then
µ(Br(xk)) −−−−→

k→+∞
µ(Br(x)) and then Crd ≤ µ(Br(x)) for almost every r ∈ (β1(x), β2(x)).

But this is enough to obtain the property for all r ∈ (β1(x), β2(x)). Indeed, if µ(∂Br(x)) > 0
then take r−k < r such that for all k,

µ(∂Br−k
(x)) = 0 and r−k −−−−→k→+∞

r ,

and thus
µ(Br(x)) ≥ µ(Br−k

(x)) ≥ Cr−k
d −−−−→
k→+∞

Crd .

Eventually x ∈ A and A is closed. We can prove that B is closed similarly.

(ii) As the set

E1 =
{
x ∈ Ω | ∀0 < r < d(x,Ωc), µ(Br(x)) ≥ C1ωdr

d
}

is closed (thanks to (i)) and of full µ–measure, then E = suppµ ⊂ E1. Therefore, for every
x ∈ E,

θd∗(µ, x) = lim inf
r→0+

µ(Br(x))

ωdrd
≥ C1 .

So that (see Theorem 2.56 p.78 in [2]) µ ≥ C1Hd|E .
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(iii) For the same reason,

E = suppµ ⊂ E2 =
{
x ∈ Ω | ∀0 < r < d(x,Ωc), µ(Br(x)) ≤ C2ωdr

d
}
.

Therefore, for every x ∈ E,

θ∗ d(µ, x) = lim sup
r→0+

µ(Br(x))

ωdrd
≤ C2 .

So that (again by Theorem 2.56 p.78 in [2]) µ ≤ 2dC2Hd|E .

The following lemma states that under some density assumption, the quantity minP∈Gd,n E0(x, P, V )
controls the quantity linked to Jones’ β numbers.

Lemma 1. Let Ω ⊂ Rn be an open set and let V be a d–varifold in Ω. Assume that there is some
constant C > 0 and a Borel set E ⊂ Ω such that Hd|E ≤ C‖V ‖ then for all x ∈ Ω,∫ 1

0
β2(x, r, E)2dr

r
≤ C min

P∈Gd,n
E0(x, P, V ) . (4)

Proof. First notice that Gd,n ⊂ {affine d–plane}, therefore∫ 1

r=0
β2(x, r, E)2 dr

rd+1
=

∫ 1

r=0
inf

P∈{affine d–plane}

(∫
E∩Br(x)

(
d(y, P )

r

)2

dHd(y)

)
dr

rd+1

≤ inf
P∈{affine d–plane}

∫ 1

r=0

(∫
E∩Br(x)

(
d(y, P )

r

)2

dHd(y)

)
dr

rd+1

≤ min
P∈Gd,n

∫ 1

r=0

(∫
E∩Br(x)

(
d(y − x, P )

r

)2

dHd(y)

)
dr

rd+1
.

Then, the assumptionHd|E ≤ C‖V ‖ implies that for any positive function u,

∫
E
u dHd ≤ C

∫
Ω
u d‖V ‖

so that

min
P∈Gd,n

∫ 1

r=0

(∫
Br(x)

(
d(y − x, P )

r

)2

dHd|E(y)

)
dr

rd+1
≤ C min

P∈Gd,n
E0(x, P, V ) ,

which proves 4.

We now state a lemma that will enable us to localise the property of rectifiability.

Lemma 2. Let Ω ⊂ Rn be an open set and µ be a positive Radon measure in Ω. Then there exists
a countable family of open sets (ωn)n such that for all n, ωn ⊂⊂ ωn+1 ⊂⊂ Ω, µ(∂ωn) = 0 and
Ω = ∪nωn.

Proof. For all t > 0, let us consider the family of open sets

ωt = Bt(0) ∩ {x ∈ Ω | d(y,Ωc) > 1/t} .

The family (ωt)t is increasing so that µ(ωt) is increasing and has at most a countable number of
jumps. Then for almost every t, µ(ωt) = 0 and it is easy to conclude.
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The last step before proving Theorem 3 is to link the rectifiability of the mass ‖V ‖ and the
rectifiability of the whole varifold. The key point is the coherence between the tangential part of
the varifold and the approximate tangent plane to the spatial part ‖V ‖.

Lemma 3. If V is a d–varifold in Ω ⊂ Rn such that

− ‖V ‖ is d–rectifiable,

− V ({(x, P ) ∈ Ω×Gd,n | E0(x, P, V ) = +∞}) = 0,

then V is a rectifiable d–varifold.

Proof. The mass ‖V ‖ is d–rectifiable so that ‖V ‖ = θHd|M for some d-rectifiable set M . We have to

show that V = ‖V ‖ ⊗ δTxM . Applying a disintegration theorem ([2] 2.28 p. 57), there exist finite
Radon measures νx in Gd,n such that for ‖V ‖–almost every x ∈ Ω, νx(Gd,n) = 1 and V = ‖V ‖⊗νx.
We want to prove that for ‖V ‖–almost every x, νx = δTxM or equivalently,

νx({P ∈ Gd,n | P 6= TxM}) = 0 .

For a d–rectifiable measure ‖V ‖ = θHd|M , we have shown in Proposition 7 that for ‖V ‖–almost
every x ∈ Ω,

P 6= TxM =⇒ E0(x, P, V ) = +∞ ,

thus {(x, P ) ∈ Ω×Gd,n | P 6= TxM} ⊂ A0 × Gd,n ∪ {(x, P ) ∈ Ω×Gd,n | E0(x, P, V ) = +∞} with
‖V ‖(A0) = 0. Therefore V ({(x, P ) ∈ Ω×Gd,n | P 6= TxM}) = 0. Thus

V ({(x, P ) ∈ Ω×Gd,n | P 6= TxM}) =

∫
Ω×Gd,n

1{P 6=TxM}(x, P ) dV (x, P )

=

∫
Ω

(∫
Gd,n

1{P 6=TxM}(x, P ) dνx(P )

)
d‖V ‖(x)

=

∫
Ω
νx({P ∈ Gd,n | P 6= TxM}) d‖V ‖(x)

which means that for ‖V ‖–almost every x ∈ Ω, νx({P ∈ Gd,n | P 6= TxM}) = 0 thus for ‖V ‖–almost
every x ∈ Ω, νx = δTxM and V = ‖V ‖ ⊗ δTxM is a d–rectifiable varifold.

Let us now prove the static theorem:

Theorem 3. Let Ω ⊂ Rn be an open set and let V be a d–varifold in Ω of finite mass ‖V ‖(Ω) < +∞.
Assume that:

(i) there exist 0 < C1 < C2 such that for ‖V ‖–almost every x ∈ Ω and for all 0 < r < d(x,Ωc)
such that Br(x) ⊂ Ω,

C1ωdr
d ≤ ‖V ‖(Br(x)) ≤ C2ωdr

d ,

(ii) V ({(x, P ) ∈ Ω×Gd,n |E0(x, P, V ) = +∞}) = 0.

Then V is a rectifiable d–varifold.

Remark 4. If in particular

∫
Ω×Gd,n

E0(x, P, V ) dV (x, P ) < +∞ then the assumption (ii) is satisfied.
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Proof. Now we just have to gather the previous arguments and apply Pajot’s Theorem (Theo-
remm. 2).

− Step 1: First hypothesis implies (thanks to Proposition 8) that, setting C3 = 2dC2 > 0 and
E = supp ‖V ‖, we have

C1Hd|E ≤ ‖V ‖ ≤ C3Hd|E .

Hence C1Hd(E) ≤ ‖V ‖(Ω) < +∞. Moreover, as ‖V ‖ and Hd|E are Radon measures and ‖V ‖ is

absolutely continuous with respect to HdE , then by Radon-Nikodym Theorem there exists some
function θ ∈ L1(Hd|E) such that

‖V ‖ = θHd|E with θ(x) =
d‖V ‖
dHd|E

(x) = lim
r→0+

‖V ‖(Br(x))

Hd(E ∩Br(x))
≥ C1 > 0 for Hd a.e. x ∈ E .

− Step 2: Thus we can now apply Lemma 1 so that for any x ∈ Ω,∫ 1

0
β2(x, r, E)2dr

r
≤ C3 min

P∈Gd,n
E0(x, P, V ) ,

but thanks to the second assumption, V ({(x, P ) ∈ Ω×Gd,n |E0(x, P, V ) = +∞}) = 0. Let

B = {x ∈ Ω | min
P∈Gd,n

E0(x, P, V ) = +∞} = {x ∈ Ω | ∀P ∈ Gd,n, E0(x, P, V ) = +∞}

then

B ×Gd,n = {(x, P ) ∈ Ω×Gd,n | ∀Q ∈ Gd,n, E0(x,Q, V ) = +∞}
⊂{(x, P ) ∈ Ω×Gd,n | E0(x, P, V ) = +∞} .

Therefore ‖V ‖(B) = V (B × Gd,n) ≤ V ({(x, P ) ∈ Ω×Gd,n | E0(x, P, V ) = +∞}) = 0. So that
minP∈Gd,n E0(x, P, V ) is finite for ‖V ‖–almost any x ∈ Ω. And by step 1, ‖V ‖ = θHd|E with

θ ≥ C1 for Hd–almost every x ∈ E, thus for Hd–almost every x ∈ E,∫ 1

0
β2(x, r, E)2dr

r
< +∞ , (5)

and

θd∗(x,E) = lim inf
r→0+

Hd(E ∩Br(x))

ωdrd
≥ 1

C3

‖V ‖(Br(x))

ωdrd
≥ C1

C3
> 0 . (6)

− Step 3: We need to consider some compact subset of E to apply Pajot’s Theorem. The set E
being closed in Ω, thus for every compact set K ⊂ Ω, E ∩K is compact. Thanks to Lemma 2,
let (ωn)n be an increasing sequence of relatively compact open sets such that Ω = ∪nωn and for
all n, Hd(E ∩ ∂ωn) = 0. Let Kn = ωn, then

• for all x ∈ (E ∩Kn) \ ∂Kn = E ∩ωn we have θd∗(x,E ∩Kn) = θd∗(x,E) and thus by (6) and
since Hd(E ∩ ∂Kn) = 0,

θd∗(x,E ∩Kn) > 0 for Hd–almost every x ∈ E ∩Kn , (7)
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• thanks to (5), for Hd–almost every x ∈ E ∩Kn,∫ 1

0
β2(x, r, E ∩Kn)2dr

r
≤
∫ 1

0
β2(x, r, E)2dr

r
< +∞ . (8)

According to (7) and (8), we can apply Pajot’s theorem to get the d–rectifiability of E ∩Kn for
all n and hence the d–rectifiability of E and ‖V ‖ = θHd|E .

Eventually Lemma 3 leads the d–rectifiability of the whole varifold V .

3 The approximation case

We will now study the approximation case. As we explained before, we introduce some scale param-
eters (denoted αi and βi) allowing us to consider the approximating objects “from far enough”. The
point is to check that we recover the static conditions (the assumptions (i) and (ii) of Theorem 3)
in the limit. We begin with some technical lemmas concerning Radon measures. Then we prove a
strong property of weak–∗ convergence allowing us to gain some uniformity in the convergence. We
end with the proof of the quantitative conditions of rectifiability for varifolds in the approximation
case.

3.1 Some technical tools about Radon measures

Let us state two technical tools before starting to study the approximation case.

Lemma 4. Let Ω ⊂ Rn be an open set and (µi)i be a sequence of Radon measures weakly–∗
converging to some Radon measure µ in Ω. Let x ∈ Ω and xi −−−→

i→∞
x.Then, for every r > 0,

lim sup
i

µi(Br(x)4Br(xi)) ≤ µ(∂Br(x)) .

In particular, if µ(∂Br(x)) = 0 then µi(Br(x)4Br(xi)) −−−→
i→∞

0.

Proof. Let us define the ring of center x and radii rmin and rmax:

R(x, rmin, rmax) := {y ∈ Ω | rmin ≤ |y − x| ≤ rmax} .

It is easy to check that for all i, Br(xi)4Br(x) is included into the
closed ring of center x and radii rimin = r − |x − xi| and rimax =
r + |x− xi|, that is

Br(xi)4Br(x) ⊂ R(x, r − |x− xi|, r + |x− xi|) .

Without loss of generality we can assume that (|x−xi|)i is decreas-
ing, then the sequence of rings (R(x, r − |x − xi|, r + |x − xi|))i is
decreasing so that for all p ≤ i,

µi(Br(xi)4Br(x)) ≤ µi(R(x, r − |x− xi|, r + |x− xi|)
≤ µi(R(x, r − |x− xp|, r + |x− xp|)) .

Consequently, letting i tend to∞ and using the fact that R(x, r−|x−xp|, r+ |x−xp|) is compact,
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we have for all p,

lim sup
i→+∞

µi(Br(xi)4Br(x)) ≤ µ(R(x, r − |x− xp|, r + |x− xp|)) ,

and thus by letting p→ +∞ we finally have,

lim sup
i→+∞

µi(Br(xi)4Br(x)) ≤ µ(∂Br(x)) .

Proposition 9. Let Ω ⊂ Rn be an open set and let (µi)i be a sequence of Radon measures weakly–∗
converging to a Radon measure µ. Then, for every x ∈ suppµ, there exist xi ∈ suppµi such that
|x− xi| −−−→

i→∞
0.

Proof. Let x ∈ suppµ, and choose xi ∈ suppµi such that d(x, suppµi) = |x−xi| (recall that suppµi
is closed). Let us check that |x−xi| −−−→

i→∞
0. By contradiction, there exist η > 0 and a subsequence

(xϕ(i))i such that for all i, |xϕ(i)− x| ≥ η. Therefore, for all y ∈ suppµϕ(i), |y− x| ≥ |xϕ(i)− x| ≥ η
so that

∀i, Bη(x) ∩ suppµϕ(i) = ∅ and thus µϕ(i) (Bη(x)) = 0 .

Hence µ (Bη(x)) ≤ lim infi µϕ(i) (Bη(x)) = 0 and x /∈ suppµ.

3.2 Density estimates

We now look for density estimates for the limit varifold. Indeed, for sets of dimension larger than
d, for instance d+ 1, the energy E0(x, P, V ) does not convey information of rectifiability since

1

rd+1

∫
Br(x)

(
d(y − x, P )

r

)2

d‖V ‖(y) ≤ ‖V ‖(Br(x))

rd+1
≤ θ∗d+1(‖V ‖, x)

is finite for almost any x, not depending on the regularity of ‖V ‖. So that the first assumption
in the static theorem (Ahlfors regularity (1) in Theorem 3) is quite natural. In this part, we link
density estimates on Vi and density estimates on V and then recover the first assumption of the
static theorem.

Proposition 10. Let Ω ⊂ Rn be an open set. Let (µi)i be a sequence of Radon measures in Ω,
weakly–∗ converging to some Radon measure µ. Assume that there exist 0 < C1 < C2 and a positive
decreasing sequence (βi)i tending to 0 such that for µi–almost every x ∈ Ω and for every r > 0 such
that βi < r < d(x,Ωc),

C1r
d ≤ µi(Br(x)) ≤ C2r

d .

Then for µ–almost every x ∈ Ω and for every 0 < r < d(x,Ωc),

C1r
d ≤ µ(Br(x)) ≤ C2r

d .

Proof. Let Ai =
{
x ∈ Ω | ∀r ∈]βi, d(x,Ωc)[, C1r

d ≤ µi(Br(x)) ≤ C2r
d
}

.

(i) First notice that Ai is closed (thanks to Proposition 8 (i)) and µi(Ω\Ai) = 0 so that suppµi ⊂
Ai.
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(ii) Let x ∈ suppµ and let 0 < r < d(x,Ωc). By Proposition 9, let xi ∈ suppµi such that xi → x
then

|µi(Br(x))− µi(Br(xi))| ≤ µi (Br(xi)4Br(x)) ≤ µi(R(x, r − |x− xi|, r + |x− xi|) ,

so that by Proposition 4, lim sup
i
|µi(Br(x))− µi(Br(xi))| ≤ µ(Br(x)). Therefore, for almost

every 0 < r < d(x,Ωc), µi(Br(xi)) −−−→
i→∞

µ(Br(x)). Eventually, as xi ∈ suppµi ⊂ Ai then for

almost every r < d(x,Ωc),

C1r
d ≤ µ(Br(x)) = lim

i
µi(Br(xi)) ≤ C2r

d .

We can obtain this inequality for all r as in Proposition 8, taking r−k < r < r+
k and r−k , r

+
k → r

and such that µ(∂Br+
k

(x)) = 0, µ(∂Br−k
(x)) = 0.

3.3 Uniformity of weak–∗ convergence in some class of functions

If we try to estimate Eα(x, P, Vα)− Eα(x, P, V ), we can have the following:

|Eα(x, P, Vα)− Eα(x, P, V )|

≤ 1

αd+3

∫ 1

r=0

∣∣∣∣∣
∫
Br(x)

d(y − x, P )2d‖Vα‖(y)−
∫
Br(x)

d(y − x, P )2d‖V ‖(y)

∣∣∣∣∣ dr .
We now prove that the integral term tends to 0 when Vα

∗−⇀ V . For this purpose, we need a stronger
way to write weak–∗ convergence (with some uniformity) using the compactness of some subset of
C0
c(Ω):

Proposition 11. Let Ω ⊂ Rn be an open set and (µi)i be a sequence of Radon measures in Ω
weakly–∗ converging to a Radon measure µ. Let ω ⊂⊂ Ω such that µ(∂ω) = 0, then for fixed
k,C ≥ 0,

sup

{∣∣∣∣∫
ω
ϕdµi −

∫
ω
ϕdµ

∣∣∣∣ : ϕ ∈ Lipk(ω), ‖ϕ‖∞ ≤ C
}
−−−→
i→∞

0

Proof. As we already said, the idea is to make use of the compactness of the family {ϕ ∈ Lipk(ω), ‖ϕ‖∞ ≤ C}.
By contradiction, there exists a sequence (ϕi)i with ϕi ∈ Lipk(ω) and ‖ϕi‖∞ ≤ C for all i and such
that ∣∣∣∣∫

ω
ϕi dµi −

∫
ω
ϕi dµ

∣∣∣∣ does not converge to 0 .

So that, up to some extraction, there exists ε > 0 such that for all i,∣∣∣∣∫
ω
ϕi dµi −

∫
ω
ϕi dµ

∣∣∣∣ > ε .

Every ϕi can be extended to ϕi ∈ C(ω) ∩ Lipk(ω) and then{
(ϕi)i ⊂ C(ω) ∩ Lipk(ω) is equilipschitz,
supi ‖ϕi‖∞ ≤ C .
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By Ascoli’s theorem, up to a subsequence, there exists a function ϕ ∈ C(ω)∩Lipk(ω) with ‖ϕ‖∞ ≤ C
such that

ϕi −→ ϕ uniformly in ω .

We now estimate:

ε <

∣∣∣∣∫
ω
ϕi dµi −

∫
ω
ϕi dµ

∣∣∣∣
≤
∣∣∣∣∫
ω
ϕi dµi −

∫
ω
ϕdµi

∣∣∣∣+

∣∣∣∣∫
ω
ϕdµi −

∫
ω
ϕdµ

∣∣∣∣+

∣∣∣∣∫
ω
ϕdµ−

∫
ω
ϕi dµ

∣∣∣∣
≤ ‖ϕi − ϕ‖∞ µi(ω) +

∣∣∣∣∫
ω
ϕdµi −

∫
ω
ϕdµ

∣∣∣∣+ ‖ϕ− ϕi‖∞ µ(ω)

As µ(∂ω) = 0 then µi(ω) −−−→
i→∞

µ(ω) < +∞ (since µ(ω) ≤ µ(ω) and ω is compact) so that the first

and last terms tend to 0. Moreover, since µ(∂ω) = 0 then for every f ∈ C0(ω) (not necessarily
compactly supported), ∫

f dµi −−−→
i→∞

∫
f dµ ,

which allows to conclude that the second term also tends to 0 which leads to a contradiction.

The following result is the key point of the proof of Theorem 4. Let us first define for two Radon
measures µ and ν in Ω,

∆k,C
ω (µ, ν) := sup

{∫ d(ω,Ωc)
2

r=0

∣∣∣∣∣
∫
Br(x)∩ω

ϕdµ−
∫
Br(x)∩ω

ϕdν

∣∣∣∣∣ dr : ϕ ∈ Lipk(ω), ‖ϕ‖∞ ≤ C, x ∈ ω

}
.

(9)

Proposition 12. Let Ω ⊂ Rn be an open set. Let (µi)i be a sequence of Radon measures weakly–∗
converging to a Radon measure µ in Ω and such that supi µi(Ω) < +∞. Let ω ⊂⊂ Ω be open such
that µ(∂ω) = 0 then, for fixed k,C ≥ 0,

∆k,C
ω (µi, µ) −−−−→

i→+∞
0 .

Proof. The upper bound on the radius r ensures that the closure of every considered ball, Br(x)
for x ∈ Ω, is included in Ω. We argue as in the proof of Proposition 11, assuming by contradiction
that, after some extraction, there exist a sequence (ϕi)i with ϕi ∈ Lipk(ω) and ‖ϕi‖∞ ≤ C for all
i, and a sequence (xi)i with xi ∈ ω for all i, and ε > 0 such that for all i,

∫ d(ω,Ωc)
2

r=0

∣∣∣∣∣
∫
Br(xi)∩ω

ϕi dµi −
∫
Br(xi)∩ω

ϕi dµ

∣∣∣∣∣ dr > ε .

By Ascoli’s theorem and up to an extraction, there exist a function ϕ ∈ C0(ω) ∩ Lipk(ω) with
‖ϕ‖∞ ≤ C such that ϕi −→ ϕ uniformly in ω. Moreover ω is compact so that, up to another
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extraction, there exists x ∈ ω such that xi −→ x. We now estimate for every r,∣∣∣∣∣
∫
Br(xi)∩ω

ϕi dµi −
∫
Br(xi)∩ω

ϕi dµ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Br(xi)∩ω

ϕi dµi −
∫
Br(xi)∩ω

ϕdµi

∣∣∣∣∣
+

∣∣∣∣∣
∫
Br(xi)

ϕdµi −
∫
Br(x)

ϕdµi

∣∣∣∣∣+

∣∣∣∣∣
∫
Br(x)∩ω

ϕdµi −
∫
Br(x)∩ω

ϕdµ

∣∣∣∣∣
+

∣∣∣∣∣
∫
Br(x)∩ω

ϕdµ−
∫
Br(xi)∩ω

ϕdµ

∣∣∣∣∣+

∣∣∣∣∣
∫
Br(xi)∩ω

ϕdµ−
∫
Br(xi)∩ω

ϕi dµ

∣∣∣∣∣
≤‖ϕi − ϕ‖∞ µi (Br(xi)) + ‖ϕ‖∞ µi (Br(xi)4Br(x)) +

∣∣∣∣∣
∫
Br(x)∩ω

ϕdµi −
∫
Br(x)∩ω

ϕdµ

∣∣∣∣∣
+ ‖ϕ‖∞ µ (Br(xi)4Br(x)) + ‖ϕ− ϕi‖∞ µ(Br(xi))

≤‖ϕi − ϕ‖∞ (µi(Ω) + µ(Ω)) +

∣∣∣∣∣
∫
Br(x)∩ω

ϕdµi −
∫
Br(x)∩ω

ϕdµ

∣∣∣∣∣ (10)

+ ‖ϕ‖∞ (µi (Br(xi)4Br(x)) + µ (Br(xi)4Br(x))) .

The first term in the right hand side of (10) tends to 0 since supi µi(Ω) < +∞ also implies µ(Ω) <

+∞. Concerning the second term, as µ(∂ω) = 0 then for all r ∈ (0, d(ω,Ωc)
2 ), µ(∂(Br(x) ∩ ω)) ≤

µ(∂Br(x)) and therefore the second term tends to 0 for every r such that µ(∂Br(x)) = 0, i.e.

for almost every r ∈ (0, d(ω,Ωc)
2 ). As for the last term, thanks to Proposition 4 we know that

lim sup
i

µi(Br(x)4Br(xi)) + µ(Br(x)4Br(xi)) ≤ 2µ(∂Br(x)) = 0 for almost every r ∈ (0, d(ω,Ωc)
2 ).

Moreover the whole quantity (10) is uniformly bounded by

5C

(
µ(Ω) + sup

i
µi(Ω)

)
.

Consequently the the right hand side of (10) tends to 0 for almost every r ∈ (0, d(ω,Ωc)
2 ) (such

that µ(∂Br(x)) = 0) and is uniformly bounded by the constant 5C
(
µ(Ω) + supj µj(Ω)

)
, then by

Lebesgue dominated theorem, we have

ε <

∫ d(ω,Ωc)
2

r=0

∣∣∣∣∣
∫
Br(xi)∩ω

ϕi dµi −
∫
Br(xi)∩ω

ϕi dµ

∣∣∣∣∣ dr −−−→i→∞
0

which concludes the proof.

We can now study the convergence of Eαi(x, P, Vi)− Eαi(x, P, V ) uniformly with respect to P
and locally uniformly with respect to x. Indeed, the previous result (Proposition 12) is given in
some compact subset ω ⊂⊂ Ω. Consequently, we define a local version of our energy:

Definition 13. Let Ω ⊂ Rn be an open set and ω ⊂⊂ Ω be a relatively compact open subset. For
every d–varifold V in Ω and for every x ∈ ω and P ∈ Gd,n, we define

Eωα(x, P, V ) =

∫ min
(

1,
d(ω,Ωc)

2

)
r=α

1

rd

∫
Br(x)∩ω

(
d(y − x, P )

r

)2

d‖V ‖ dr
r
.
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Remark 5. Notice that

Eωα(x, P, V ) =

∫ min
(

1,
d(ω,Ωc)

2

)
r=α

1

rd

∫
Br(x)∩ω

(
d(y − x, P )

r

)2

d‖V ‖ dr
r

≤
∫ 1

r=α

1

rd

∫
Br(x)∩Ω

(
d(y − x, P )

r

)2

d‖V ‖ dr
r

= Eα(x, P, V ) .

Proposition 13. Let (Vi)i be a sequence of d–varifolds weakly—∗ converging to a d–varifold V in
some open set Ω ⊂ Rn and such that supi ‖Vi‖(Ω) < +∞. For all open subsets ω ⊂⊂ Ω such that
‖V ‖(∂ω) = 0, let us define

ηωi := sup

{∫ min
(

1,
d(ω,Ωc)

2

)
r=0

∣∣∣∣∣
∫
Br(x)∩ω

ϕd‖Vi‖ −
∫
Br(x)∩ω

ϕd‖V ‖

∣∣∣∣∣ dr
∣∣∣∣∣ ϕ ∈ Lip2(diamω)2(ω),

‖ϕ‖∞ ≤ (diamω)2 , x ∈ ω

}
Then,

1. for every 0 < α ≤ 1, sup
x∈ω

P∈Gd,n

|Eωα(x, P, Vi)− Eωα(x, P, V )| ≤ ηωi
αd+3

,

2. ηωi −−−→
i→∞

0

Proof. 1. is a direct application of Proposition 12, since ‖Vi‖ weakly–∗ converges to ‖V ‖. Now let
us estimate

|Eωα (x, P, Vi)− Eωα(x, P, V )|

≤ 1

αd+3

∫ min
(

1,
d(ω,Ωc)

2

)
r=0

∣∣∣∣∣
∫
Br(x)∩ω

d(y − x, P )2d‖Vi‖(y)−
∫
Br(x)∩ω

d(y − x, P )2d‖V ‖(y)

∣∣∣∣∣ dr .
For all x ∈ ω, P ∈ Gd,n, let ϕx,P (y) := d(y − x, P )2. One can check that

(1) ϕx,P is bounded in ω by (diamω)2 indeed ϕx,P (y) ≤ |y − x|2 ≤ (diamω)2,

(2) ϕx,P ∈ Lip2(diamω)(ω) indeed

|ϕx,P (y)− ϕx,P (z)| =
∣∣d(y − x, P )2 − d(z − x, P )2

∣∣
≤ 2(diamω) |d(y − x, P )− d(z − x, P )|
≤ 2(diamω) d(y − z, P ) ≤ 2(diamω) |y − z| .

Consequently,

sup
x∈ω

P∈Gd,n

∫ min
(

1,
d(ω,Ωc)

2

)
r=0

∣∣∣∣∣
∫
Br(x)∩ω

d(y − x, P )2d‖Vi‖(y)−
∫
Br(x)∩ω

d(y − x, P )2d‖V ‖(y)

∣∣∣∣∣ dr ≤ ηωi
and thus,

sup
x∈ω

P∈Gd,n

|Eωα(x, P, Vi)− Eωα(x, P, V )| ≤ ηωi
αd+3

.
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It is now easy to deduce the following fact:

Proposition 14. Let (Vi)i be a sequence of d–varifolds weakly–∗ converging to a d–varifold V in
some open set Ω ⊂ Rn, and let ω ⊂⊂ Ω be such that ‖V ‖(∂ω) = 0. Assume that supi ‖Vi‖(Ω) <
+∞, then, there exists a decreasing sequence (αi)i of positive numbers tending to 0 and such that

sup
x∈ω

P∈Gd,n

∣∣Eωαi(x, P, Vi)− Eωαi(x, P, V )
∣∣ −−−−→
i→+∞

0 , (11)

and for every x ∈ ω, P ∈ Gd,n, the following pointwise limit holds

Eω0 (x, P, V ) = lim
i→∞

Eωαi(x, P, Vi) . (12)

Conversely, given a decreasing sequence (αi)i of positive numbers tending to 0, there exists an
extraction ϕ (depending on αi, Vi but independent of x ∈ ω and P ∈ Gd,n) such that

sup
x∈ω

P∈Gd,n

∣∣Eωαi(x, P, Vϕ(i))− Eωαi(x, P, V )
∣∣ −−−−→
i→+∞

0 , (13)

and again for every x ∈ ω, P ∈ Gd,n, the following pointwise limit holds

Eω0 (x, P, V ) = lim
i→∞

Eωαi(x, P, Vϕ(i)) . (14)

Proof. Thanks to Proposition 13, for every α > 0,

sup
x∈ω

P∈Gd,n

|Eωα(x, P, Vi)− Eωα(x, P, V )| ≤ ηωi
αd+3

and ηωi −−−→
i→∞

0 ,

hence we can choose (αi)i such that
ηωi
αd+3
i

−−−→
i→∞

0. Conversely, given the sequence (αi)i tending

to 0, we can extract a subsequence (ηωϕ(i))i such that
ηωϕ(i)

αd+3
i

−−−→
i→∞

0. For fixed x ∈ ω and P ∈

Gd,n, the pointwise convergences to the averaged height excess energy Eω0 , (12) and (14), are a
consequence of the previous convergence properties (11) and (13), and of the monotone convergence
Eωα(x, P, V ) −−−→

α→0
Eω0 (x, P, V ).

Now, we can use this uniform convergence result in ω ×Gd,n to deduce the convergence of the
integrated energies.

Proposition 15. Let Ω ⊂ Rn be an open set and let (Vi)i be a sequence of d–varifolds in Ω weakly–∗
converging to some d–varifold V and such that supi ‖Vi‖(Ω) < +∞. Fix a decreasing sequence (αi)i
of positive numbers tending to 0. Let ω ⊂⊂ Ω with ‖V ‖(∂ω) = 0. Then there exists an extraction
ψ such that ∫

ω×Gd,n
Eω0 (x, P, V ) dV (x, P ) = lim

i→∞

∫
ω×Gd,n

Eωαi(x, P, Vψ(i)) dVψ(i)(x, P ) .
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Proof. − Step 1: Let (αi)i ↓ 0 and Vi
∗−−−⇀

i→∞
V . Thanks to Proposition 14), there exists an

extraction ϕ such that

sup
x∈ω

P∈Gd,n

∣∣Eωαi(x, P, Vϕ(i))− Eωαi(x, P, V )
∣∣ −−−→
i→∞

0 .

But supi Vϕ(i)(ω ×Gd,n) ≤ supi ‖Vi‖(Ω) < +∞, hence∣∣∣∣∣
∫
ω×Gd,n

Eωαi(x, P, Vϕ(i)) dVϕ(i)(x, P )−
∫
ω×Gd,n

Eωαi(x, P, V ) dVϕ(i)(x, P )

∣∣∣∣∣ −−−→i→∞
0 . (15)

− Step 2: Now, we estimate∣∣∣∣∣
∫
ω×Gd,n

Eωαi(x, P, V ) dVϕ(i)(x, P )−
∫
ω×Gd,n

Eωαi(x, P, V ) dV (x, P )

∣∣∣∣∣
≤
∫ min

(
1,
d(ω,Ωc)

2

)
r=αi

1

rd+1

∣∣∣∣∣
∫
ω×Gd,n

∫
Br(x)∩ω

(
d(y − x, P )

r

)2

d‖V ‖(y) dVϕ(i)(x, P )

−
∫
ω×Gd,n

∫
Br(x)∩ω

(
d(y − x, P )

r

)2

d‖V ‖(y) dV (x, P )

∣∣∣∣∣ dr
≤ 1

αd+3
i

∫ min
(

1,
d(ω,Ωc)

2

)
r=αi

∣∣∣∣∣
∫
ω×Gd,n

gr(x, P )dVϕ(i)(x, P )−
∫
ω×Gd,n

gr(x, P ) dV (x, P )

∣∣∣∣∣ dr ,
with gr(x, P ) =

∫
Br(x)∩ω

d(y − x, P )2 d‖V ‖(y). For every r < min

(
1,
d(ω,Ωc)

2

)
, gr is bounded

by 1. Moreover the set of discontinuities of gr, denoted by disc(gr), satisfies

disc(gr) ⊂ {(x, P ) ∈ ω ×Gd,n : ‖V ‖(∂(Br(x) ∩ ω)) > 0}
⊂ {(x, P ) ∈ ω ×Gd,n : ‖V ‖(∂Br(x)) > 0} .

Hence V (disc(gr)) ≤ ‖V ‖ ({x ∈ ω : ‖V ‖(∂Br(x)) > 0}) = 0 for almost every r by Proposition 4.
Consequently,∣∣∣∣∣

∫
ω×Gd,n

gr(x, P )dVϕ(i)(x, P )−
∫
ω×Gd,n

gr(x, P ) dV (x, P )

∣∣∣∣∣ −−−→i→∞
0 for a.e. r ,

and then by dominated convergence,∫ min
(

1,
d(ω,Ωc)

2

)
r=0

∣∣∣∣∣
∫
ω×Gd,n

gr(x, P )dVϕ(i)(x, P )−
∫
ω×Gd,n

gr(x, P ) dV (x, P )

∣∣∣∣∣ dr −−−→i→∞
0 .

It is then possible to extract, again, a subsequence (Vψ(i))i such that∣∣∣∣∣
∫
ω×Gd,n

Eωαi(x, P, V ) dVψ(i)(x, P )−
∫
ω×Gd,n

Eωαi(x, P, V ) dV (x, P )

∣∣∣∣∣ −−−→i→∞
0 . (16)
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− Step 3: Eventually by (15), (16) and monotone convergence, there exists an extraction ψ such
that ∫

ω×Gd,n
Eω0 (x, P, V ) dV (x, P ) = lim

i→∞

∫
ω×Gd,n

Eωαi(x, P, V ) dV (x, P )

= lim
i→∞

∫
ω×Gd,n

Eωαi(x, P, Vψ(i)) dVψ(i)(x, P ) .

3.4 Rectifiability theorem

We can now state the main result.

Theorem 4. Let Ω ⊂ Rn be an open set and let (Vi)i be a sequence of d–varifolds in Ω weakly–∗
converging to some d–varifold V and such that supi ‖Vi‖(Ω) < +∞. Fix (αi)i and (βi)i decreasing
sequences of positive numbers tending to 0 and assume that:

(i) there exist 0 < C1 < C2 such that for ‖Vi‖–almost every x ∈ Ω and for every βi < r < d(x,Ωc),

C1ωdr
d ≤ ‖Vi‖(Br(x)) ≤ C2ωdr

d , (17)

(ii)

sup
i

∫
Ω×Gd,n

Eαi(x, P, Vi) dVi(x, P ) < +∞ . (18)

Then V is a rectifiable d–varifold.

Proof. The point is to see that these two assumptions (17) and (18) actually imply the assumptions
of the static theorem (Theorem 3) for the limit varifold V .

− Step 1: The first assumption (17) and Proposition 10 lead to the first assumption of the static
theorem: there exist 0 < C1 < C2 such that for ‖V ‖–almost every x ∈ Ω and for every 0 < r <
d(x,Ωc),

C1ωdr
d ≤ ‖V ‖(Br(x)) ≤ C2ωdr

d .

− Step 2: Let ω ⊂⊂ Ω be a relatively compact open subset such that ‖V ‖(∂ω) = 0 then, thanks
to Proposition 15, we know that there exists some extraction ϕ such that∫

ω×Gd,n
Eω0 (x, P, V ) dV (x, P ) = lim

i→∞

∫
ω×Gd,n

Eωαi(x, P, Vϕ(i)) dVϕ(i)(x, P ) . (19)

But Eωα is decreasing in α and αϕ(i) ≤ αi, therefore for every (x, P ) ∈ ω ×Gd,n,

Eωαi(x, P, Vϕ(i)) ≤ Eωαϕ(i)
(x, P, Vϕ(i)) ,

hence

sup
i

∫
ω×Gd,n

Eωαi(x, P, Vϕ(i)) dVϕ(i)(x, P ) ≤ sup
i

∫
ω×Gd,n

Eωαϕ(i)
(x, P, Vϕ(i)) dVϕ(i)(x, P ) . (20)
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Moreover, recall that Eωαi(x, P, Vi) ≤ Eαi(x, P, Vi) and thus

sup
i

∫
ω×Gd,n

Eωαi(x, P, Vi) dVi(x, P ) ≤ sup
i

∫
Ω×Gd,n

Eαi(x, P, Vi) dVi(x, P ) ≤ C . (21)

Eventually, by (19), (20) and (21),∫
ω×Gd,n

Eω0 (x, P, V ) dV (x, P ) ≤ C . (22)

− Step 3: By (22), for every ω ⊂⊂ Ω such that ‖V ‖(∂ω) = 0 we get that

V ({(x, P ) ∈ ω ×Gd,n | Eω0 (x, P, V ) = +∞}) = 0 .

At the same time, for x ∈ ω and P ∈ Gd,n,

|E0(x, P, V ) −Eω0 (x, P, V )| =
∫ 1

r=min
(

1,
d(ω,Ωc)

2

) 1

rd+1

∫
Br(x)∩Ω

(
d(y − x, P )

r

)2

d‖V ‖(y) dr

+

∫ min
(

1,
d(ω,Ωc)

2

)
r=0

1

rd+1

∫
Br(x)∩(Ω\ω)

(
d(y − x, P )

r

)2

d‖V ‖(y) dr

≤
(

2

d(ω,Ωc)

)d+1

‖V ‖(Ω) +

∫ min
(

1,
d(ω,Ωc)

2

)
r=d(x,ωc)

1

rd+1

∫
Br(x)∩Ω

(
d(y − x, P )

r

)2

d‖V ‖(y) dr

≤

((
2

d(ω,Ωc)

)d+1

+

(
1

d(x, ωc)

)d+1
)
‖V ‖(Ω) < +∞ .

Hence Eω0 (x, P, V ) = +∞ if and only if E0(x, P, V ) = +∞, and consequently,

V ({(x, P ) ∈ ω ×Gd,n | E0(x, P, V ) = +∞}) = V ({(x, P ) ∈ ω ×Gd,n | Eω0 (x, P, V ) = +∞}) .

Now, thanks to Lemma 2, we decompose Ω into Ω = ∪kωk with ∀k, ωk+1 ⊂⊂ ωk ⊂⊂ Ω and
‖V ‖(∂ωk) = 0. Then

V ({(x, P ) ∈ Ω×Gd,n | E0(x, P, V ) = +∞}) = lim
k
V ({(x, P ) ∈ ωk ×Gd,n | E0(x, P, V ) = +∞})

= lim
k
V ({(x, P ) ∈ ωk ×Gd,n | Eωk0 (x, P, V ) = +∞})

= 0 .

Applying the static theorem (Theorem 3) allows us to conclude the proof.

In Theorem 4, we have found conditions (17) and (18) ensuring the rectifiability of the weak–∗
limit V of a sequence of d–varifolds (Vi)i. Recall that the condition

sup
i
|δVi|(Ω) < +∞ (23)

together with the condition (17) also ensure the rectifiability of the weak–∗ limit V of (Vi)i. But,
in Proposition 6, we have computed the first variation of a discrete varifold (discrete varifolds
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are defined in Example 5) and we have seen in Example 6 that even in the case where the limit
varifold V is very simple (we considered a straight line), the natural approximations of V by discrete
varifolds Vi generally do not satisfy (23) even though |δV |(Ω) = 0.
We now check that the condition (18) in Theorem 4 is better adapted to general sequences of
varifolds than the control of the first variation (23). Indeed, in the next Proposition, we prove
that given a d–varifold V with some regularity property, and given any sequence of d–varifolds
Vi

∗−−−⇀
i→∞

V , there exists a subsequence of (Vi)i satisfying a local version of condition (18) in

Theorem 4.

Proposition 16. Let Ω ⊂ Rn be an open set and let V be a d–varifold in Ω such that∫
Ω×Gd,n

E0(x, P, V ) dV (x, P ) < +∞ .

Let (Vi)i be a sequence of d–varifolds weakly–∗ converging to V with supi ‖Vi‖(Ω) < +∞. Then,
given αi ↓ 0, for every ω ⊂⊂ Ω such that ‖V ‖(∂ω) = 0, there exists a subsequence (Wi)i = (Vϕ(i))i
such that

sup
i

∫
ω×Gd,n

Eωαi(x, P,Wi) dWi(x, P ) < +∞ . (24)

Proof. It is a direct consequence of Proposition 15.

The condition (24) is expressed in terms of the local version Eωα of Eα. In the case where the
varifolds are contained in the same compact set, then global condition (18) of Theorem 4 is satisfied
by some subsequence.

Proposition 17. Let αi ↓ 0. Let V be a rectifiable d–varifold in Rn with compact support and such
that ∫

ω×Gd,n
E0(x, P, V ) dV (x, P ) < +∞ .

Assume moreover that there exists some sequence of d–varifolds (Vi)i weakly–∗ converging to V
with supi ‖Vi‖(Rn) < +∞. Then for any ω ⊂⊂ Rn such that supp ‖V ‖ + B1(0) ⊂ ω and for all i,
supp ‖Vi‖+B1(0) ⊂ ω, there exists a subsequence (Vϕ(i))i such that

sup
i

∫
ω×Gd,n

Eαi(x, P, Vϕ(i)) dVϕ(i)(x, P ) < +∞ .

Proof. It is again a direct consequence of Proposition 15 (since ω is compact and ‖V ‖(∂ω) = 0)
combined with the fact that supp ‖V ‖+B1(0) ⊂ ω implies

Eωα(x, P, V ) =

∫ min
(

1,
d(ω,(Rn)c)

2

)
r=α

1

rd

∫
Br(x)∩ω

(
d(y − x, P )

r

)2

d‖V ‖ dr
r

= Eα(x, P, V ) .

Given Vi
∗−−−−⇀

i→+∞
V and αi ↓ 0, the previous propositions 16 and 17 give a subsequence (Vϕ(i))i

satisfying (18)

sup
i

∫
Eαi(x, P, Vϕ(i)) dVϕ(i)(x, P ) < +∞
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In the following proposition, we focus on sequences of discrete varifolds defined in Example 5.
Under some uniform regularity assumption on V , we give a sequence (Vi)i of discrete varifolds such
that

Vi
∗−−−−⇀

i→+∞
V ,

and a condition linking the scale parameter αi and the size δi of the mesh associated to the discrete
varifold Vi, ensuring that (18) holds for Vi and not for a subsequence.

Theorem 5. Let V = v(M, θ) be a rectifiable d–varifold in Rn with finite mass ‖V ‖(Ω) < +∞
and compact support. Let δi ↓ 0 be a sequence of infinitesimals and (Ki)i a sequence of meshes
satisfying

sup
K∈Ki

diam(K) ≤ δi −−−−→
i→+∞

0 .

Assume that there exists 0 < β < 1 and C > 0 such that for ‖V ‖–almost every x, y ∈ Ω,

‖TxM − TyM‖ ≤ C|x− y|β .

Define the sequence of discrete varifolds:

Vi =
∑
K∈Ki

mi
K

|K|
Ln ⊗ δP iK with mi

K = ‖V ‖(K) and P iK ∈ arg min
P∈Gd,n

∫
K×Gd,n

‖P − S‖ dV (x, S) .

Then,

(i) Vi
∗−−−−⇀

i→+∞
V ,

(ii) For any sequence of infinitesimals αi ↓ 0 and such that for all i,

δβi
αd+3
i

−−−−→
i→+∞

0 , (25)

we have,∫
Rn×Gd,n

E0(x, P, V ) dV (x, P ) = lim
i→+∞

∫
Rn×Gd,n

Eαi(x, P, Vi) dVi(x, P ) < +∞ .

Remark 6. We insist on the fact that the condition on the scale parameters αi and the size of the
mesh δi is not dependent on Vi but only on the regularity of V i.e. on β (and on the dimension d).

Notation. For the sake of simplicity, we now identify an element Q ∈ Gd,n and the associated
orthogonal projector ΠQ ∈Mn(R). For instance ΠTxM −ΠQ is now denoted TxM −Q.

Proof. − Step 1: Let ϕ ∈ Lip(Rn ×Gd,n) with Lipschitz constant lip(ϕ), then

|〈Vi, ϕ〉 − 〈V, ϕ〉| ≤ δilip(ϕ)‖V ‖(Rn) + lip(ϕ)

∫
Rn×Gd,n

∥∥P i(y)− T
∥∥ dV (y, T ) ,

where P i : Rn → Gd,n is cell-wise constant, and P i = P iK in K.
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Indeed,

|〈Vi, ϕ〉 − 〈V, ϕ〉| =

∣∣∣∣∣
∫
Rn×Gd,n

ϕ(x, S) dVi(x, S)−
∫
Rn×Gd,n

ϕ(y, T ) dV (y, T )

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
K∈Ki

∫
K
ϕ(x, P iK)

‖V ‖(K)

|K|
dLn(x)−

∑
K∈Ki

∫
K×Gd,n

ϕ(y, T ) dV (y, T )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
K∈Ki

∫
x∈K

∫
K×Gd,n

ϕ(x, P iK) dV (y, T )
dLn(x)

|K|
−
∑
K∈Ki

∫
x∈K

∫
K×Gd,n

ϕ(y, T ) dV (y, T )
dLn(x)

|K|

∣∣∣∣∣∣
≤
∑
K∈Ki

∫
x∈K

∫
(y,T )∈K×Gd,n

∣∣ϕ(x, P iK)− ϕ(y, T )
∣∣︸ ︷︷ ︸

≤lip(ϕ)(|x−y|+‖P iK−T‖)

dV (y, T )
dLn(x)

|K|
(26)

≤ δilip(ϕ)‖V ‖(Rn) + lip(ϕ)

∫
Rn×Gd,n

∥∥P i(y)− T
∥∥ dV (y, T ) . (27)

We now study the convergence of the term

∫
Rn×Gd,n

∥∥P i(y)− T
∥∥ dV (y, T ).

− Step 2: ∫
Rn×Gd,n

∥∥P i(y)− T
∥∥ dV (y, T ) ≤ 2Cδβi ‖V ‖(R

n) −−−−→
i→+∞

0 . (28)

First define, for all i, Ai : Rn →Mn(R) cell-wise constant:

Ai = AiK =
1

‖V ‖(K)

∫
K
TuM d‖V ‖(u) constant in the cell K ∈ Ki .

Then,∫
Rn×Gd,n

∥∥Ai(y)− T
∥∥ dV (y, T ) =

∑
K∈Ki

∫
K

∥∥∥∥ 1

‖V ‖(K)

∫
K
TuM d‖V ‖(u)− TyM

∥∥∥∥ d‖V ‖(y)

≤
∑
K∈Ki

∫
K

1

‖V ‖(K)

∫
K
‖TuM − TyM‖︸ ︷︷ ︸
≤C|u−y|β≤Cδβi

d‖V ‖(u) d‖V ‖(y)

≤ Cδβi ‖V ‖(R
n) .

Consequently,

∫
K

∥∥Ai(y)− TyM
∥∥ d‖V ‖(y) = εiK with

∑
K∈Ki

εiK < Cδβi ‖V ‖(R
n). In particular,

for all K ∈ Ki, there exists yK ∈ K such that

∥∥Ai(yK)− TyKM
∥∥ ≤ εiK
‖V ‖(K)

.
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Define T i : Rn → Gd,n, constant in each cell, by T i(y) = T iK = TyKM for K ∈ Ki and y ∈ K,
and then,∫
Rn×Gd,n

∥∥T i(y)− T
∥∥ dV (y, T ) =

∑
K∈Ki

∫
K
‖TyKM − TyM‖ d‖V ‖(y)

≤
∑
K∈Ki

∫
K
‖TyKM − Ai(y)︸ ︷︷ ︸

=Ai(yK)

‖ d‖V ‖(y) +

∫
Rn×Gd,n

∥∥Ai(y)− T
∥∥ dV (y, T )

≤
∑
K∈Ki

∫
K

εiK
‖V ‖(K)

d‖V ‖(y) + Cδβi ‖V ‖(R
n)

≤ 2Cδβi ‖V ‖(R
n) .

Now remind that for all K ∈ Ki, P iK ∈ arg min
P∈Gd,n

∫
K×Gd,n

‖P − T‖ dV (y, T ) so that,

∫
Rn×Gd,n

∥∥P i(y)− T
∥∥ dV (y, T ) =

∑
K∈Ki

∫
K×Gd,n

∥∥P iK − T∥∥ dV (y, T )

≤
∑
K∈Ki

∫
K×Gd,n

∥∥T iK − T∥∥ dV (y, T )

≤ 2Cδβi ‖V ‖(R
n)

− Step 3: Vi
∗−−−−→

i→+∞
V .

Thanks to Steps 1 and 2, we have proved that for any ϕ ∈ Lip(Ω×Gd,n),

〈Vi, ϕ〉 −−−−→
i→+∞

〈V, ϕ〉 , (29)

it remains to check the case ϕ ∈ C0
c(Rn × Gd,n). Let ϕ ∈ C0

c(Rn × Gd,n) and ε > 0. We can
extend ϕ into ϕ ∈ C0

c(Rn ×Mn(R)) by Tietze-Urysohn theorem since Gd,n is closed. Then, by
density of Lip(Rn ×Mn(R)) in C0

c(Rn ×Mn(R)) with respect to the uniform topology, there
exists ψ ∈ Lip(Rn ×Mn(R)) such that

∥∥ϕ− ψ∥∥∞ < ε. Let now ψ ∈ Lip(Rn × Gd,n) be the

restriction of ψ to Rn ×Gd,n, then,

|〈V, ϕ〉 − 〈Vi, ϕ〉| ≤ |〈V, ϕ〉 − 〈V, ψ〉|+ |〈V, ψ〉 − 〈Vi, ψ〉|+ |〈Vi, ψ〉 − 〈Vi, ϕ〉|
≤ ‖V ‖(Rn)‖ϕ− ψ‖∞ + |〈V, ψ〉 − 〈Vi, ψ〉|+ ‖Vi‖(Rn)‖ϕ− ψ‖∞ .

As ‖Vi‖(Rn) = ‖V ‖(Rn) for all i by definition of Vi and |〈V, ψ〉 − 〈Vi, ψ〉| −−−−→
i→+∞

0 by (29), there

exists i large enough such that

|〈V, ϕ〉 − 〈Vi, ϕ〉| ≤ (2‖V ‖(Rn) + 1) ε ,

which concludes the proof of the weak–∗ convergence.
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We now estimate,∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dV (x, P )−
∫
Rn×Gd,n

Eα(x, P, Vi) dVi(x, P )

∣∣∣∣∣ (30)

≤

∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dV (x, P )−
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )

∣∣∣∣∣ (31)

+

∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )−
∫
Rn×Gd,n

Eα(x, P, Vi) dVi(x, P )

∣∣∣∣∣ (32)

− Step 4: We begin with (31) and we prove that∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )−
∫
Rn×Gd,n

Eα(x, P, V ) dV (x, P )

∣∣∣∣∣ ≤ 1

αd+3
‖V ‖(Rn)2

[
4δi + 2Cδβi

]
.

(33)∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )−
∫
Rn×Gd,n

Eα(x, P, V ) dV (x, P )

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rn×Gd,n

∫ 1

r=α

1

rd+1

∫
y∈Br(x)

(
d(y − x, P )

r

)2

d‖V ‖(y) dr dVi(x, P )

−
∫
Rn×Gd,n

∫ 1

r=α

1

rd+1

∫
y∈Br(x)

(
d(y − x, P )

r

)2

d‖V ‖(y) dr dV (x, P )

∣∣∣∣∣
≤
∫ 1

r=α

1

rd+3

∫
y∈Rn

∣∣∣∣∣
∫
Rn×Gd,n

1{|y−x|<r}(x) (d(y − x, P ))2 dVi(x, P )

−
∫
Rn×Gd,n

1{|y−x|<r}(x) (d(y − x, P ))2 dV (x, P )

∣∣∣∣∣ d‖V ‖(y) dr (34)

And as in Step 1 in (26), for fixed y and α < r < 1, we have by definition of Vi:∣∣∣∣∣
∫
Rn×Gd,n

1{|y−x|<r}(x) (d(y − x, P ))2 dVi(x, P )−
∫
Rn×Gd,n

1{|y−x′|<r}(x
′)
(
d(y − x′, P ′)

)2
dV (x′, P ′)

∣∣∣∣∣
≤
∑
K∈Ki

∫
x∈K

∫
K×Gd,n

∣∣∣1Br(y)(x)
(
d(y − x, P iK)

)2 − 1Br(y)(x
′)
(
d(y − x′, P ′)

)2∣∣∣ dV (x′, P ′)
dLn(x)

|K|
(35)

And in (35), either x, x′ ∈ Br(y) and in this case∣∣∣1Br(y)(x)
(
d(y − x, P iK)

)2 − 1Br(y)(x
′)
(
d(y − x′, P ′)

)2∣∣∣ ≤ 2r
∣∣d(y − x, P iK)− d(y − x′, P ′)

∣∣
≤ 2r

(
|x− x′|+ |y − x′|‖P iK − P ′‖

)
≤ 2

(
|x− x′|+ ‖P iK − P ′‖

)
,
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either

{
x ∈ Br(y) and x′ /∈ Br(y) or,
x′ ∈ Br(y) and x /∈ Br(y),

and in this case

∣∣∣1Br(y)(x)
(
d(y − x, P iK)

)2 − 1Br(y)(x
′)
(
d(y − x′, P ′)

)2∣∣∣ ≤ r2 ≤ 1 .

Notice that, as |x − x′| ≤ δi this second case can only happen for x, x′ ∈ Br+δi(y) \ Br−δi(y).
Consequently,∣∣∣∣∣
∫
Rn×Gd,n

1{|y−x|<r}(x) (d(y − x, P ))2 dVi(x, P )−
∫
Rn×Gd,n

1{|y−x′|<r}(x
′)
(
d(y − x′, P ′)

)2
dV (x′, P ′)

∣∣∣∣∣
≤
∑
K∈Ki

∫
x∈K

∫
K×Gd,n

2
(
|x− x′|+ ‖P iK − P ′‖

)
dV (x′, P ′)

dLn(x)

|K|

+
∑
K∈Ki

r2‖V ‖ (K ∩Br+δi(y) \Br−δi(y))
|K ∩Br+δi(y) \Br−δi(y)|

|K|︸ ︷︷ ︸
≤1

≤ 2δi ‖V ‖(Rn) +

∫
Rn×Gd,n

‖P i(x′)− P ′‖ dV (x′, P ′) + ‖V ‖ (Br+δi(y) \Br−δi(y))

≤ 2
(
δi + Cδβi

)
‖V ‖(Rn) + ‖V ‖ (Br+δi(y) \Br−δi(y)) thanks to (28) in Step 2 .

Notice that∫ 1

r=0
‖V ‖ (Br+δi(y) \Br−δi(y)) dr =

∫ 1

r=0
‖V ‖ (Br+δi(y)) dr −

∫ 1

r=δi

‖V ‖ (Br−δi(y)) dr

=

∫ 1+δi

r=δi

‖V ‖ (Br(y)) dr −
∫ 1−δi

r=0
‖V ‖ (Br(y)) dr

≤
∫ 1+δi

r=1−δi
‖V ‖(Br(y)) dr ≤ 2δi‖V ‖(Rn) .

Eventually, by (34),∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )−
∫
Rn×Gd,n

Eα(x, P, V ) dV (x, P )

∣∣∣∣∣
≤ 1

αd+3

∫ 1

r=0

∫
Rn

2
(
δi + Cδβi

)
‖V ‖(Rn) + ‖V ‖ (Br+δi(y) \Br−δi(y)) d‖V ‖(y) dr

≤ 1

αd+3

[
2
(
δi + Cδβi

)
‖V ‖(Rn)2 +

∫
Rn

∫ 1

r=0
‖V ‖ (Br+δi(y) \Br−δi(y)) dr d‖V ‖(y)

]
≤ 1

αd+3
‖V ‖(Rn)2

[
4δi + 2Cδβi

]
.

− Step 5: It remains to estimate (32), we prove that∣∣∣∣∣
∫
Rn×Gd,n

Eα(x, P, V ) dVi(x, P )−
∫
Rn×Gd,n

Eα(x, P, Vi) dVi(x, P )

∣∣∣∣∣ ≤ 1

αd+3
4‖V ‖(Rn)2δi. (36)
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Indeed, exactly as previously (but fixing x and integrating against ‖Vi‖, ‖V ‖ instead of Vi, V ,
so that the term depending on P i does not take part into this estimate), we have

|Eα(x, P, Vi) −Eα(x, P, V )|

≤ 1

αd+3

∫ 1

r=0

∣∣∣∣∣
∫
Br(x)

d(y − x, P )2 d‖Vi‖(y)−
∫
Br(x)

d(y′ − x, P )2 d‖V ‖(y′)

∣∣∣∣∣ dr
≤ 1

αd+3

∫ 1

r=0
(2δi‖V ‖(Rn) + ‖V ‖ (Br+δi(y) \Br−δi(y))) dr

≤ 1

αd+3
‖V ‖(Rn)4δi . (37)

We conclude this step by integrating against Vi, reminding that Vi(Rn × Gd,n) = ‖Vi‖(Rn) =
‖V ‖(Rn).

− Step 6: By (33) and (36),∣∣∣∣∣
∫
Rn×Gd,n

Eαi(x, P, V ) dV (x, P )−
∫
Rn×Gd,n

Eαi(x, P, Vi) dVi(x, P )

∣∣∣∣∣ ≤ 1

αd+3
i

‖V ‖(Rn)2
(

8δi + 2Cδβi

)
(38)

−−−−→
i→+∞

0

thanks to (25). Then, by monotone convergence and (38),∫
Rn×Gd,n

E0(x, P, V ) dV (x, P ) = lim
i→+∞

∫
Rn×Gd,n

Eαi(x, P, V ) dV (x, P )

= lim
i→+∞

∫
Rn×Gd,n

Eαi(x, P, Vi) dVi(x, P ) .

A Appendix: The approximate averaged height excess energy as
a tangent plane estimator

Throughout this section, (Vi)i is a sequence of d–varifolds weakly–∗ converging to some d–varifold
V and (αi)i is a decreasing sequence of positive numbers tending to 0 and such that

sup
x∈ω

P∈Gd,n

∣∣Eωαi(x, P, Vi)− Eωαi(x, P, V )
∣∣ −−−→
i→∞

0 . (39)

The existence of such a sequence of (αi)i is given by Proposition 13 in general, and in the case of
discrete varifolds associated to a varifold V , (39) holds as soon as

δi

αd+3
i

−−−−→
i→+∞

0 thanks to (37) .
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We want to show that under this condition on the choice of (αi)i, for fixed x ∈ Ω, the minimizers
of P 7→ Exαi(P ) = Eωαi(x, P, Vi) converge, up to some subsequence, to minimizers of P 7→ Ex0 (P ) =
Eω0 (x, P, V ). In the proofs, we shorten Exαi(P ) = Eωαi(x, P, Vi) and Ex0 (P ) = Eω0 (x, P, V ). We begin
with studying the pointwise approximate averaged height excess energy with respect to P ∈ G, for
fixed x ∈ Ω and for a fixed d–varifold V .

A.1 The pointwise approximate averaged height excess energy

We now fix a d–varifold (not supposed rectifiable nor with bounded first variation) in some open
set Ω ⊂ Rn and we study the continuity of Eα(x, P, V ) with respect to P ∈ Gd,n and then x ∈ Ω.

Proposition 18. Let 0 < α < 1. Let V be a d–varifold in an open set Ω ⊂ Rn such that
‖V ‖(Ω) < +∞. Then, for every P , Q ∈ Gd,n,

|Eα(x, P, V )− Eα(x,Q, V )| ≤ 2‖P −Q‖
∫ 1

r=α

1

rd+1
‖V ‖(Br(x)) dr

In particular, P 7→ Eα(x, P, V ) is Lipschitz with constant Kα ≤
2

αd+1
‖V ‖(Ω). If in addition

∀α < r < 1, ‖V ‖(Br(x)) ≤ Crd then Kα ≤ C‖V ‖(Ω) ln 1
α .

Proof. Let P , Q ∈ Gd,n then,

|Eα(x, P, V )− Eα(x,Q, V )| ≤
∫ 1

r=α

1

rd+1

∫
Br(x)

∣∣∣∣∣
(
d(y − x, P )

r

)2

−
(
d(y − x,Q)

r

)2
∣∣∣∣∣ d‖V ‖(y) dr .

If πP (respectively πQ) denotes the orthogonal projection onto P (respectively Q), recall that
|d(y − x, P )− d(y − x,Q)| ≤ ‖P −Q‖|y − x|. Indeed

d(y − x, P ) = |y − x− πP (y − x)|
≤ |y − x− πQ(y − x)|+ |πQ(y − x)− πP (y − x)|
≤ d(y − x,Q) + ‖πQ − πP ‖op︸ ︷︷ ︸

=‖P−Q‖ by definition

|y − x| .

Moreover y ∈ Br(x) so that
d(y − x, P )

r
≤ 1 and thus∣∣∣∣∣

(
d(y − x, P )

r

)2

−
(
d(y − x,Q)

r

)2
∣∣∣∣∣ ≤ 2

∣∣∣∣d(y − x, P )

r
− d(y − x,Q)

r

∣∣∣∣
≤ 2‖P −Q‖ |y − x|

r
≤ 2‖P −Q‖ .

Consequently,

|Eα(x, P, V )− Eα(x,Q, V )| ≤ 2‖P −Q‖
∫ 1

r=α

1

rd+1
‖V ‖(Br(x)) dr .
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We now study the continuity of x 7→ Eα(x, P, V ).

Proposition 19. Let 0 < α < 1. Let V be a d–varifold in an open set Ω ⊂ Rn such that
‖V ‖(Ω) < +∞. Then,

sup
P∈Gd,n

|Eα(x, P, V )− Eα(z, P, V )| −−−→
z→x

0 .

Proof. First notice that for all x, y, z ∈ Ω and P ∈ Gd,n,

|d(y−x, P )−d(y−z, P )| =
∣∣|y−x−πP (y−x)|−|y−z−πP (y−z)|

∣∣ ≤ |z−x−πP (z−x)| = d(z−x, P ).

We now split Br(x) ∪Br(z) into (Br(x) ∩Br(z)) and (Br(x)4Br(z)) so that∣∣∣∣∣
∫
Br(x)

(
d(y − x, P )

r

)2

d‖V ‖(y)−
∫
Br(z)

(
d(y − z, P )

r

)2

d‖V ‖(y)

∣∣∣∣∣
≤
∫
Br(x)∩Br(z)

∣∣∣∣∣
(
d(y − x, P )

r

)2

−
(
d(y − z, P )

r

)2
∣∣∣∣∣ d‖V ‖(y) (40)

+

∫
Br(x)\Br(z)

(
d(y − x, P )

r

)2

d‖V ‖(y) +

∫
Br(z)\Br(x)

(
d(y − z, P )

r

)2

d‖V ‖(y) . (41)

We use the estimate linking d(y − x, P ) and d(y − z, P ) to control the first integral and then we
show that the two other terms tend to 0.
Concerning the first integral (40):∫

Br(x)∩Br(z)

∣∣∣∣∣
(
d(y − x, P )

r

)2

−
(
d(y − z, P )

r

)2
∣∣∣∣∣ d‖V ‖(y)

≤
∫
Br(x)∩Br(z)

2

∣∣∣∣d(y − x, P )

r
− d(y − z, P )

r

∣∣∣∣ d‖V ‖(y)

≤2
|z − x|
r
‖V ‖ (Br(x) ∩Br(z)) .

Concerning the two other integrals (41):∫
Br(x)\Br(z)

(
d(y − x, P )

r

)2

d‖V ‖(y) +

∫
Br(z)\Br(x)

(
d(y − z, P )

r

)2

d‖V ‖(y)

≤ ‖V ‖ (Br(x)4Br(z)) ≤ R(x, r − |z − x|, r + |z − x|) ,

where R(x, rmin, rmax) := {y ∈ Ω | rmin ≤ |y − x| ≤ rmax}.
Therefore,

|Eα(x, P, V )− Eα(z, P, V )|

≤ 2|z − x|
∫ 1

r=α
‖V ‖(Br(x) ∩Br(z))

dr

rd+2
+

∫ 1

r=α
‖V ‖ (Br(x)4Br(z))

dr

rd+1

≤ 2

d+ 1
|z − x| 1

αd+1
‖V ‖(Ω) +

1

αd+1

∫ 1

r=0
‖V ‖ (R(x, r − |z − x|, r + |z − x|)) dr .

The second term tends to 0 when |z − x| → 0, by dominated convergence, since

lim
z→x
‖V ‖ (R(x, r − |z − x|, r + |z − x|)) = ‖V ‖(∂Br(x)) .
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A.2 Γ–convergence of P 7→ Eω
αi

(x, P, Vi) to P 7→ Eω
0 (x, P, V ).

Proposition 20. Let Ω ⊂ Rn be an open set and let ω ⊂⊂ Ω be a relatively compact open subset
such that ‖V ‖(∂ω) = 0. Let (Vi)i be a sequence of d–varifolds weakly–∗ converging to V . Assume
that (αi)i are chosen as explained in (39), uniformly in ω. For (Si)i ⊂ Gd,n such that Si −−→

i∞
S

then, for all x ∈ ω,

lim
i→∞

Eωαi(x, S, Vi) = Eω0 (x, S, V ) ≤ lim inf
i→∞

Eωαi(x, Si, Vi) .

Proof. By monotone convergence, we already know that

Eω0 (x, S, V ) = lim
i→∞

Eωαi(x, S, V ) . (42)

So we now want to estimate
∣∣Eωαi(x, S, V )− Eωαi(x, Si, V )

∣∣. Let us start with extracting some (Sϕ(i))i
such that

‖Sϕ(i) − S‖
1

αd+1
i

−−−→
i→∞

0

so that we can now apply the regularity property (Proposition 18) of Eα(x, P, V ) with respect to
P : ∣∣Eωαi(x, S, V )− Eωαi(x, Sϕ(i), V )

∣∣ ≤ 2

αd+1
i

‖V ‖(ω)‖S − Sϕ(i)‖ −−−→
i→∞

0.

thus
Eω0 (x, S, V ) = lim

i→∞
Eωαi(x, Sϕ(i), V ). (43)

Notice that ϕ only depends on (αi)i.
As the sequence (αi)i is decreasing, αϕ(i) ≤ αi and then Eωαi(x,Q, V ) ≤ Eωαϕ(i)

(x,Q, V ) for all
Q ∈ Gd,n, which implies in particular that

lim
i→∞

Eωαi(x, Sϕ(i), V ) ≤ lim inf
i→∞

Eωαϕ(i)
(x, Sϕ(i), V ) . (44)

We now apply the uniform convergence of
∣∣Eωαi(·, ·, V )− Eωαi(·, ·, Vi)

∣∣ (39),∣∣∣Eωαϕ(i)
(x, Sϕ(i), V )− Eωαϕ(i)

(x, Sϕ(i), Vϕ(i))
∣∣∣ −−−→
i→∞

0 , (45)

so that by (43), (44) and (45)

Eω0 (x, S, V ) ≤ lim inf
i→∞

Eωαϕ(i)
(x, Sϕ(i), V ) = lim inf

i→∞
Eωαϕ(i)

(x, Sϕ(i), Vϕ(i)) . (46)

As lim infiE
ω
αi(x, Si, Vi) = limiE

ω
αθ(i)

(x, Sθ(i), Vθ(i)) for some extraction θ, we now apply (46) to

these extracted sequences (Sθ(i))i and (Vθ(i))i so that there exists an extraction ϕ such that

Eω0 (x, S, V ) ≤ lim inf
i→∞

Eωαθ(ϕ(i))
(x, Sθ(ϕ(i)), Vθ(ϕ(i)))

= lim
i
Eωαθ(i)(x, Sθ(i), Vθ(i)) since the whole sequence Eωαθ(i)(x, Sθ(i), Vθ(i)) converges

= lim inf
i

Eωαi(x, Si, Vi) .
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We now turn to the consequences of this Γ–convergence property on the minimizers.

Proposition 21. Let Vi be a sequence of d–varifolds weakly–∗ converging to V in some open set
Ω ⊂ Rn and assume that (αi)i are chosen as explained in (39), uniformly in ω ⊂⊂ Ω open subset
such that ‖V ‖(∂ω) = 0. For x ∈ ω and i ∈ N, let Ti(x) ∈ arg minP∈Gd,n E

ω
αi(x, P, Vi). Then,

1. Any converging subsequence of (Ti(x))i tends to a minimizer of Eω0 (x, ·, V ).

2. min
P∈Gd,n

Eωαi(x, P, Vi) −−−→i→∞
min

P∈Gd,n
Eω0 (x, P, V ).

3. If V is an integral rectifiable d–varifold with bounded first variation then

arg min
P∈Gd,n

Eω0 (x, P, V ) = {TxM} ,

hence for ‖V ‖–almost every x, Ti(x) −−−→
i→∞

TxM .

Proof. First, for fixed x and i, P 7→ Eωαi(x, P, Vi) is continuous and Gd,n is compact so that
arg minP∈Gd,n E

ω
αi(x, P, Vi) 6= ∅. Let Ti(x) ∈ arg minP∈Gd,n E

ω
αi(x, P, Vi) be a sequence of minimiz-

ers, as Gd,n is compact, one can extract a subsequence converging to some T∞(x). Now applying
the previous result (Proposition 20), we get for every P ∈ Gd,n,

Eω0 (x, T∞(x), V ) ≤ lim inf
i→∞

Eωαi(x, Ti(x), Vi)

≤ lim sup
i→∞

Eωαi(x, Ti(x), Vi)

≤ lim sup
i→∞

Eωαi(x, P, Vi)

= lim
i
Eωαi(x, P, Vi) = Eω0 (x, P, V )

≤ Eω0 (x, T∞(x), V ) for P = T∞(x) .

Therefore T∞(x) minimizes Eω0 (x, ·, V ) which allows to conclude that the limit of any subsequence
of minimizers of Eωαi(x, ·, Vi) is a minimizer of Eω0 (x, ·, V ). It also proves that

lim
i

min
P∈Gd,n

Eωαi(x, P, Vi) = lim
i
Eωαi(x, Ti(x), Vi) = Eω0 (x, T∞(x), V ) = min

P∈Gd,n
Eω0 (x, P, V ) .

Assume now that Eω0 (x, ·, V ) admits a unique minimizer T (x). We have just shown that every
subsequence of (Ti(x))i converges to T (x). As Gd,n is compact, it is enough to show that the whole
sequence is converging to T (x). Now if V is an integral d–rectifiable varifold with bounded first
variation, for ‖V ‖–almost every x, TxM is the unique minimizer of Eω0 (x, ·, V ) (see Prop. 7) so
that for ‖V ‖–almost every x ∈ ω,

Ti(x) −−−→
i→∞

TxM .

Remark 7. Since Eω0 (x, ·, V ) has no continuity property, the existence of a minimizer of Eω0 (x, ·, V )
is not clear a priori. However, as Gd,n is compact, every sequence of minimizers (Ti(x))i admits a
converging subsequence so that arg minP∈Gd,n E

ω
0 (x, P, V ) is not empty.
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We end with studying the continuity of the minimum minP∈Gd,n Eαi(x, P, Vi) with respect to x
(for fixed i and Vi).

Proposition 22. Assume that Vi weakly–∗ converges to V in some open set Ω ⊂ Rn and let
(αi)i > 0. Then for every fixed i and ω ⊂⊂ Ω, the function x 7→ min

P∈Gd,n
Eωαi(x, P, Vi) is continuous

in ω.
Moreover, every converging sequence of minimizers

(
Ti(zk) ∈ arg minP E

ω
αi(zk, P, Vi)

)
k

tends to a
minimizer of Eωαi(x, ·, Vi) when zk → x and for a fixed i.

Remark 8. As i is fixed, meaning actually that a scale α = αi > 0 and a d–varifold V = Vi are
fixed, we keep the notations Vi and αi, with the explicit index i, only to be coherent with the whole
context of this section and with the notations of the previous results. But that is why we do not
assume anything on the choice of αi > 0 and ω ⊂⊂ Ω.

Proof. Let i be fixed. First we show that if (zk)k ⊂ ω is such that{
|zk − x| −−−→

k→∞
0

Ti(zk) −−−→
k→∞

T∞i where Ti(zk) ∈ arg minP E
ω
αi(zk, P, Vi) ,

then,{
T∞i ∈ arg minP E

ω
αi(x, P, Vi) and

minP E
ω
αi(zk, P, Vi) = Eωαi(zk, Ti(zk), Vi) −−−→k→∞

Eωαi(x, T
∞
i , Vi) = minP E

ω
αi(x, P, Vi) .

(47)

Indeed,∣∣Eωαi(x, T∞i , Vi) − Eωαi(zk, Ti(zk), Vi)
∣∣

≤
∣∣Eωαi(x, T∞i , Vi)− Eωαi(x, Ti(zk), Vi)

∣∣+
∣∣Eωαi(x, Ti(zk), Vi)− Eωαi(zk, Ti(zk), Vi)∣∣

≤K(αi)‖T∞i − Ti(zk)‖+ sup
P

∣∣Eωαi(x, P, Vi)− Eωαi(zk, P, Vi)∣∣
applying Proposition 18 to the first term, K(αi) is a constant depending only on αi. Moreover, by
Proposition 19, the second term tends to zero when k goes to ∞. Consequently,

Eαi(x, T
∞
i , Vi) = lim

k→∞
Eαi(zk, Ti(zk), Vi) .

And for every P ∈ Gd,n,

Eωαi(x, T
∞
i , Vi) = lim

k→∞
Eωαi(zk, Ti(zk), Vi)

≤ lim
k→∞

Eωαi(zk, P, Vi)

= Eωαi(x, P, Vi) by Proposition 19,

which yields (47).
It remains to prove the continuity of x 7→ min

P∈Gd,n
Eωαi(x, P, Vi). Let x and (zk)k ∈ ω be such that

zk −−−→
k→∞

x and consider a subsequence (zϕ(k))k such that

lim sup
k

Eωαi(zk, Ti(zk), Vi) = lim
k
Eωαi(zϕ(k), Ti(zϕ(k)), Vi) . (48)
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As Gd,n is compact, there exists an extraction θ such that (Ti(zϕ(θ(k))))k is converging and then
applying the previous argument (47) to (zϕ(θ(k)))k and (Ti(zϕ(θ(k))))k,

lim
k→+∞

Eωαi
(
zϕ(θ(k)), Ti(zϕ(θ(k))), Vi

)
= min

P∈Gd,n
Eωαi(x, P, Vi) . (49)

Eventually, by (48) and (49),

lim sup
k→+∞

Eωαi(zk, Ti(zk), Vi) = min
P∈Gd,n

Eωαi(x, P, Vi) .

Similarly lim inf
k

Eωαi(zk, Ti(zk), Vi) = min
P
Eωαi(x, P, Vi) which concludes the proof of the continuity.
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