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Abstract

Our purpose is to state quantitative conditions ensuring the rectifiability of a d—varifold V'
obtained as the limit of a sequence of d—varifolds (V;); which need not to be rectifiable. More
specifically, we introduce a sequence {&;}, of functionals defined on d-varifolds, such that if
sup &;(V;) < +oo and V; satisfies a uniform density estimate at some scale 8;, then V = lim; V;

isz d-rectifiable.

The main motivation of this work is to set up a theoretical framework where curves, surfaces, or
even more general d-rectifiable sets minimizing geometrical functionals (like the length for curves
or the area for surfaces), can be approximated by “discrete” objects (volumetric approximations,
pixelizations, point clouds etc.) minimizing some suitable “discrete” functionals.
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Introduction

The set of regular surfaces lacks compactness properties (for Hausdorff convergence for instance),
which is a problem when minimizing geometric energies defined on surfaces. In order to gain
compactness, the set of surfaces can be extended to the set of varifolds and endowed with a notion
of convergence (weak—* convergence of Radon measures). Nevertheless, the problem turns to be
the following: how to ensure that a weak— limit of varifolds is regular (at least in the weak sense
of rectifiability)? W. K. Allard (see [!]) answered this question in the case where the weak—x
converging sequence is made of weakly regular surfaces (rectifiable varifolds to be precise). But
what about the case when the weak—x converging sequence is made of more general varifolds?
Assume that we have a sequence of volumetric approximations of some set M, how can we know if
M is regular (d-rectifiable for some d), knowing only its successive approximations ?

/ - N
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As a set and its volumetric approximations can be endowed with a structure of varifold (as we
will see), this problem can be formulated in terms of varifolds: we are interested in quantitative
conditions on a given sequence of d—varifolds ensuring that the limit (when it exists) is rectifiable.
Before going into technical details, let us consider the problem of rectifiability in simplified settings.

e First, let f: R — R. We are look for conditions ensuring that f is differentiable (in some
sense). The most simple answer is to impose that the difference quotient has a finite limit
everywhere. But assume that moreover, we ask for something more quantitative, that is to
say some condition that could be expressed through bounds on some well chosen quantities
(for instance, from a numerical point of view, it is easier to deal with bounded quantities
than with the existence of a limit)). We will refer to this kind of condition as “quantitative
conditions” (see also [0]). There exists an answer by Dorronsoro [7] (we give here a simplified
version, see [7]).

Theorem 1 (see [7] and [7]). Let f : R — R be locally integrable and let ¢ > 1 such that

g < if d > 1. Then, the distributional gradient of f is in L2 if and only if

d—2
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The function v, penalizes the distance from f to its best affine approximation locally every-
where. This theorem characterizes the weak differentiability (in the sense of a L2 gradient)
quantitatively in terms of zL%-estimate on 7, (with the singular weight %)

e Now, we take a set M in R™ and we ask the same question: how to ensure that this set is
regular (meaning d-rectifiable for some d)? Of course, we are still looking for quantitative
conditions. This problem has been studied by P.W. Jones (for 1-rectifiable sets) in connection



with the travelling salesman problem ([9]) then by K. Okikiolu ([12]), by S. Semmes and G.
David ([1]) and by H. Pajot ([13]). As one can see in the following result stated by H. Pajot
in [13], the exhibited conditions are not dissimilar to Dorronsoro’s. We first introduce the L4
generalization of the so called Jones’ § numbers, (see [9] for Jones’ 5 numbers and [13] for
the L7 generalization):

Definition 1. Let M C R® andd € N, d < n.

: d(y, P) ,

Boo(z, 7, M) = inf sup if Be(x)NM #0,
( ) P affine d—plane yEMNB, () r ( ) 7&
Boo(z,m, M) =0 if Br(x)NM =0,

. 1 d(y. P)\* ag )’ .
_ 1 < .
By(x,r, M) » aﬂinlen(g—plane (rd /yGBT(m)ﬂM < " > dH(y) if 1 <qg< 400

The B4(z,r, M) measure the distance from the set M to its best affine approximation at a
given point z and a given scale r.

Theorem 2 ([13]). Let M C R™ compact with HY(M) < +oo. Let q be such that

1<g¢g< > if d=1

2d
— if d>2.
Sq<g—, #d=

We assume that for H—almost every x € M, the following properties hold:

HEY(M N B, (z))
ward

(i) 0%(x, M) = limui)nf >0,

1
d
au/ Bylz,r, M)2 2 < 0.
r=0 r
Then M is d—rectifiable.

Let us get closer to our initial question: now we consider the same question in the context
of varifolds. Recall that from a mathematical point of view, a d—varifold V in 2 C R" is a
Radon measure on the product €2 x Gy, where

G4, = {d-dimensional subspaces of R" } .

Varifolds can be loosely seen as a set of generalized surfaces: let M be a d—submanifold (or
a d-rectifiable set) in Q and denote by T, M its tangent plane at x, then the Radon measure
V(z,P) = HldM(:v) ® O, m(P) is a d-varifold associated to M, involving both spatial and
tangential information on M. The measure obtained by projecting V' on the spatial part 2
is called the mass ||V||. In the previous specific case where V' comes from a d-rectifiable set
M then the mass is ||V = ’H‘dM. See the next section for more details about varifolds. We
can now state the first result that we obtain in this paper about quantitative conditions of
rectifiability in the context of varifolds:



Theorem 3. Let 2 C R" be an open set and let V' be a d-varifold in Q0 with finite mass
[VI[(2) < +o0. Assume that:

(1) there exist 0 < Cy < Cq such that for ||V|-almost every x € Q and for every r > 0,

Crr? < |IVII(By(2)) < Cor?, (1)

(ii) Ey(x, P,V)dV (z, P) < 400, where

QXGdyn
| dly — z, P) 2 dr
merv)= [ L[ (=22 awi)
r=0T" JyeB,(z)nQ r r

defines the averaged height excess.

Then V' is a rectifiable d—varifold.

The first assumption is called Ahlfors-regularity. It implies in particular that V' is d—dimensional
but with some uniform control on the d—density. Adding the second assumption both ensures
that the support M of the mas measure ||[V|| is a d—rectifiable set and that the tangential part
of V' is coherent with M, that is to say V = ||V||® 07, ar. We will refer to these two conditions
as static quantitative conditions of rectifiability for a given d—varifold, by opposition to the
next conditions, involving the limit of a sequence of d—varifolds, which we will refer to as
the approzimation case. These static conditions are not very difficult to derive from Pajot’s
theorem, the difficult part is the next one: the approximation case.

e Now we consider a sequence (V;); of d-varifolds (weakly—) converging to a d—varifold V.The
problem is to find quantitative conditions on (V;); that ensure the rectifiability of V? The
idea is to consider the static conditions with uniform bounds and using a notion of scale
encoded by the parameters a; and §; in the following result:

Theorem 4. Let Q C R"™ be an open set and let (V;); be a sequence of d—varifolds in
weakly— converging to some d—varifold V' of finite mass ||V]|(Q) < +o0. Fiz two decreasing

and infinitesimal (tending to 0) sequences of positive numbers (o;); and (B;); and assume
that:

(1) there exist 0 < Cy < Cq such that for ||Vi||-almost every x € Q@ and for every 5; < r <

d(z,Q°),
Cir < |Vill(Br(x)) < Cor?,

(i1) sup/ E,,(z, P,V;)dVi(x, P) < +00, where
; QXGdyn

1 d(y —z, P)\? d
pawpw)= [ [ A== PIN i) () 9
r=q; rd yEBy ()N r r

denotes the a—approximate averaged height excess.

Then V' is a rectifiable d—varifold.



We stress that the sequence (V;); in Theorem 4 is not necessarily made of rectifiable d—varifolds.
The parameters «; and 3; allow to study the varifolds at a large scale (from far away). The main
difficulty in the proof of Theorem 4 is to understand the link between

— the choice of «; ensuring a good convergence of the successive approximate averaged height
excess energies Eq, (x, P, V;) to the averaged height excess energy Ey(z, P,V)

— and a notion of convergence speed of the sequence (V;); obtained thanks to a strong characteri-
zation of weak— convergence.

In the following example, we can guess that the parameters «; and (3; must be large with respect
to the size of the mesh. Loosely speaking, in figure (a), even in the smallest ball, the grey approxi-
mation “looks” 1-dimensional. On the contrary, if we continue zooming like in figure (b), the grey
approximation “looks” 2—dimensional. The issue is to give a correct sense to this intuitive fact.

\

AU/
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(a) (b)

The plan of the paper is the following: in section 1 we collect some basic facts about rectifiability
and varifolds that we need thereafter. Then in section 2, we state and prove quantitative conditions
of rectifiability for varifolds in the static case. In section 3, we first establish a result of uniform
convergence for the pointwise averaged height excess energies F, thanks to a strong characterization
of weak—« convergence. This allows us to state and prove quantitative conditions of rectifiability
for varifolds in the approximation case. In the appendix, we consider some sequence of d—varifolds
weakly— converging to some rectifiable d—varifold V' = HHfM ® 07, ar (for some d-rectifiable set
M) and we make a connection between the minimizers of E,,(z, -, V;), with respect to P € Gy,
and the tangent plane T, M to M at =x.

1 Some facts about rectifiability and varifolds

This section contains basic definitions and facts about rectifiability and varifolds. We start by
fixing some notations.

From now on, we fix d,n € N with 1 < d < n and an open set 2 C R". Then we adopt the
following notations.



— L™ is the n—dimensional Lebesgue measure.

— H? is the d-dimensional Hausdorff measure.

— Ck(Q) is the space of continuous compactly supported functions of class C* in .

— By(z) ={y ||y — z| < r} is the open ball of center x and radius r.

— Ggn ={P CR"|P is a vector subspace of dimension d}.

— AAB = (AUB)\ (AN B) is the symmetric difference.

— Lip,(9) is the space of Lipschitz functions in € with Lipschitz constant less or equal to k.

— wg = L4(B1(0)) is the d-volume of the unit ball in R?.

— For P € Gy, Illp is the orthogonal projection onto P.

— Let w and 2 be two open sets then w CC {2 means that w is relatively compact in €.

— Let u be a measure in some measurable topological space, then supp u denotes the topological
support of p.

— Let A C Q then A° = Q\ A denotes the complementary of A in €.

— Given a measure u, we denote by |u| its total variation.

1.1 Radon measure and weak— convergence

We recall here some useful properties concerning vector-valued Radon measures and weak—+ con-
vergence. See [3] and [2] for more details.

Definition 2 (weak—* convergence of Radon measures, see. [2] def. 1.58 p. 26). Let u and (u;);
be R™—vector valued Radon measures in 2 C R™. We say that u; weakly— converges to u, denoted
ji —— w if for every o € Co(QR™),

1— 00
/so‘dm.—>/so-du-
0O 1— 00 e}

Thanks to Banach-Alaoglu weak compactness theorem, we have the following result in the space
of Radon measures.

Proposition 1 (Weak—* compactness, see [2] Theorem. 1.59 and 1.60 p. 26). Let (u;); be a
sequence of Radon measures in some open set 0 C R™ such that sup; |14;|(2) < oo then there exist
a finite Radon measure p and a subsequence (uw(i))i weakly—x converging to .

Let us now study the consequences of weak— convergence on Borel sets.

Proposition 2 (see 1.9 p.54 in [3]). Let (1;); be a sequence of positive Radon measures weakly—x
converging to i in some open set @ C R™. Then,

1. for every compact set K C Q, limsup; p;(K) < u(K) and for every open set U C Q, u(U) <
lim inf; p;(U).

2. lim; p;(B) = u(B) for every Borel set B C Q such that u(0B) = 0.

Each one of the two properties in Proposition 2 is actually a characterization of weak— convergence.
Let us state a similar result in the vector case.



Proposition 3 (see [2] Prop. 1.62(b) p. 27). Let Q@ C R™ be an open set and let (1;); be a sequence
of R™—vector valued Radon measures weakly— converging to . Assume in addition that the total
variations |u;| weakly— converge to some positive Radon measure . Then |u| < X\ and for every
Borel set B C Q such that A(0B) =0, u;(B) — wu(B). More generally,

/u'dm—>/u~du
Q Q

for every measurable bounded function u whose discontinuity set has zero A—measure.

We end this part with a result saying that, for a given Radon measure p, among all balls centred
at a fixed point, at most a countable number of them have a boundary with non zero y—measure.

Proposition 4. Let p be a Radon measure in some open set 2 C R™. Then,

(i) For a given x € ), the set of r € Ry such that p(0B,(z)) > 0 is at most countable. In

particular,
LHr e Ry | u(0B,(x)NQ) >0} =0.

(ii) For almost every r € Ry,

p{r € Q| pu(0By(x)NQ) >0} =0.

Proof. The first point is a classical property of Radon measures and comes from the fact that
monotone functions have at most a countable set of discontinuities, applied to r — u(B,(x)). For
the second point, we use Fubini Theorem to get

/ p{zr € Q| pu(0By(x) N Q) >0} dr =
T€R+ €

/ Li(a) | w(@B, ()0} (T, 7) du(z) dr

T€R+

~ [ £ e Re 0B, (x)N9) > 0} dua) =0,
e

thanks to (i). O

These basic results will be widely used throughout this paper.

1.2 Rectifiability and approximate tangent space
Definition 3 (d-rectifiable sets, see definition 2.57 p.80 in [2]). Let M C R™. M is said to be
countably d-rectifiable if there exist countably many Lipschitz functions f; : RE — R™ such that
M c Myu | fi(RY) with 1Y (M) = 0.
€N
If in addition HY(M) < +oo then M is said d-rectifiable.

Actually, it is equivalent to require that M can be covered by countably many Lipschitz d—graphs
up to a H% negligible set and thanks to Whitney extension theorem, one can ask for C' d-graphs.
We can now define rectifiability for measures.



Definition 4 (d-rectifiable measures, see definition 2.59 p.81 in [2]). Let u be a positive Radon
measure in R™. We say that p is d—rectifiable if there exist a countably d—rectifiable set M and a
Borel positive function 0 such that u = GH“iM.

Thus, a set M is countably d-rectifiable if and only if HldM is a d-rectifiable measure. When blowing
up at a point, rectifiable measures have the property of concentrating on affine planes (at almost
any point). This property leads to a characterization of rectifiable measures. Let us define 9, , as

y—x
r .

wx,r (y) =

Definition 5 (Approximate tangent space to a measure, see definition 2.79 p.92 in [2]). Let p be a
positive Radon measure in R™. We say that p has an approximate tangent space P with multiplicity
0 cRy atx if P € Ggp s a d-plane such that

1 %
ﬁ¢xvr#“ —_— G’H‘dp asr ] 0.

That is,

rid @ <y — x) duly) — 9/}390(?0 dH(y) Ve € C(R").

In the sequel the approximate tangent plane to M (resp. u) at x is denoted by Tp M (resp. Tppu).
As we said, this provides a way to characterize rectifiability:

Theorem 5 (see theorem 2.83 p.94 in [2]). Let u be a positive Radon measure in R™.

1. If p = G'HfM with M countably d-rectifiable, then p admits an approrimate tangent plane
with multiplicity 0(x) for He-almost any x € M.

2. If there exists a Borel set S such that u(R™\ S) = 0 and if p admits an approrimate tangent
plane with multiplicity 0(x) > 0 for Halmost every x € S then S is countably d-rectifiable
and p = H”HVS.

There are other characterizations of rectifiability in terms of density (see for instance [10]). Let
us point out an easy consequence of the existence of a tangent plane at a given point:

Proposition 5. Let 1 be a positive Radon measure in R". Let x € R", P € Gy, and assume that
W has an approximate tangent space Typu with multiplicity 6(z) > 0 at . Then for all B > 0,

Lndy € Bul@)|dly —x, P) < fr} — 0(@)H {y € Tups 0 Ba(0) | d(y, P) < 5} -

d

Proof. Indeed, let ¥, : y — *—=, then %dqﬁx,r#,u weakly star converges to 0(:3)7{‘1“

Borel set A such that HfiTxu(f)A) = HYOANT,u) = 0, we have

so that for any

St gt(A) = o (VH(A)) —— O)H (T 1 4) )

T‘—>0+

The conclusion follows applying (2) with A = {y € B1(0) | d(y, P) < 8} so that for any 0 < 8 < 1,
1/)5;’714(/1) ={y € B,(z)|d(y — z,P) > Br} and Hd(A NP)=0.



1.3 Some facts about varifolds

We recall here a few facts about varifolds, (for more details, see for instance [15]). As we have
already mentioned, the space of varifolds can be seen as a space of generalized surfaces. However,
in this part we give examples showing that, not only rectifiable sets, but also objects like point
clouds or volumetric approximations can be endowed with a varifold structure. Then we define the
first variation of a varifold which is a generalized notion of mean curvature, and we recall the link
between the boundedness of the first variation and the rectifiability of a varifold. We also introduce
a family of volumetric discretizations endowed with a varifold structure. They will appear all along
this paper in order to illustrate problems and strategies to solve them. We focus on this particular
family of varifolds because they correspond to the volumetric approximations of sets that motivated
us initially.

1.3.1 Definition of varifolds

We recall that Gy, = {P C R"| P is a vector subspace of dimension d}. Let us begin with the
notion of rectifiable d—varifold.

Definition 6 (Rectifiable d—varifold). Given an open set Q C R™, let M be a countably d—rectifiable
set and 6 be a non negative function with 6 > 0 H%—almost everywhere in M. A rectifiable d—varifold
V =wv(M,0) in Q is a positive Radon measure on Q x Gq, of the form V = 97-l|dM ® O, 0 G-e.

/ o(x, T)dV (z,T) = / o(z, T M) 0(z) dH(2) Ve € Co(Q X Ggn,R)
QxGg pn M

where Ty M is the approzimative tangent space at x which exists He—almost everywhere in M. The
function 0 is called the multiplicity of the rectifiable varifold.

Remark 1. We are dealing with measures on 2 x Gy ,, but we did not mention the o-algebra we
consider. We can equip G4, with the metric

d(T, P) = [[llg — IIp||

with II7 € M,,(R) being the matrix of the orthogonal projection onto 7" and || - || a norm on M, (R).
We consider measures on €2 x Gy, with respect to the Borel algebra on € x Gg,.

Let us turn to the general notion of varifold:

Definition 7 (Varifold). Let Q C R™ be an open set. A d—varifold in Q is a positive Radon measure
on Q2 x Ggp.

Remark 2. As Q0 x Gg,, is locally compact, Riesz Theorem allows to identify Radon measures on
Q% G g, and continuous linear forms on C.(2xGy,,) (we used this fact in the definition of rectifiable
d—varifolds) and the convergence in the sense of varifolds is then the weak—* convergence.

Definition 8 (Convergence of varifolds). A sequence of d—varifolds (V;); weakly— converges to a
d-varifolds V in Q if, for all p € Co(2 x Gap),

/ o(z, P)dVi(z, P) —— o(z, P)dV (z, P) .
OxGgn

1— 00 Ox Gd,n



We now give some examples of varifolds:

Ezample 1. Consider a straight line D C R?, then the measure v(D) = ’H|1D ® 0p is the canonical
1-varifold associated to D.

Example 2. Consider a polygonal curve M C R? consisting of 8 line segments S, . . ., Sg of directions
Py, ..., Ps € Gy, then the measure v(M) = Z?Zl ’H‘ls_ ® dp, is the canonical varifold associated to
M.

x: 4

.

o 0z, @ Op;

[
o0
P

(a) Polygonal curve (b) Point cloud

Ezxample 3. Consider a d-submanifold M C R™. According to the definition of rectifiable d—
varifolds, the canonical d-varifold associated to M is v(M) = H? ® dp,as or v(M,0) = OH? @ o7, 01
adding some multiplicity 6 : M — R.

Example 4 (Point cloud). Consider a finite set of points {x; }jvzl C R™ with additional information
of masses {mj}évzl C Ry and tangent planes {P;};—1..n C Gg, then the measure

N
Z mjdz; @ dp,

j=1
defines a d—varifolds associated with the point cloud.

Definition 9 (Mass). If V = v(M,0) is a d—rectifiable varifold, the measure HchlM is called the
mass of V' and denoted by |V||. For a general varifold V, the mass of V is the positive Radon
measure defined by |V |(B) = V(r=Y(B)) for every B C 2 Borel, with

m: OxGgpn —
(x,8) +— =

For a curve, the mass is the length measure, for a surface, it is the area measure, for the previous
point cloud, the mass is Ej m;dy;. The mass loses the tangent information and keeps only the
spatial part.

10



1.3.2 First variation of a varifold

The set of d—varifolds is endowed with a notion of generalized curvature called first variation. Let
us recall the divergence theorem on a submanifold:

Theorem 6 (Divergence theorem). Let Q@ C R™ be an open set and let M C R™ be a d—dimensional
C?- submanifold. Then, for all X € CL(Q,R"),

/ dive, y X () dHe(z) = — | H(z)- X () dHYz)
QNM QNM

where H 1s the mean curvature vector.

For P € G and X = (X1,...,X,) € CL(Q,R"), the operator divp is defined as
n n
divp(z) =Y (VIXj(x),e;) = Y (Ip(VX;(x)),e;) whith (e1, ..., e,) canonical basis of R".
j=1 J=1
This variational approach is actually a way to define mean curvature that can be extended to a

larger class than C?-manifolds: the class of varifolds with bounded first variation. We can now
define the first variation of a varifold.

Definition 10 (First variation of a varifold). The first variation of a d—varifold in Q C R™ is the

linear functional
§V: CLQ,R") — R
X — fQXGdn divpX(x)dV (z, P)

This linear functional is generally not continuous with respect to the CY topology. When it is true,
we say that the varifold has locally bounded first variation:

Definition 11. We say that a d—varifold on Q has locally bounded first variation when the linear
form 6V is continuous that is to say, for every compact set K C () there is a constant cx such that
for every X € CL(Q,R") with supp X C K,

|0V (X)] < cxsup | X]|.
K

Now, if a d—varifold V has locally bounded first variation, the linear form dV can be extended
into a continuous linear form on C.(2,R™) and then by Riesz Theorem, there exists a Radon
measure on € (still denoted V') such that

WV (X) = / X -6V for every X € C.(Q,R")
Q

Thanks to Radon-Nikodym Theorem, we can derive 6V with respect to ||V and there exist a
function H € (LL.(, |V]]))" and a measure §V; singular to ||V|| such that

§V = —H|| V|| + 6V,

The function H is called the generalized mean curvature vector. Thanks to the divergence theorem,
it properly extends the classical notion of mean curvature for a C? submanifold.

11



1.3.3 Another example: a family of volumetric approximations endowed with a var-
ifold structure

Let us explain what we mean by volumetric approximation. For us, a mesh of an open set 2 is a
countable and locally finite partition
K=1|]K

KeK

of €2, no other assumptions on the shape of the cells or on the geometry of the mesh are needed
except that the size of the mesh
6 = sup diam K < +oo
KeKk
is finite. Given a d-rectifiable set M C R™ (a curve, a surface...) and a mesh K, we can define for
any cell K € K, a mass mg (the length of the piece of curve in the cell, the area of the piece of
surface in the cell) and a mean tangent plane Py as

mg = HY (M NK) and Py € argmin/ T, M — S|* dH(x) ,
SGGd,n MNK

and similarly, given a rectifiable d—varifold V', defining

mi = |V]|(K) and Pi € argmin / P —SP V(P
SeGqn KxGgn

gives what we call a volumetric approximation of V. We now introduce the family of varifolds of
this form:

Example 5. Consider a mesh K and a family
{mK,Prtrkek C Ry x Gg,. We can associate the
diffuse d—varifold:

m . n
v=>" ﬁq}{ ® 8p, with |K| = L™(K).
Kcell

This d—varifold is not rectifiable since its support is n—
rectifiable but not d-rectifiable. We will refer to the set
of d—varifolds of this special form as discrete varifolds.

Let us now compute the first variation of such a varifold:

Proposition 6. Let K be a mesh of R"® and denote £ the set of faces of K. For K, K_ € K, we
denote by 0 = K |K_ € £ the common face to Ky and K_, and nk__ o is then the outer-pointing
normal to the face o (pointing outside K ). Decompose the set of faces into € = Epe U & U &
where

o Eint 18 the set of faces 0 = K |K_ such that mg,, mi_ >0, called internal faces,

o & is the set of faces 0 = K |K_ such that mrk,, mg_ =0,

12



o &, is the set of remaining faces 0 = K |K_ such that mg. > 0 and mg_ = 0 or conversely
mg, = 0 and mg_ > 0, called boundary faces. In this case, o is denoted by K| with
mK, > 0.

For {mg, Px}kex C Ry X Gy, let us define the d—varifold

Z ' ®0py -

KGIC
Then,
mg mg_
vl = 3 ||, ~ e w7 32 G el 957
Eginv Eg’
UiK_IIt(_'. O'UI<b|

where Ilp is the orthogonal projection onto the d-plane P.

We stress that the terms internal faces and boundary faces do not refer to the structure of the
mesh K but to the structure of the support of Vi.

Proof. Let Vi = Z
KeK | ’
X € CL(©,R"™). Then,

% ® 0p, be a discrete varidold associated with the mesh K and let

6VK(X):/Q  divsX(z) dVic(a, 5) = ‘K| / divp,, X () dL"(x) .
XGd,n

Kek

Let us compute this term. Fix (71,...,74) a basis of the tangent plane Py so that

d
/K divPKX(x)dL”(a:):jZ; /K DX (x)7; - 7 dL™(2)

and DX (z)7; - 75 = Z(VXk(x) . Tj)TJk so that
k=1

d
/ divp X (x)dL™ (x Z T]k/ (VXg(x) - 1j)dL"(z) = — Z ZTf XkTj - Nout dH?
K K

S—
e
O

3
Q
s
(]
e
=
S
QL
X
IS
Il
|

—
e
S}

3
Q
s
e
O
QL
X
2

X(.%' HP;Cnout) d?‘[ ( )
0K

where Ilp. is the orthogonal projection onto P and ngy: is the outward-pointing normal. Conse-
quently

0V (X)] =

K%C 7‘% ) X (2) - (M penow) dH(z)

<Xl Y &l - T penour| HA(OK) .
Kek
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For a fixed mesh, the sum is locally finite and then, Vi has locally bounded first variation. But
what happens if the size of the mesh tends to 07 In order to compute the total variation of §Vi as
a Radon measure, we just have to rewrite the sum as a sum on the faces £ of the mesh. This is
more natural since §Vi is concentrated on faces. Thus

mg
Vi = — Z |:‘K’++’HPK+nK+70 + ‘K_| HPK ng._ 7g:| H|J Z ‘K’ HpKanH|U
Ueginh O'Egb,
o=K_|K4 o=K|
B mi, mg_ _1
= — Z |:|K |HPK+ ra ‘HPK :| -(nK+7J)H|7; — Z |K|HPK"K0H|U
€&; + €&
TCCint, oCCp,
o=K_|Ky o=K|-
Therefore,
mg mK_ 1
Ueginty Uegbv
o=K_|K4 o=K]|

O]

Example 6. Let us estimate this first variation in a simple case. Let us assume that the mesh is a
regular cartesian grid of Q2 =)0, 1[2C R? of size hx so that for all K € K and o € &,

|K| = h% and H'(0) = hi .

Consider the vector line D of direction given by the unit vector %(1, 1). Let V = ’H|1D ® ép be
the canonical 1-varifold associated to D and Vi the volumetric approximation of V' in the mesh

K, then

my mi_
[6Viel(@) = > H\K:IHPK* K ’HPK ]'(nm,g)

m
1)+ > ﬁ p nk.q| H (o)

o€&int, o€&y,
o=K_|K4 o=K]|-
1
= 7 Z |mK+ — Mg _ ‘ ‘HDnK_‘_’o-’ + — h Z mi |pnke| -
K oetim, o€E),
o=K_|K4 o=K]|-
And [lIpng q| = (for any K, o) so that
V2
[0Viel() = 5 Y |mr —mi ‘* Z MK -
K octim, K oeg,
o=K_|Ky o=K|
—_———
=[IVII(©)

So that if we now consider successive volumetric approximations of Vi, associated with successive
meshes K; whose size hi, tends to 0 when 7 tends to oo,

V2 \f
[6Vic, () = i ; imi, —mg_|+[V](Q) | = 2h HVH( ) o +oo.
g int,

o=K_|K4
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More generally, the problem is that the tangential direction Px and the direction of the face o
have no reason to be correlated so that the term |IIp, ng | can be large (close to 1) and thus, if
the mesh is not adapted to the tangential directions |0Vi,|(£2) may explode when the size of the
mesh hy, tends to 0. Of course, we are not saying that [0Vi,|(2) always explodes when refining
the mesh, but that it may happen and it is not something easy to control except by adapting the
mesh to the tangential directions Py in the boundary cells. This is clearly a problem showing that
the classical notion of first variation is not well adapted to this kind of volumetric discretization.

1.3.4 Control of the first variation and rectifiability

We will end these generalities about varifolds by linking the control of the first variation (generalized
mean curvature) to the regularity of the varifolds. Let us begin with some property of the so called
height excess proved by K. Brakke in [3] (5.7 p. 153). There exist sharper estimates established by
U. Menne in [11].

Theorem 7 (Height excess decay). Let V =v(M,0) = 9’H|dM ® 07,0 be a rectifiable d—varifold in

some open set @ C R™. Assume that V is integral (that is 6(z) € N for |V||-almost every x) and
assume that V' has locally bounded first variation. Then for V -almost every (x,P) € Q x Ggn,

, 1 d(y — z, P)\?
heightex(x, P, V,r) := 7’d/B o <(yr)) dllV][(y) = ox(r) .

Remark 3. Let us notice that

1
d
E,(x,P,V) = / heightex(x, P, V,r) % .

r=o
That is why we called these quantities averaged height excess.

We now state a compactness result linking the rectifiability to the control of the first variation.
It is exactly the kind of result we are interested in, with the exception that, in our setting, the
approximating varifolds are generally not rectifiable and, moreover, the following control on the
first variation is not satisfied.
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Theorem 8 (Allard Compactness Theorem, see 42.7 in [15]). Let (V;); = (v(M;, 6;)); be a sequence
of d—rectifiable varifolds with locally bounded first variation in an open set Q C R™ and such that
0; > 1 ||Vi|]|-almost everywhere. If

Sl;p{HVi(W)H +[oVi|(W)} < e(W) < +o0

for every open set W CC €, then there exists a subsequence (V;, ), weakly—« converging to a
rectifiable d—varifold V', with locally bounded first variation in €2, such that 8 > 1, and moreover

OV (W) < liminf [3V;,|(W) ¥ W cc Q.

If for all i, V; is an integral varifold then V is integral too.

The problem is that even if the limit d—varifold is rectifiable and has bounded first variation, it
is not necessarily the case of an approximating sequence of varifolds. For instance, a point cloud
varifold does not have bounded first variation. As for discrete d—varifolds of Example 5, we have
computed the first variation and seen that it is bounded for a fixed mesh, however, when the size
of the mesh tends to zero, the total variation of the first variation is no longer bounded (in general)
because of some boundary terms. We need some other way to ensure rectifiability. That is why we
are looking for something more volumetric than the first variation, as defined in the introduction,
in order to enforce rectifiability:

] —z.P)\?
Eo(z,P,V) = / — / =2 PN gy .
r=a rd yEB, (z)NQ r r

We now have two questions we want to answer:

1. Assume that (V}); is a sequence of d—varifolds weakly— converging to some d—varifold V' with
the following control

swp [ Eu(o PV Vi, P) < o0, (3)
% QXGd,n

can we conclude that V' is rectifiable ?
2. Is this condition better adapted to the case of (non-rectifiable) volumetric approximating

varifolds (i.e. sequences of discrete varifolds as defined in Example 5) 7 We will prove that
as soon as V; weakly— converges to V, there exists a subsequence satisfying the control (3).

We begin with studying the static case.

2 Static quantitative conditions of rectifiability for varifolds

In this section, we begin with studying the averaged height excess Ey(x, P,V) with respect to
P € Gg,, (for a fixed d-varifold and a fixed « € 2). We show that if V' has bounded first variation
then the approximate tangent plane at x is the only plane for which Ey can be finite. Then we
state and prove quantitative conditions of rectifiability for varifolds in the static case. Let us recall
how we defined Ey(z, P,V') in Theorem 3.
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Definition 12 (Averaged height excess). Let V' be a d—varifold in Q C R™ open subset. Then we

define
—xz, P dr
wrvy= [ L[ (M m DY g &
r OT yEBy ()N r

We first study the averaged height excess Eo(x, P, V') with respect to P € G, for a fixed rectifable
d—varifold.

2.1 The averaged height excess energy Fy(x, P, V)
Notice that if ||[V|| = 7—[|dM then for every d-vector plane P € G,

2
/ Ba(x, T, M / inf 1d/ <M> d’Hd(y) @
+—0 S€{affine d—plane} yEB, (x)NM T r

/ u ( xP)) () L = Bo(a, V).
r OT yEB(z)NM r r

Thus, assume that for H%almost every x € M, 0%(x, M) > 0 holds and that there exists some
P, € Gg,, such that Ey(x, Py, ’HflM) < +0o0. Then thanks to Pajot’s Theorem 2, M is d—rectifiable.
As we will see, the point is that for any x € M where the tangent plane T, M exists, then P, = T, M
is the best candidate, among all d—planes P, to satisfy Eo(a:,Pa;,H‘dM) < +o00. Consequently, in
order to test the rectifiability of a d—varifold V, it is natural to study Eo(x,P, V) for (z,P) in
supp V' (which is more restrictive than for any (z, P) € supp ||V|| X Gq4,,). More concretely, we will
study Eo(x, P,V)dV (z, P) rather than / inf Ey(x, P,V)d||V](x).
QAxGgn o PeG
In this whole part, we fix a rectifiable d—varifold in some open set 2 C R” and we study the

behaviour of Eg(x, P,V) with respect to P € Gg4,. We are going to show that for a rectifiable
d—varifold, this energy is critical: under some assumptions, it is finite if and only if P is the
approximate tangent plane. More precisely:

Proposition 7. Let V = v(M,0) be a rectifiable d—varifold in an open set Q@ C R™. Then,

1. Let x € M such that the approzimate tangent plane TyM to M at x exists and 6(x) > 0 (thus
for |V||-almost every ) then for all P € Gq,, such that P # T, M,

EO(:U7P7 V) -

2. If in addition V is integral (0 € N ||V||-almost everywhere) and has bounded first variation
then for |V ||-almost every x,
Eo(a, Ty M, V) < +00.

Proof. We begin with the first assertion. Let x € M such that the approximate tangent plane T, M
to M at x exists. Let P € Gy, such that P # T, M. Thanks to Prop. 5, for all 8 > 0 we have

SIVIHy € Bo(a) [dy — 2, P) < fr} —— 6(YH" (T.M 0 {y € Bi(0) | d(y, P) < B))

T’—)+
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Now for all 5 > 0,

Uodr dly —x,P)\”
merv= [ [ {0 avie

L g
2/ ar L B2d|V | ()

=0 7 7" JiyeB, (@) | dy—2.P)2pr)
2 1 dT 1
=8 | S alVi{yeBi(@)|dly—=z.P)=pr}.
Let us estimate

LIVl € Be(@) | d(y — 2, P) > fr} = IVI(Bu(a)) ~ IVl {y € By(a) | dly — . P) < Br}

0@ o 0@HITMO{YEB (0) | d(y,P)<6})

r—0

As P # T, M, there exists some constant cp depending on P and T, M such that
HUTM N {y € Bi(0)| d(y, P) < B}) < cpB3.

Consequently,

m VI {y € Bulw) | dly — o, P) > 5r} = 0(x) (wa ~ HUTM N {y € Bi(0) | d(y, P) < 5)))

> 0(z)(wq — cpP)
9($)? for $ small enough.

v

Eventually there exist 8 > 0 and ry > 0 such that for all » < rg

1
~alVI{y € Br(z) | d(y -z, P) = fr} = G(HT)f ,
and thus

o
Eo(a. PV) = 0@) 5 [T —oc.

=0 T
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The second assertion is a direct consequence of Brakke’s estimate (see Proposition 7) for the height
excess of an integral d—varifold with bounded first variation:

b

Ey(x, T,M,V) = / — heightex(x, P, V,r) dr < +oo.

r=0J

—ox (1)

2.2 The static theorem

We begin with some lemmas before proving the static theorem (Theorem. 3). This first proposition
recalls that the first assumption of the static theorem (Ahlfors regularity) implies that ||V is
equivalent to ’Hiisupp v

Proposition 8. Let 2 C R™ be an open set and u be a positive Radon measure in 2.

(i) Let 1, B2 : @ — Ry continuous and such that for all x € Q, pfi(x) < P2(x), and let C > 0.
Then the sets A= {z € Q|Vr € (Bi1(z), Ba2(z)), u(Br(z)) > Cri}
and B = {z € Q| Vr € (f1(z), B2(x)) , w(By(z)) < Cré} are closed.

(i3) If there exist Cy, Co > 0 such that Ciwgr® < p(Br(z)) < Cowgr® for p—almost all x € Q and
for all 0 < r < d(xz,Q°), then

CleE <up< 2d02’HijE with F = supp u .

Proof. (i) Let us prove that A = {z € Q|Vr € (B1(), B2(z)), u(Br(x)) = Cr?} is closed. Let
(xg)r C A such that zy T € Q and let r > 0 such that fi(z) < r < Ba(x). For

k large enough, Bi(zy) < r < Ba(xp) so that Cr? < u(By(xy)). If p(0B,(z)) = 0 then
w(By(zk)) P w(B,(z)) and then Cr? < p(B,(z)) for almost every r € (Bi(x), fa(x)).

But this is enough to obtain the property for all r € (51(z), S2(z)). Indeed, if u(9B,(x)) >0
then take r,- < r such that for all £,

B - = dr;
w(0 rk(:c)) 0 and r;, mﬂ",

and thus

Eventually x € A and A is closed. We can prove that B is closed similarly.

(ii) As the set
E, = {x €NIV0 <r <d(x,Q, uwBy(x)) > C’lwdrd}
is closed (thanks to (i)) and of full y—measure, then E = suppu C Ej. Therefore, for every
x e F,

B,
0% (1, ) = lim inf #(7(:)) >C.
T~)0+ (,L)dT'

So that (see Theorem 2.56 p.78 in [2]) p > CfoE.
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(iii) For the same reason,
E =supppu C Ey = {x € QY0 <r<d(z,Q, p(Br(x)) < ngdrd} .
Therefore, for every x € F,

B
0" () = lim sup M(;U)) <Cy.
T‘~>0+ wqr

So that (again by Theorem 2.56 p.78 in [2]) u < Qng’H|E
O

The following lemma states that under some density assumption, the quantity minpeg, ,, Eo(z, P, V')
controls the quantity linked to Jones’ 8 numbers.

Lemma 1. Let Q C R"™ be an open set and let V' be a d—varifold in Q). Assume that there is some
constant C > 0 and a Borel set E C Q such that 7—[ < C|V|| then for all x € Q,

/BQ:UTE —<C’ min Fy(z, P, V). (4)

EGd n

Proof. First notice that Gy, C {affine d-plane}, therefore

! dr ! d(y, P)\* dr
B} —— = inf : dH?
/7"0 ﬁ2($71ﬂ7 ) rd+1 /7,0 Pe{aﬁ"ngldfplane} /EOBT(:L’) ( r > H (y) rd+1
! d(y, P)\? dr
< inf e
= Pe{afﬁrigdfplane} /r() (/EQBT(I) ( r > (y) prd+1
! dly — z, P)\? d dr
< . ) X
<t [y (o (55 )

udH? < c/ wd|| V|

Then, the assumption 7—[| "> < C||V]| implies that for any positive function w, /

E
so that
1 2
. d(y — =, P) dr
— | d <C E PV
i [ (] () o) <0 s,
which proves 4. ]

We now state a lemma that will enable us to localise the property of rectifiability.

Lemma 2. Let © C R"™ be an open set and u be a positive Radon measure in 2. Then there exists
a countable family of open sets (wp)n such that for all n, w, CC wp41 CC Q, pw(dw,) = 0 and
Q = U,wn.

Proof. For all t > 0, let us consider the family of open sets
wy = B (0)N{z € Q| d(y,Q°) > 1/t} .
The family (w;); is increasing so that p(w) is increasing and has at most a countable number of

jumps. Then for almost every ¢, u(w¢) = 0 and it is easy to conclude. O
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The last step before proving Theorem 3 is to link the rectifiability of the mass ||V and the
rectifiability of the whole varifold. The key point is the coherence between the tangential part of
the varifold and the approximate tangent plane to the spatial part ||[V]].

Lemma 3. If V is a d—varifold in Q& C R™ such that
— ||V|| is d-rectifiable,

— V({(z,P) € 2 x Gqp | Eo(z,P,V) = +o0}) =0,
then V' is a rectifiable d—varifold.

Proof. The mass ||V|| is d-rectifiable so that ||V|| = 07—[|dM for some d-rectifiable set M. We have to

show that V' = ||V|| ® dr,a. Applying a disintegration theorem ([2] 2.28 p. 57), there exist finite
Radon measures v, in G5, such that for ||V ||-almost every z € Q, v,(Ggp) =1 and V = [|V]| ® v,.
We want to prove that for ||V||-almost every =, v, = 07,3 or equivalently,

Ve({P € Gy | P #ToM}) = 0.

For a d-rectifiable measure ||V|| = HHldM, we have shown in Proposition 7 that for ||V ||-almost
every x € {2,

P#T,M — Ey(x,P,V) =+0c0,
thus {(z,P) € QA x Ggpn | P #T:M} C Ay X Ggp U{(x,P) € QX Gqy, | Eo(x,P,V) = +o00} with
|V][(Ag) = 0. Therefore V({(z, P) € Q@ x Gqp | P # T;M}) = 0. Thus

VM%ﬂeﬂx@uP#%MD=A Lpsrany(z, P)dV(z, P)

X d,n

Q Gan

zlyﬂPeQﬁP#ﬂMDﬂWW)

which means that for ||V'||-almost every z € Q, vz({P € G4, | P # T, M}) = 0 thus for ||V ||-almost
every x € Q, v, = 0,0 and V = ||V|| ® d7, m is a d-rectifiable varifold. O

Let us now prove the static theorem:

Theorem 3. Let 2 C R"™ be an open set and let V' be a d—varifold in 2 of finite mass |V]|(©2) < +oo.
Assume that:

(i) there exist 0 < Cy < Cq such that for |V||-almost every x € Q and for all 0 < r < d(x,Q°)
such that B,(x) C Q,
Crwgr? < |V |[(By(x)) < Cawgr?,

(ii) V ({(z, P) € Q x Gap | Eo(z, P,V) = +00}) = 0.

Then V is a rectifiable d—varifold.

Remark 4. If in particular / Eo(z, P,V)dV (x, P) < +00 then the assumption (i7) is satisfied.
QXGd’n
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Proof. Now we just have to gather the previous arguments and apply Pajot’s Theorem (Theo-
remm. 2).

— Step 1: First hypothesis implies (thanks to Proposition 8) that, setting C3 = 29Cy > 0 and
E = supp ||V, we have
Cl/HijE <|vl < C3HiiE :

Hence C1HA(E) < |[V][(R) < +o00. Moreover, as ||V and ’H‘dE are Radon measures and ||[V]] is

absolutely continuous with respect to H%, then by Radon-Nikodym Theorem there exists some
function 0 € Ll(’}-[‘dE) such that

_ 4V
dHy,

() = lim M201>0f0r7{da.e.x€]3.

_opd i
IV =6y with 6(x) 30, HI(E N B, (x))

— Step 2: Thus we can now apply Lemma 1 so that for any = € €,

/01 Ba(z, T, E)2

but thanks to the second assumption, V ({(z, P) € Q x G4 | Eo(z, P,V) = +00}) = 0. Let

dr
< in E PV
o< 3P16né3n o(z, P,V),

B={xe Pmin Ey(x,P,V) =400} ={z € Q|VP € Ggp, Eo(z,P,V) = +o0}

eGd,n
then

B x de :{(a:,P) cQx Gd,n | VQ S de, E[)((L',Q, V) = +OO}
C{(z,P) € A x Gap | Eo(x,P,V) = +o0} .

Therefore ||V|(B) = V(B x Gg,) <V ({(z,P) € Qx Ggp | Eo(x, P,V) = 400}) = 0. So that
minpeg, , Eo(x, P,V) is finite for ||[V|-almost any = € €. And by step 1, ||V = <9’H|dE with
9 > C; for H%almost every = € E, thus for H%almost every = € E,

1
d
/Bg(x,r,E)2:<+oo, (5)
0
nd YENB.(2)) _ 1 |V(B(2))
HYE N B, (x 1 IVI(B,(x C
d B T r > r > 1 .
0. (x, B) ligéff wqr® —C5  wgrd — Cy >0 (6)

— Step 3: We need to consider some compact subset of E to apply Pajot’s Theorem. The set E
being closed in €2, thus for every compact set K C ), £ N K is compact. Thanks to Lemma 2,
let (wy)n be an increasing sequence of relatively compact open sets such that Q = U,w,, and for
all n, H*(E N 0w,) = 0. Let K,, = @y, then

e forallz € (ENK,)\ 0K, = ENw, we have %(x, EN K,,) = 0(z, E) and thus by (6) and
since HY(E N OK,) =0,

0%(z, ENK,) > 0 for H almost every z € ENK, , (7)
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e thanks to (5), for H%almost every x € EN K,,
! odr ! odr
Bo(x,r, ENK,) . < [ Baoz,r E) - < +0o0. (8)
0 0

According to (7) and (8), we can apply Pajot’s theorem to get the d-rectifiability of E N K, for
all n and hence the d-rectifiability of E and ||V|| = 0H|dE.

Eventually Lemma 3 leads the d-rectifiability of the whole varifold V. O

3 The approximation case

We will now study the approximation case. As we explained before, we introduce some scale param-
eters (denoted «; and f3;) allowing us to consider the approximating objects “from far enough”. The
point is to check that we recover the static conditions (the assumptions (i) and (ii) of Theorem 3)
in the limit. We begin with some technical lemmas concerning Radon measures. Then we prove a
strong property of weak— convergence allowing us to gain some uniformity in the convergence. We
end with the proof of the quantitative conditions of rectifiability for varifolds in the approximation
case.

3.1 Some technical tools about Radon measures
Let us state two technical tools before starting to study the approximation case.

Lemma 4. Let Q@ C R"™ be an open set and (u;); be a sequence of Radon measures weakly—

converging to some Radon measure p in ). Let x € Q and x; —— x.Then, for every r > 0,
1— 00

limsup Mz(Br(x)ABr(xz)) < N(aBr(x)) :

2

In particular, if (0B (z)) = 0 then u;(Br(x)ABy(z;)) — 0.

1—00

Proof. Let us define the ring of center x and radii ryi, and Tmax:

R(xarminarmax) = {y S Q | Tmin S ‘y - I“ S rmax} .

It is easy to check that for all i, B, (x;)AB,(z) is included into the
closed ring of center x and radii r},;, = r — |z — ;| and 7},,, =
r + |z — x;|, that is

B (z;)ABy(z) C R(x,r — | — x|, 7 + |z — zi]) .

Without loss of generality we can assume that (|z — x;|); is decreas-
ing, then the sequence of rings (R(x,r — |z — x5, r + | — x4])); is}
decreasing so that for all p < i, ’

pi(Br (i) ABy () < pi(R(w,7 — [ — @3, 7 + |2 — @)

< /J,,‘(R(.f,?“ - ‘x - IBP"T + ‘J} - x}?‘)) :
Consequently, letting ¢ tend to oo and using the fact that R(z,r — |z — z,|, r + |x — x,|) is compact,
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we have for all p,

lim sup 1s(B, (2:) B, (2)) < p(Rx,r — & —ayl,r + o — ) |
1—400
and thus by letting p — +o0o we finally have,
limsup i (B, () AB, (2)) < p(0B, (x))
i——+00

O]

Proposition 9. Let Q C R"™ be an open set and let (u;); be a sequence of Radon measures weakly—
converging to a Radon measure p. Then, for every x € supp u, there exist x; € supp u; such that
|z — ;] —— 0.

1—00

Proof. Let x € supp u, and choose x; € supp p; such that d(z, supp p;) = |x—x;| (recall that supp p;

is closed). Let us check that |z — ;| == 0. By contradiction, there exist n > 0 and a subsequence

(T4 (i))i such that for all i, [,y — z| > n. Therefore, for all y € supp ), |y — 2| > [T,6) — 2| =1
so that
Vi, By(x) Nsupp pyy = 0 and thus i (By(z)) = 0.

Hence p (By(x)) < liminf; gy (By(x)) = 0 and = ¢ supp p. O

3.2 Density estimates

We now look for density estimates for the limit varifold. Indeed, for sets of dimension larger than
d, for instance d + 1, the energy Ey(z, P,V') does not convey information of rectifiability since

1 d(y —z, P)\? VI|[(B,(x i
[, (SER) awiw < Y <

is finite for almost any z, not depending on the regularity of ||[V]|. So that the first assumption
in the static theorem (Ahlfors regularity (1) in Theorem 3) is quite natural. In this part, we link
density estimates on V; and density estimates on V' and then recover the first assumption of the
static theorem.

Proposition 10. Let Q C R™ be an open set. Let (u;); be a sequence of Radon measures in €,
weakly— converging to some Radon measure . Assume that there exist 0 < C1 < Cy and a positive
decreasing sequence (B3;); tending to 0 such that for p;—almost every x € Q and for every r > 0 such

that B; < r < d(x,Q°),
Cyréd < wi(Br(z)) < Cor? .

Then for p—almost every x €  and for every 0 < r < d(z,Q°),
Crt < w(By(z)) < Cor® .
Proof. Let A; = {a: e Q| Vr €|, d(z,Q°)[, C1r? < pi(B(z)) < C’grd}.

(i) First notice that A; is closed (thanks to Proposition 8 (7)) and p;(2\ 4;) = 0 so that supp u; C
A;.
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(ii) Let = € supp v and let 0 < r < d(x,Q2¢). By Proposition 9, let z; € supp u; such that z; — =
then

|1i(Br(2)) = pi(Br(2:))| < i (Br(2:) ABr(2)) < pi(R(z,r — |v — il ,r + |2 — i),

so that by Proposition 4, limsup |u;(By(z)) — pi(Br(z))| < w(Br(x)). Therefore, for almost
i

every 0 < r < d(x,Q°), pu;(Br(z;)) - w(By(z)). Eventually, as x; € supp u; C A; then for
almost every r < d(z, Q°),

Crr < u(By(2)) = lim 1y (B, (1)) < Car®.

We can obtain this inequality for all r as in Proposition 8, taking r,; <r < r,:r and r;_, r,:r =7
and such that u(aBi (x)) =0, u(@Brg (x)) =0.

O]

3.3 Uniformity of weak— convergence in some class of functions

If we try to estimate E,(z, P,V,) — Eo(x, P, V), we can have the following;:

|Ea($,P, Va) - Ea(l',P, V)|

<! /1
= adt3 [ _,

We now prove that the integral term tends to 0 when V,, = V. For this purpose, we need a stronger
way to write weak—+ convergence (with some uniformity) using the compactness of some subset of

Co():

/ ﬂy—%PVﬂMﬂ@%—/ d(y — =, PYd|V]|()| dr.
B, (z) B, (z)

Proposition 11. Let Q C R™ be an open set and (u;); be a sequence of Radon measures in €
weakly— converging to a Radon measure p. Let w CC Q such that p(0w) = 0, then for fized

k,C >0,
sup{

Proof. As we already said, the idea is to make use of the compactness of the family {¢ € Lip,(w), [|¢]lcc < C}.
By contradiction, there exists a sequence (y;); with ¢; € Lip,(w) and ||¢;]|ec < C for all i and such
that

/cpdm—/cpdu‘ t ¢ € Lipg(w), el SC} ——0

/ w; dp; — / Vi d,u’ does not converge to 0 .
w w

So that, up to some extraction, there exists € > 0 such that for all 7,

/%duz’—/%dﬂ'>5-

Every ¢; can be extended to ¢; € C(w) N Lip, (@) and then

{ (¢i); C C(w) N Lipg(w) is equilipschitz,
sup; [[¢illoc < C'-
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By Ascoli’s theorem, up to a subsequence, there exists a function ¢ € C(w)NLipy (@) with [|¢|lec < C
such that
w; — @ uniformly in @ .

We now estimate:

e< || pidu; —

Pi dﬂ’

< +

T~
£~

/sodui—/<pdu’+ /‘Pdﬂ_/@idﬂ‘

/‘Pdﬂi_/@dﬂ‘+||90_S0i||oo,“(w)

i dp; — [ pdp;

< lpi — @lloo pi(w) +

As p(0w) = 0 then p;(w) —— p(w) < +oo (since p(w) < p(w) and @ is compact) so that the first
71— 00

and last terms tend to 0. Moreover, since j(dw) = 0 then for every f € C%w) (not necessarily

compactly supported),
/ fdp; — / fdu,
71— 00

which allows to conclude that the second term also tends to 0 which leads to a contradiction. [

The following result is the key point of the proof of Theorem 4. Let us first define for two Radon
d(@,Q°)
dr : ¢ € Lipg(w), |l¢llee < C, z € w} .

measures i and v in ),
AFC (1) == sup / ’ / pdu — / pdv
r=0 By (z)Nw B, (z)Nw
(9)

Proposition 12. Let Q C R™ be an open set. Let (u;); be a sequence of Radon measures weakly—
converging to a Radon measure p in £ and such that sup; p;(Q) < +o0o. Let w CC Q be open such
that p(Ow) = 0 then, for fixred k,C > 0,

AL (i p) —— 0.
1—+00
Proof. The upper bound on the radius 7 ensures that the closure of every considered ball, B, (x)
for x € €, is included in 2. We argue as in the proof of Proposition 11, assuming by contradiction
that, after some extraction, there exist a sequence (;); with ¢; € Lip,(w) and [|¢;||cc < C for all
i, and a sequence (z;); with z; € W for all 4, and £ > 0 such that for all 4,
d(w,Q°)

2
r=0 By (z;)Nw By (z;)Nw

By Ascoli’s theorem and up to an extraction, there exist a function ¢ € C%@) N Lipy (@) with
l¢lloc < C such that ¢; — ¢ uniformly in @. Moreover @ is compact so that, up to another

dr > ¢.
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extraction, there exists x € w such that x; — . We now estimate for every r,

/ svz-dui—/ pidp| < / %dui—/ Py
By (z;)Nw By (z;)Nw By (z;)Nw By (z;)Nw
/ (Pdﬂi_/ @ dp;| + / ‘Pdﬂi_/ wdp
By (x;) B, (z) By (z)Nw By (z)Nw
/ sodu—/ pdp| + / sodu—/ pi dp
B (z)Nw By (z;)Nw By (z;)Nw By (z;)Nw

<llpi — @lloo i (Br (i) + lplloo i (Br (i) ABy () + / o @dui—/ o @du
+ [elloo t (Br(zi) ABr(z)) + [l — @illoo p(Br(2:))

/ pdp; — / @ dp
By (z)Nw 7 (

+ lllloo (ui (Br(z:) ABr(x)) + 1 (Br(2:) ABr(2))) -

The first term in the right hand side of (10) tends to 0 since sup; i;(€2) < +oo also implies pu(92) <
+o00. Concerning the second term, as p(0w) = 0 then for all r € (0, d(wégc)), u(O(Br(z) Nw)) <
w(0B,(x)) and therefore the second term tends to 0 for every r such that u(0B,.(z)) = 0, i.e.

for almost every r € (0, d(w’ﬂc)). As for the last term, thanks to Proposition 4 we know that
lim sup p; (B, (2) ABr (7)) + u(By (2) AB () < 2u(8B,(x)) = 0 for almost every r € (0, 4%™)).

_l’_

_l’_

<llpi = lloo (1:(2) + () + (10)

Moreover the whole quantity (10) is uniformly bounded by
5C (@) + sup )
7

Consequently the the right hand side of (10) tends to 0 for almost every r € (0, @) (such
that p(0B,(x)) = 0) and is uniformly bounded by the constant 5C (u(£2) + sup; 1;(€2)), then by
Lebesgue dominated theorem, we have

/ Pi dpi — / @i dp
By (z;)Nw By (z;)Nw

which concludes the proof. O

d(@,0°)
2

e <
r=0

dT’—>O

11— 00

We can now study the convergence of E,,(x, P,V;) — Ey,(z, P,V) uniformly with respect to P
and locally uniformly with respect to . Indeed, the previous result (Proposition 12) is given in
some compact subset w CC 2. Consequently, we define a local version of our energy:

Definition 13. Let Q C R™ be an open set and w CC €2 be a relatively compact open subset. For
every d—varifold V' in Q and for every x € w and P € G4, we define

() | e

» ’ y—x,P) dr

Bl PV = | af (=) an
r=a By (z)Nw
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Remark 5. Notice that

. min<1vd(wéﬂc>) 1 d(y —z, P)\? dr
9z, PV) = ol () av

/W S W PN ) & < oo ),

Proposition 13. Let (V;); be a sequence of d—varifolds weakly—sx converging to a d—varifold V in
some open set Q C R™ and such that sup; |V;||(Q) < +oo. For all open subsets w CC § such that
IV |[(Ow) = 0, let us define

mln( d( QC
= sup{/ ‘/ pdlVil= [ pdvi|d
r=0 By (z)Nw By (z)Nw

Then,

¢ € Lipy(diamw)2 (W), B
el < (diamw)? T €Y

w
;
d+3’

1. for every 0 <a <1, sup |E(z,P,Vi)— Ej(z, P, V)| <
PG

2. nf ——0
1—00

Proof. 1. is a direct application of Proposition 12, since ||V;|| weakly— converges to ||[V||. Now let
us estimate

’EZYJ (x7P7Vi) —E;(x,P,V)’

1 min(l,id(wéncw
= W

/ d(y -z, PYd|Vill(y) - / d(y — z, PYd|V|(y)| dr
r(z)Nw By (z)Nw

r=0

For all z € W, P € Gapn, let v, p(y) :== d(y — x, P)%. One can check that

(1) @z.p is bounded in w by (diamw)? indeed ¢, p(y) < |y — z|> < (diamw)?,

(2) Pz, P € Lipg(diamw) (w) indeed

Pa,P(Y) — ¢a,p(2 } - P)2—d(z—:z,P)2‘
S 2(diamw) |d(y — x, P) — d(z — z, P)|
< 2(diamw) d(y — z, P) < 2(diamw) |y — 2| .
Consequently,
mln( LWQ ))
swp [ [y ppdviiw - [ dy- s PRV dr<
rew Jr=0 (@) Nw By (x)Nw
PEGd’n
and thus,
, w N pw U
Sup |Ba (2, P, Vi) = Bg (2, P V)| < —35 -
PeGyn
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It is now easy to deduce the following fact:

Proposition 14. Let (V;); be a sequence of d—varifolds weakly— converging to a d—varifold V in
some open set Q C R™, and let w CC Q be such that |V||(0w) = 0. Assume that sup; [|V;]|(22) <
+o00, then, there exists a decreasing sequence («;); of positive numbers tending to 0 and such that

sup |EY (z,P,V;) — E% (z,P,V)| P 0, (11)
€D 1—+00
PE%dm

and for every x € w, P € G4y, the following pointwise limit holds

Ey(x, P,V) = lim Ej (z, P,V;) . (12)

1— 00

Conversely, given a decreasing sequence (a;); of positive numbers tending to 0, there exists an
extraction ¢ (depending on oy, Vi but independent of x € w and P € Ggq,,) such that

sup ‘Ez(.l‘,P,Vw(i))—Eg.({E,P, V)‘ ? 07 (13)
TEW v 4 1—+400
PGGd)n

and again for every x € w, P € Gy, the following pointwise limit holds

Eg(z, P,V) = lim Eg (z, P, V) - (14)

1—00

Proof. Thanks to Proposition 13, for every a > 0,

77‘.’"
sup |E%(z, P,Vi) — B%(z, P,V)| < —— and 5 ——0,
TEW « 1—00
PEde
77‘:‘)
hence we can choose («;); such that dl+3 —— 0. Conversely, given the sequence (a;); tending
a; 1—00

w

0

o3 —— 0. For fixed x € w and P €
ai 1— 00

Gan, the pointwise convergences to the averaged height excess energy Ef’, (12) and (14), are a

consequence of the previous convergence properties (11) and (13), and of the monotone convergence

E¥(xz,P,V) — Eg(xz,P,V). O
a—

to 0, we can extract a subsequence (n:(i))i such that

Now, we can use this uniform convergence result in w x G4, to deduce the convergence of the
integrated energies.

Proposition 15. Let Q C R™ be an open set and let (V;); be a sequence of d—varifolds in Q weakly—
converging to some d-varifold V' and such that sup; || Vi||(2) < +o00. Fiz a decreasing sequence (;);
of positive numbers tending to 0. Let w CC Q with ||V ||(Ow) = 0. Then there exists an extraction
1 such that

1—00

/ ESJ(CC,P, V) dV(.%',P) = hm / E;_(.CE,P, V¢(2))dV¢(Z)(x,P) .
UJXde WXGd,n '
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Proof. — Step 1: Let (oy); 4 0 and V; —* . V. Thanks to Proposition 14 , there exists an
p ) 1Y

1—00
extraction ¢ such that

sup ‘E;"i(x,P, Vw(i)) (a: P, V)‘ P —0.
pec,

But sup; Vi) (w X Gan) < sup; [|[Vi[[(Q2) < 400, hence

/ E¥ (2, P,V () dV,yo) (. P) — / E¥ (2, P,V)dV,(x, P)| — 0. (15)
wXGyg.n wxGgn

i—00

— Step 2: Now, we estimate

/ B (2, P,V) Vo) (z, P) - / E® (2, P,V)dV(z, P)
wXGdn t wXGdn ‘
1,450

S/rr:;n< rd+1 /wden/r ( x’P)> AV I(y) dVi(iy (z, P)
/WG/ ( $P>> d|[V|(y) aV (z, P)

min d(w, %)
(1‘ 2)
< d+3/r

=

dr

/ (x,P)dV¢(i)(x,P) —/ gr(xz, P)dV (x, P)| dr,
(JJXGd’n wXGd,n

d(w, Q°
with g,(z, P) = / d(y — x, P)?d||V||(y). For every r < min <1, (w,2 )
By (z)Nw

by 1. Moreover the set of discontinuities of g, denoted by disc(g,), satisfies

>, gr is bounded

disc(gr) C {(#,P) € w x Gap ¢ [|VI[(O(Br(z) Nw)) > 0}
C{(z,P) €ewxGan : |[V[(8B,(z)) >0} .

Hence V(disc(g,)) < ||[V]| {z € w : ||V|[(0B-(x)) > 0}) = 0 for almost every r by Proposition 4.
Consequently,

—— 0 for a.e. r,
1—00

/ gr(w, P)dV,(z, P) — / gr(z, P)dV(x, P)
wXGd,n WXGd,n

and then by dominated convergence,

min 1,d<w’QC)
/ (557) / gr (2, P)dV, 5 (x, )—/ g0(z, P)dV (z, P)| dr —— 0.
r=0 wxGq.n wxGqn =00
It is then possible to extract, again, a subsequence (Vy;)); such that
/ E¢ (2, P, V) dV,y(, P) — / E¥ (x,P,V)dV(z, P)| — 0. (16)
wXGdn wXGdn i—00
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— Step 3: Eventually by (15), (16) and monotone convergence, there exists an extraction ¢ such
that

/ E§(z,P,V)dV(xz,P) = lim / Eg (x, P,V)dV (x, P)
wXGd’n WXGd,n

i—00

= lim E;J ({L‘, P, Vw(i)) de(i) ({L‘, P) .

- i
1—00 wXGd,n

3.4 Rectifiability theorem

We can now state the main result.

Theorem 4. Let Q C R™ be an open set and let (V;); be a sequence of d—varifolds in  weakly—
converging to some d—varifold V and such that sup; ||V;||(Q) < +o00. Fiz (a;); and ()i decreasing
sequences of positive numbers tending to 0 and assume that:

(i) there exist 0 < Cy < Cy such that for ||V;||—almost every x € Q and for every B; < r < d(x,Q°),

Crwgr? < |Vill(Br(z)) < Cowar?, (17)
(ii)
up [ Eul(o PV dVi(o, P) < oo (18)
% QXde
Then V is a rectifiable d—varifold.

Proof. The point is to see that these two assumptions (17) and (18) actually imply the assumptions
of the static theorem (Theorem 3) for the limit varifold V.

— Step 1: The first assumption (17) and Proposition 10 lead to the first assumption of the static
theorem: there exist 0 < C < Cq such that for ||V||-almost every x € Q and for every 0 < r <
d(x,Q°),

Crwgr® < ||[V|[(B,(2)) < Cowgr? .

— Step 2: Let w CC 2 be a relatively compact open subset such that ||V]|(0w) = 0 then, thanks
to Proposition 15, we know that there exists some extraction ¢ such that

/ E9(w, P,V)dV(z, P) = lim B¢ (2. P.Vyw) Vo (@, P) . (19)
UJXde

1—>00 UJXGd,n g
But EY is decreasing in a and a,(;) < «;, therefore for every (,P) € wx Ggn,

Etgzui(xvpv Vap(z)) <E,

QX (i)

(:Ea Pa Vap(z)) )

hence

Sl}p/xg Eg (x, P, Vi) dVyy (2, P) < Sup/xG Eg (@ P Vi) dVey (z, P) . (20)
w d,n w d,n

(2 3
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Moreover, recall that Ef (z, P, V;) < Eq,(z, P,V;) and thus
sup/ Eg (x, P,V;)dVi(z, P) < Sup/ E,,(z, P, V;)dVi(x,P) < C. (21)
7 wXGdn i Q><CTVdn
Eventually, by (19), (20) and (21),

/ ES(z, P,V)dV (2, P) < C. (22)
wde n

— Step 3: By (22), for every w CC 2 such that ||V]|(0w) = 0 we get that
V{(z,P) ewxGqn | Eg(x,P,V)=400}) =0.

At the same time, for € w and P € G,
w ! dy — =,
[Bola, P.V) ~ g, PV = [ (g 7T il m( ) dIVi(y) dr
d(w,0°) 2
min —_— 1 P
+/< 2>d+1/ N
r=0 r B, (z)N(2\w)
9 d+1 mm(l,i( QQ )> 1 d(y—x P) 2
<\ 5=== V(2 +:/) J/ (’) dllvV y dr
(1mgs) W@+ [ o (e Vi)

) d+1 d+1
< || -—=—== + V() < 400
- d(w, Q°)

Hence E§ (z, P,V) = +o0 if and only if Ey(z, P,V) = 400, and consequently,

V{{(z,P)€wxGqpl|Eo(x,P,V)=400}) =V ({(z,P) € wx Gy | E5(x,P, V) =400}) .

Now, thanks to Lemma 2, we decompose () into = Ugwy with Vk, wii1 CC wi CC Q and
IV||(Owg) = 0. Then

V{(z,P) e 2xGypn|Eo(x,P,V)=+o0}) = IilgnV({(x,P) € wi X Gan | Eo(z, P,V) = +00})
—limV ({(s. P) € w x Gan | Eg(z. P,V) = +o0)
=0.

Applying the static theorem (Theorem 3) allows us to conclude the proof. O

In Theorem 4, we have found conditions (17) and (18) ensuring the rectifiability of the weak—x
limit V' of a sequence of d—varifolds (V;);. Recall that the condition

sup [0V;|(2) < +oo (23)

together with the condition (17) also ensure the rectifiability of the weak—« limit V' of (V;);. But,
in Proposition 6, we have computed the first variation of a discrete varifold (discrete varifolds
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are defined in Example 5) and we have seen in Example 6 that even in the case where the limit
varifold V' is very simple (we considered a straight line), the natural approximations of V' by discrete
varifolds V; generally do not satisfy (23) even though |§V|(€2) = 0.

We now check that the condition (18) in Theorem 4 is better adapted to general sequences of
varifolds than the control of the first variation (23). Indeed, in the next Proposition, we prove
that given a d—varifold V with some regularity property, and given any sequence of d—varifolds
Vi —— V, there exists a subsequence of (V;); satisfying a local version of condition (18) in
Theorem 4.

Proposition 16. Let Q C R™ be an open set and let V' be a d—varifold in £ such that
‘/ Fo(z, P.V)dV (2, P) < 4o .
QXde

Let (V;); be a sequence of d—varifolds weakly— converging to V with sup; ||V;||() < +oo. Then,
given a; | 0, for every w CC Q such that ||V||(0w) = 0, there exists a subsequence (W;)i = (V)i
such that

%

sup/ Eg (x, P,W;) dW;(x, P) < +00. (24)
wXde

Proof. 1t is a direct consequence of Proposition 15. O

The condition (24) is expressed in terms of the local version E¥ of E,. In the case where the
varifolds are contained in the same compact set, then global condition (18) of Theorem 4 is satisfied
by some subsequence.

Proposition 17. Let o; | 0. Let V' be a rectifiable d—varifold in R™ with compact support and such
that

/ Fo(z, P.V)dV (2, P) < 400 .

wXde

Assume moreover that there exists some sequence of d—varifolds (V;); weakly— converging to V
with sup; |Vi|[(R™) < 400. Then for any w CC R™ such that supp |V + B1(0) C w and for all i,

supp || Vi|| + B1(0) C w, there exists a subsequence (V)i such that

sup/ Eo(z, P, Vi) AV (2, P) < 400
i wdevn

(2

Proof. Tt is again a direct consequence of Proposition 15 (since @ is compact and ||V ||(0w) = 0)
combined with the fact that supp ||V| + B1(0) C w implies

min(1, 4ZEDD) d( 2
» ’ y—x,P) dr
Ed(z,PV) = / 74d/ - <r> ||V = Ey(z,P, V).

]

Given V; *f V and «; | 0, the previous propositions 16 and 17 give a subsequence (Vw(i))i
1—>+00

satisfying (18)
Sup/E@i (I‘,P, Vap(l)) thp(l)(x7P) < 400

1
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In the following proposition, we focus on sequences of discrete varifolds defined in Example 5.
Under some uniform regularity assumption on V', we give a sequence (V;); of discrete varifolds such
that
V; *é Vv )
1—+00
and a condition linking the scale parameter a; and the size §; of the mesh associated to the discrete
varifold V;, ensuring that (18) holds for V; and not for a subsequence.

Theorem 5. Let V = v(M,0) be a rectifiable d-varifold in R™ with finite mass ||[V|(2) < +oo
and compact support. Let 6; | 0 be a sequence of infinitesimals and (K;); a sequence of meshes
satisfying

sup diam(K) < —— 0.
Kek; 1——+00

Assume that there exists 0 < f < 1 and C > 0 such that for ||V||—almost every x, y € €,
1T M = T,M|| < Clz —y/”.

Define the sequence of discrete varifolds:

Vi = Z MK g Spi. with my = ||V||(K) and P} € argmin |P — S| dV(z,S) .
K ® KXGd’n

Kek; ‘ ’ PEGd’"
Then,
(i) V; ; v,
1——+00

(ii) For any sequence of infinitesimals a; | 0 and such that for all i,

5P
2
— 2
CV;-H i—+00 0, (25)
we have,
/ Eo(z,P,V)dV(z,P) = lim E,,(z, P, V;)dVi(x, P) < 400 .
RnXGd’n 1—+00 RnXGd,n

Remark 6. We insist on the fact that the condition on the scale parameters «; and the size of the
mesh J; is not dependent on V; but only on the regularity of V i.e. on 8 (and on the dimension d).

Notation. For the sake of simplicity, we now identify an element @ € Gg4, and the associated
orthogonal projector IIg € M, (R). For instance II7, s — IIg is now denoted T, M — Q).

Proof. — Step 1: Let ¢ € Lip(R" x Gg4,,) with Lipschitz constant lip(¢), then
[(Vi, ) — (V. 0)| < 8lip(o) [ V][(R™) + lip(e) / |P'(y) = T|| dV (y, T),

R”Xde

where P?: R" — Ga.n is cell-wise constant, and Pt = P}( in K.
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Indeed,

/ (. ) dVi(z, S) / oy, T)dV(y,T)
R XGyn R"XxGg n

B HVII(K) n
- Z/ PL) K| dL™(x) = Y /mgd’nso(y,T)dV(y,T)

Kek; Kek;
dE” AL (z

- / / o(z, Pi)dV (y,T) / / ey, T)dV(y,T) K()

Kek; zeK KXGdn Kek; zeK KXGdn ’ |

dL™(x

<[] ole, Plo) —oly, )] vy, 1) 271 (26)

Kek; zeK GKXGdn : | |

<lip(¢)(|z—yl|+|| Pi—T]|)
< Slip(@)|[VI®) +lin(e) [ |[P) - T] avieT). (27)
RnXde
We now study the convergence of the term HP’(y) — TH dv(y,T).
R"Xde
— Step 2:
[ 1P =T v T) < 205V IRD — 0. (28)
R X Gy n 1—+400
First define, for all 4, A* : R™ — M,,(R) cell-wise constant:
4 . 1
A=Ay = / T,M d||V]|(u) constant in the cell K € ;.
BIVIE) Jk

Then,

[ -t ven - ¥ [ i [ aravie s avie)

e, 2 Jilvie

= T,M — T,M| d|V||(w)d||V|(y
K%:C /KHVH(K)/KH_,ZJ_H 1V][(w) d[|V](y)
<Clu—y|P<C8]

< OOV [(RM .

Consequently, / HAZ(y) - TyMH d|V||(y) = &% with Z by < C’5f||VH(R”). In particular,
K

KeK;
for all K € K;, there exists yx € K such that
i 5@(
4 w) = T M < 7y
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Define T% : R™ — G5, constant in each cell, by T%(y) = Ti = T, M for K € K; and y € K,
and then,

Lo e -t aven = Y [ 150 -z divi)
R xGa,n Kek;
<K§ J T - £6) 14V16)+ Lo, A =T v
=A"(yr
< ¥ [ e dvie) + ol vie)

KeK;
<2067 |V |(R™) .

Now remind that for all K € K;, P}, € arg min/ |P—T| dV(y,T) so that,
PEde KXGd n

/Rnde,n |Pi(y) = T|| dV(y, T) = / ||P}< — 7| dV(y,T)

KeK;

<y / |T;; ~T|| av(y,T)
KeK;

< 206; HVH(R”)

Step 3: V; —— V.

i——+00

Thanks to Steps 1 and 2, we have proved that for any ¢ € Lip(Q2 x Gg4.,),

Vi,p) —— Vo), (29)

1——+00

it remains to check the case ¢ € C(R" x Gg,). Let ¢ € CUR" x G4,) and € > 0. We can
extend ¢ into p € CY(R™ x M,,(R)) by Tietze-Urysohn theorem since Gg,, is closed. Then, by
density of Lip(R" x M,(R)) in C(R™ x M, (R)) with respect to the uniform topology, there
exists ¢ € Lip(R" x M,(R)) such that H@—JHOO < e. Let now ¢ € Lip(R" x G4,,) be the
restriction of ¥ to R™ x Gn, then,

[(Voo) = (Vi o) < [(Vio) = (Vo) + (Vo) = (Vi, )| + [(Vi, ) — (Vi, )
< VIR e = Dl + (Vi) = (Vi, )| + [[Vil[(R™) ]| — ]l oo -

As ||[V;||(R™) = ||V ||(R™) for all ¢ by definition of V; and |(V, ) — (V;, )] oo 0 by (29), there
1—+00

exists ¢ large enough such that
(Vo) = (Vi) < QIVIIR™Y) +1) €

which concludes the proof of the weak— convergence.
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We now estimate,

/ Eo(z,P,V) dV(:c,P)/ Eo(z, P,V;) dVi(z, P) (30)
RnXGd’n RnXde‘
<\ EwPVdver)- [ E@PV)aer)| G
R"XGdyn RTLXGdﬂl
+/ Ea(x,P,V)dm(x,P)—/ Eq(z, P,V;) dVi(z, P) (32)
R"XGdyn R"XGd’n

— Step 4: We begin with (31) and we prove that

1
[ EwPVaer)- [ B PV)dveP)| < o VIE? [+ 200]).
R xGg.p, R xGq,p @
(33)
[ BaPVI@P)- [ EaePV)dV(P)
R”XGdyn RnXGdﬁn
! 1 dly —z, P 2
L [ () awlwaravice. )
R X Gy Jr=a T yEB(z) r
L | dly — x, P 2
Lo [ () awie) dravie.
R X Gy Jr=a T yEBy(x) r
< /1 ! / / 1 (&) (d(y — z, P))? dVi(x, P)
> ) —x|<r Yy—x, i\ Ly
r=q Td+3 yeR" |JR"x Gy p, {ly=al<ry
[ e (@)l — 2 P dV(P) dIV()dr (34)
R"xGg p
And as in Step 1 in (26), for fixed y and oo < r < 1, we have by definition of V;:
2
/ ]l{|y—x\<r}($) (d(y -, P))2 dVl(l'? P) - / ]1{|y—55'|<7’}(*73/) (d(y - ivla P/)) dV(l‘/, P,)
R"Xde‘ RnXde‘
i V)2 / I P2 ! pl dﬁn(x)
<) ’ﬂBT(y)(m) (d(y — =, Pi))” — g, (") (d(y — 2', P")) ‘ dv(a', P') =
Kk, JreK JKxGan |K|
(35)

And in (35), either 2,2’ € B,(y) and in this case

‘]}-Br(y)(z) (d(y - :EaPIZ())Z - ]lBr(y)(m/) (d(y - xlaP,))Q‘ S 2r |d(y - l'vplz() - d(y - xlaP/)’
<2r (lz —a'| + |y — 2'|||Pk — P'[])
<2 (lz —2'| +||Pk = P'])
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x € By(y) and 2’ ¢ B,(y) or,

2 € B,(y) and z ¢ B, (y), and in this case

either {

‘]lBr(y) () (d(y — 2, Pi)) = 1,1 (=) (d(y — 2, P'))Q‘ <r?<1.

Notice that, as |z — 2’| < §; this second case can only happen for z, 2’ € B,4s,(y) \ Br—s, (y).
Consequently,

/ ]1{|y—$\<r}(x) (d(y — =, P))2 dVi(z, P) — / ]l{ly—x’|<r}(x/) (d(y - JJ/, Pl))2 dV(l’/, P,)
R”Xde R"Xde

| AL (z)
< 2 (|l —2'|+ ||Py — P||) dV (', P’
}juéaﬁéx%m (12 =l + |Pic = P) dv (o', P) o

KeK;
|K N Br+5i (y) \ Br—di (y)|

+ Y PIVI(K N Bras(y) \ Brsi(v)

Kek; |K’
<1
SBAVIE)+ [P - PRV )+ IV B )\ Bros ()
X d,n

<2 (8 + 8L ) [VIIRY) + V| (Brss, () \ Br—s, () thanks to (28) in Step 2.

Notice that

1 1 1
/ WW&%@N&%M»WZ/ Ww&%@»m;/ VI (By_s. () dr
r=0 r=0 ;

= = 7‘:(5Z

1+45; 1-6;
— [ W@ e [ VB ) b

:61 r=0

1+6;
<[ VI ) < 28V IR).

Eventually, by (34),

/ @@RVWW&H—/‘ Eul, P,V)dV(x, P)
R XGq,p R"xGg pn

1
< a;+3jczojgn?3(5i+*65f)!‘/HGR”)%—H¥4|(3T+@(y)\-8r_@(y))dHVWKy)dr

1
< O;ig[2(6i+-66f)rnfnaR“>2+-/gnj[ZOrvW|<BT+&<y>\.BT_&<y» drd|[V|(y)

1 n
< s lVI®RY? [46 + 2067 ] .

— Step 5: It remains to estimate (32), we prove that

1

<
= qd+s

4| VII(R™)?5;. (36)

[ BaPV)@P)~ [ EaePV)aVi(eP)
R™ XGdyn Rn XGd’n
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Indeed, exactly as previously (but fixing x and integrating against ||V;||, ||V|| instead of V;, V,
so that the term depending on P! does not take part into this estimate), we have

|Eo(z, P,V;) —Eqy(z, P,V)|

1 1
<o |
ad+3 —0

1 1
< adH/T:o (26:[[VIIR™) + VIl (Brts,(y) \ Br-s,(y))) dr

[ dw—appamile - [ o pRdvie)| a
B (x) Br(x)

1 n
< —llVIR™)4; (37)

We conclude this step by integrating against V;, reminding that V;(R" x Gg,) = ||[Vi[[(R") =
IVII(R™).

— Step 6: By (33) and (36),

1
[ Ba@RIaver)- [ Bl RV P < g VIED? (35 +205)
R*"XGq,n R"XGg n Q;
(38)
—— 0
1—+00
thanks to (25). Then, by monotone convergence and (38),
/ Eo(z,P,V)dV(z,P) = lim Ey,(z, P,V)dV (z, P)
RnXGd,n 1—+00 RnXGd,n
= lim E,,(z, P,V;)dVi(x, P) .
1—+00 R XGyg.p
O

A Appendix: The approximate averaged height excess energy as
a tangent plane estimator

Throughout this section, (V;); is a sequence of d—varifolds weakly— converging to some d—varifold
V and («y); is a decreasing sequence of positive numbers tending to 0 and such that

sup |E% (z,P,V;) — E$ (x, P, V)| —— 0. (39)
€W ! ! 100
PEde

The existence of such a sequence of («;); is given by Proposition 13 in general, and in the case of
discrete varifolds associated to a varifold V', (39) holds as soon as

di
I p— 0 thanks to (37) .
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We want to show that under this condition on the choice of (a;);, for fixed x € €, the minimizers
of P B3 (P) = Eg (v, P,V;) converge, up to some subsequence, to minimizers of P+ Ef(P) =
Eg§ (x, P,V). In the proofs, we shorten Ef, (P) = E5 (v, P,V;) and E§(P) = E§ (x, P,V). We begin
with studying the pointwise approximate averaged height excess energy with respect to P € G, for
fixed z € Q and for a fixed d-varifold V.

A.1 The pointwise approximate averaged height excess energy

We now fix a d-varifold (not supposed rectifiable nor with bounded first variation) in some open
set Q C R™ and we study the continuity of E,(z, P, V') with respect to P € G4, and then z € Q.

Proposition 18. Let 0 < a < 1. Let V be a d—varifold in an open set Q C R™ such that
|V][(Q2) < +00. Then, for every P, Q € Ggn,

L
EaleP.V) = Eala Q) 2P =@l [ i IVI(B ) ar

2
In particular, P+ Eq(z,P,V) is Lipschitz with constant Ko < —=[|V|[(Q). If in addition
«
Va <r <1, |V|(B(z)) < Crd then Ko < C|V||(Q)In L.

(cl(y—ﬂmP))2 B <d(y—x,Q)>2

If mp (respectively mg) denotes the orthogonal projection onto P (respectively Q), recall that
Ay — 2, P) — d(y — 2, Q)| < |P — Qlly — o] Indeed

Proof. Let P, Q € Gy, then,

dl[V||(y) dr .

r

|
|Ea(2, P,V) = Ea(2,Q,V)| < /ard—i-l/B @)

dly—z,P)=y—z—7mp(y — )|
<ly—z—moy —2)| + |7y —z) — 7p(y — )|
<dly—=z,Q)+ g —7plop |y—=l.
=||P-Q|| by definition

dly —x, P
Moreover y € B,(z) so that dly — =, P)
,

(ﬂyngv>?_<ay7fxm>2

< 1 and thus

<2

’d(y—w,P) _d(y—,Q)
T T

— X
<op—o) = < yp—q.

r

Consequently,

o
Bala, V) = Ealw Q) 2P =@l [ —gilIVI(B: @) ar
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We now study the continuity of x — E,(x, P, V).

Proposition 19. Let 0 < a < 1. Let V be a d—varifold in an open set Q C R™ such that
IV](2) < +o0. Then,

sup |Ey(z, P,V)— Ey(2,P, V)] — 0.
PGde Z—T

Proof. First notice that for all z, y, z € Q and P € Gg,,
|d(y—=, P)=d(y—=2, P)| = |ly—z—7p(y—2)|~|y—2—7p(y—2)|| < [z—2w—7p(z—2)| = d(z—=, P).
We now split B, (z) U B,(z) into (By(x) N By(z)) and (By(z)AB,(z)) so that

L. (M) aviw - [ <d(y_P>) Vi)
= /r(w)mBr(z) (W)Q N <M>2

s (52) v - (02D v @

We use the estimate linking d(y — x, P) and d(y — z, P) to control the first integral and then we
show that the two other terms tend to 0.

Concerning the first integral (40):
d(y—fL‘,P) 2_ d(y_Z)P) ?
r r

/ r(x)NBr(2)

dly —z, P dly —z, P
<[ 2' ( ) _ )\dnvn@)
r(2)NBr(2) r

d[V1[(y) (40)

dl[Vi(y)

r

<2|’Z il

VI (Br(z) 0 Br(2)) -

Concerning the two other integrals (41):

dly—z,P)\* dly =2 P)\’
/BT(:c)\Br(z) ( r > Vi) +/Br(z)\3r($) ( ; > dl[V'li(y)
< VI (Br@)AB2) < Rz = |z —al,r+ |2 —a)

where R(J?, rminarmax) = {y € | Tmin < |y - $| < Tmax}-

Therefore,
|Eu(z, P,V) — En(z, P, V)|
dr ! dr
<ol —a / VB2 B2y + [ IV Be@)AB(2) i
< 2 L Q L 1 d
< gl = ol VIO + oz [ VIR =z = al.r+ |z = o)) dr

The second term tends to 0 when |z — z| — 0, by dominated convergence, since

lin [V} (R(z, 7 = [2 — 2|, +[2 = 2])) = [[V](9B(2)) -
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A.2 T'-convergence of P EY (z,P,V;) to P E§(z,P,V).

Proposition 20. Let 2 C R™ be an open set and let w CC § be a relatively compact open subset

such that |V||(0w) = 0. Let (V;); be a sequence of d-varifolds weakly— converging to V. Assume

that (o;); are chosen as explained in (39), uniformly in w. For (S;); C Gg, such that S; — S
100

then, for all x € w,

lim Ey (x,9,V;) = E§(x,S,V) < liminf £y, (z, S;, V;) .

1—00 1—00

Proof. By monotone convergence, we already know that

E§(x,8,V) = lim Ej (z,5,V). (42)
71— 00

So we now want to estimate ’Egjz (2,8,V) — B (x,5:,V) ‘ Let us start with extracting some (S,;) )
such that
Soy — S — 0
I »(1) [y d+1 im0

so that we can now apply the regularity property (Proposition 18) of E,(x, P,V') with respect to
P:
2
5,08, V) = B (e, 850 V] < VIS = S0l 0

thus
E§(x,8,V) = lim Ef (v, 8,0, V). (43)
1—00

Notice that ¢ only depends on («;);.
As the sequence (a;); is decreasing, ay,; < «; and then EY (z,Q,V) < EY ()(m,Q,V) for all
Q € Gy, which implies in particular that

lim Ey (z, Sy, V) < liminf £y

i—00 1—00 Qo (i )(

z, Su(i), V) - (44)

We now apply the uniform convergence of |E¥ (-,-, V) — E% (-,-,V;)| (39),

€7

Ew (QZ‘ S (i) V) - E((;(P(i) (l‘, Scp(i)v ch(z)) Q 0, (45)
so that by (43), (44) and (45)
E§(z,S,V) < hlrggf EY o )(a:, Soe), V) = hzrg(l)glf E? ()(a: Soiys V(i) - (46)

As liminf; B (z,S;, V;) = lim; Egy. )(x So(i), Vo)) for some extraction 6, we now apply (46) to
these extracted sequences (Sg(l)) and (‘/g(l))‘ so that there exists an extraction ¢ such that

Bg(x,8,V) < liminf By, (2, Sp(p00))s Vo)

1—00

= hm an )(x, So(iy> Va(s)) since the whole sequence E%( )(x, So(iys Va(s)) converges

= liminf £}, (z, S;, Vi) .
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We now turn to the consequences of this I'-convergence property on the minimizers.

Proposition 21. Let V; be a sequence of d—varifolds weakly—« converging to V in some open set
Q C R™ and assume that (c;); are chosen as explained in (39), uniformly in w CC  open subset
such that ||V]|(0w) = 0. For x € w and i € N, let T(x) € argminpcq, Ei (v, P,V;). Then,

1. Any converging subsequence of (Ti(x)); tends to a minimizer of E§(x,-, V).

2. min E¥ (z,P,V;) —— min E&(z, P V).
PEGd’n al( B 74) 1—>00 PGGd’n 0( B )

3. If V is an integral rectifiable d—varifold with bounded first variation then

argmin By (z, P,V) = {T, M} ,
PeGyn

hence for ||V ||—almost every xz, T;(x) —— T, M.
71— 00
Proof. First, for fixed x and i, P — EY (z,P,V;) is continuous and Gg, is compact so that
argminpeg, Eg (v, P,V;) # 0. Let Ti(x) € argminp.q, Eg (x, P,V;) be a sequence of minimiz-
ers, as Gy, is compact, one can extract a subsequence converging to some T (z). Now applying
the previous result (Proposition 20), we get for every P € G,

B (2, Too (), V) < liminf EY (¢, Ty(x), Vi)
1— 00
< limsup Ey (z, Ti(x), Vi)
1—00
< limsup Ey (z, P, V;)
1—00

— lim B2 (e, P,Vi) = E&(z, P,V)
< Ef (2, Too(x),V) for P =Tx(z) .

Therefore T\ () minimizes Ef (z, -, V') which allows to conclude that the limit of any subsequence
of minimizers of EY (z,-,V;) is a minimizer of E§(z,-,V). It also proves that

lizm Prerlégn Eg (x,PV;) = lizm Eg (2, Ti(x), Vi) = Eg (z, Too(2), V) = Prerléﬁn E§(x,P,V).

Assume now that Ef(z,-,V) admits a unique minimizer 7'(z). We have just shown that every
subsequence of (T;(z)); converges to T'(x). As G4, is compact, it is enough to show that the whole
sequence is converging to T'(xz). Now if V is an integral d-rectifiable varifold with bounded first
variation, for ||V||-almost every z, T,;M is the unique minimizer of E§(z,-, V) (see Prop. 7) so
that for |V||-almost every = € w,

1—00

O

Remark 7. Since E§ (x,-, V') has no continuity property, the existence of a minimizer of Ef(x,-,V)
is not clear a priori. However, as G4, is compact, every sequence of minimizers (Tj(x)); admits a
converging subsequence so that argminpcq, ~Eg(z, P, V) is not empty.
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We end with studying the continuity of the minimum minpeg, , Fo, (7, P, V;) with respect to x
(for fixed i and V;).

Proposition 22. Assume that V; weakly— converges to V in some open set Q& C R™ and let
(a;)i > 0. Then for every fized i and w CC S, the function x — Pmén EY (x, P,V;) is continuous
S d,n ‘

m w.
Moreover, every converging sequence of minimizers (T( k) € argminp B (21, P, V))k tends to a
minimizer of By (z,-,V;) when z;, — x and for a fived i.

Remark 8. As i is fixed, meaning actually that a scale « = a; > 0 and a d-varifold V = V; are
fixed, we keep the notations V; and «;, with the explicit index 4, only to be coherent with the whole
context of this section and with the notations of the previous results. But that is why we do not
assume anything on the choice of a; > 0 and w CC €.

Proof. Let i be fixed. First we show that if (2j)x C w is such that

k—o0

|2k — x| %O
T (zx) — T7° where Tj(2x) € argminp EY (21, P, V;) ,

then,

T7° € argminp EY (v, P, V;) and

minp By (zx, P, Vi) = Eg (21, Ti(21), Vi) — o Fa Eg (x,T7°,V;) = minp B (x, P, V;) . (47)
Indeed,

|ES (2, T3°,V;) — E% (2, Ti(z1), Vi)
<|BE (2, T5°,V;) — B2 (2, Ty(zx), Vi) | + | B (2, Ti(2k), Vi) — B2 (21, Ti(z1,), Vi) |
<K (o) | T7° = Ti(z) || +s';;p |ES. 377P7Vz) — E% (21, P, V3)|

applying Proposition 18 to the first term, K («;) is a constant depending only on «;. Moreover, by
Proposition 19, the second term tends to zero when k goes to co. Consequently,

Ea-(x7Tiooa ‘/2) = lim Eal(zkvﬂ(zk)a‘/l) .
k—o0

(3

And for every P € Gy,
EZ (x,T7°,V;) = lim EY (2, Ti(2x), Vi)
* k—oc0 K
< lim EZ (zx, P,V;)
k—o0 g
= B, (z, P, V;) by Proposition 19,

which yields (47).
It remains to prove the continuity of x — min Ej (z,P,V;). Let o and (2;)r € w be such that

PeGyn
z, — x and consider a subsequence (z ga(k)) ¢ such that
k—o0
k
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As Gy, is compact, there exists an extraction 6 such that (T;(z,(g(k))))x is converging and then
applying the previous argument (47) to (2,(9(x)))k and (Ti(zp(0(k))) ) ks

B, (2p00)) Ti(20(00k)))> Vi) = Plglégn Eg (x, PV;). (49)

Eventually, by (48) and (49),

limsup By (2x, Ti(2x), Vi) = min Ey (z, P,V;) .

k—+o00 PeGan

Similarly limk inf By (21, Ti(zk), Vi) = m]__i)n Eg (x, P, V;) which concludes the proof of the continuity.

O
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